1932

Abstract

The Earth's oceans have absorbed more than 90% of the excess, climate change–induced atmospheric heat. The resulting rise in oceanic temperatures affects all species and can lead to the collapse of marine ecosystems, including coral reefs. Here, we review the range of methods used to measure thermal stress impacts on reef-building corals, highlighting current standardization practices and necessary refinements to fast-track discoveries and improve interstudy comparisons. We also present technological developments that will undoubtedly enhance our ability to record and analyze standardized data. Although we use corals as an example, the methods described are widely employed in marine sciences, and our recommendations therefore apply to all species and ecosystems. Enhancing collaborative data collection efforts, implementing field-wide standardized protocols, and ensuring data availability through dedicated, openly accessible databases will enable large-scale analysis and monitoring of ecosystem changes, improving our predictive capacities and informing active intervention to mitigate climate change effects on marine life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032223-024511
2025-01-16
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-032223-024511.html?itemId=/content/journals/10.1146/annurev-marine-032223-024511&mimeType=html&fmt=ahah

Literature Cited

  1. Adams CIM, Knapp M, Gemmell NJ, Jeunen G-J, Bunce M, et al. 2019.. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10:(3):192
    [Crossref] [Google Scholar]
  2. Alderdice R, Perna G, Cárdenas A, Hume BCC, Wolf M, et al. 2022.. Deoxygenation lowers the thermal threshold of coral bleaching. . Sci. Rep. 12:(1):18273
    [Crossref] [Google Scholar]
  3. Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, et al. 2021.. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. . Glob. Change Biol. 27:(2):31226
    [Crossref] [Google Scholar]
  4. Alderdice R, Voolstra CR, Nuñez Lendo CI, Boote C, Suggett DJ, et al. 2024.. Loss of coral thermotolerance following year-long in situ nursery propagation with a consecutively high summer heat-load. . Coral Reefs 43:(4):91933
    [Crossref] [Google Scholar]
  5. Alexander JB, Bunce M, White N, Wilkinson SP, Adam AAS, et al. 2020.. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. . Coral Reefs 39:(1):15971
    [Crossref] [Google Scholar]
  6. Apprill A, Girdhar Y, Mooney TA, Hansel CM, Long MH, et al. 2023.. Toward a new era of coral reef monitoring. . Environ. Sci. Technol. 57:(13):511724
    [Crossref] [Google Scholar]
  7. Apprill A, Marlow HQ, Martindale MQ, Rappé MS. 2012.. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. . Appl. Environ. Microbiol. 78:(20):746775
    [Crossref] [Google Scholar]
  8. Aqualink. 2024.. The Aqualink buoy. . Aqualink. https://aqualink.org/buoy
    [Google Scholar]
  9. Arrigoni R, Vacherie B, Benzoni F, Stefani F, Karsenti E, et al. 2017.. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. . Mol. Ecol. Resour. 17:(5):105471
    [Crossref] [Google Scholar]
  10. Baird AH, Bhagooli R, Ralph PJ, Takahashi S. 2009.. Coral bleaching: the role of the host. . Trends Ecol. Evol. 24:(1):1620
    [Crossref] [Google Scholar]
  11. Ban SS, Graham NAJ, Connolly SR. 2014.. Evidence for multiple stressor interactions and effects on coral reefs. . Glob. Change Biol. 20:(3):68197
    [Crossref] [Google Scholar]
  12. Barshis DJ, Ladner JT, Oliver TA, Palumbi SR. 2014.. Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. . Mol. Biol. Evol. 31:(6):134352
    [Crossref] [Google Scholar]
  13. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, et al. 2015.. The genome of Aiptasia, a sea anemone model for coral symbiosis. . PNAS 112:(38):1189398
    [Crossref] [Google Scholar]
  14. Bay RA, Rose NH, Logan CA, Palumbi SR. 2017.. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. . Sci. Adv. 3:(11):e1701413
    [Crossref] [Google Scholar]
  15. Becken S, Connolly RM, Chen J, Stantic B. 2019.. A hybrid is born: integrating collective sensing, citizen science and professional monitoring of the environment. . Ecol. Inform. 52::3545
    [Crossref] [Google Scholar]
  16. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012.. Impacts of climate change on the future of biodiversity. . Ecol. Lett. 15:(4):36577
    [Crossref] [Google Scholar]
  17. Bennett S, Vaquer-Sunyer R, Jordá G, Forteza M, Roca G, Marbà N. 2022.. Thermal performance of seaweeds and seagrasses across a regional climate gradient. . Front. Mar. Sci. 9::733315
    [Crossref] [Google Scholar]
  18. Berkelmans R, Willis BL. 1999.. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. . Coral Reefs 18:(3):21928
    [Crossref] [Google Scholar]
  19. Berumen ML, Voolstra CR, Daffonchio D, Agusti S, Aranda M, et al. 2019.. The Red Sea: Environmental gradients shape a natural laboratory in a nascent ocean. . In Coral Reefs of the Red Sea, ed. CR Voolstra, ML Berumen , pp. 110. Cham, Switz:.: Springer
    [Google Scholar]
  20. Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. 2020.. Defining coral bleaching as a microbial dysbiosis within the coral holobiont. . Microorganisms 8:(11):1682
    [Crossref] [Google Scholar]
  21. Bollati E, D'Angelo C, Alderdice R, Pratchett M, Ziegler M, Wiedenmann J. 2020.. Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. . Curr. Biol. 30:(13):243345.e3
    [Crossref] [Google Scholar]
  22. Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, et al. 2019.. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. . Front. Ecol. Environ. 17:(8):44554
    [Crossref] [Google Scholar]
  23. Brown BE. 1997.. Coral bleaching: causes and consequences. . Coral Reefs 16:(1 Suppl.):S12938
    [Crossref] [Google Scholar]
  24. Brown KT, Lenz EA, Glass BH, Kruse E, McClintock R, et al. 2023.. Divergent bleaching and recovery trajectories in reef-building corals following a decade of successive marine heatwaves. . PNAS 120:(52):e2312104120
    [Crossref] [Google Scholar]
  25. Brüwer JD, Voolstra CR. 2018.. First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data. . PeerJ 6::e4449
    [Crossref] [Google Scholar]
  26. Burns J, Delparte D, Gates RD, Takabayashi M. 2015.. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. . PeerJ 3::e1077
    [Crossref] [Google Scholar]
  27. Camp EF, Edmondson J, Doheny A, Rumney J, Grima AJ, et al. 2019.. Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. . Mar. Ecol. Prog. Ser. 625::114
    [Crossref] [Google Scholar]
  28. Castillo KD, Ries JB, Weiss JM, Lima FP. 2012.. Decline of forereef corals in response to recent warming linked to history of thermal exposure. . Nat. Clim. Change 2:(10):75660
    [Crossref] [Google Scholar]
  29. Chown SL, Jumbam KR, Sørensen JG, Terblanche JS. 2009.. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. . Funct. Ecol. 23:(1):13340
    [Crossref] [Google Scholar]
  30. Coles SL, Jokiel PL, Lewis CR. 1976.. Thermal tolerance in tropical versus subtropical Pacific reef corals. . Pac. Sci. 30:(2):15966
    [Google Scholar]
  31. Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. 2021.. Surface topography, bacterial carrying capacity, and the prospect of microbiome manipulation in the sea anemone coral model Aiptasia. . Front. Microbiol. 12::637834
    [Crossref] [Google Scholar]
  32. Craggs J, Guest JR, Davis M, Simmons J, Dashti E, Sweet M. 2017.. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. . Ecol. Evol. 7:(24):1106678
    [Crossref] [Google Scholar]
  33. Cui G, Mi J, Moret A, Menzies J, Zhong H, Li A. 2023.. A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian–Symbiodiniaceae symbioses. . Nat. Commun. 14:(1):6949
    [Crossref] [Google Scholar]
  34. Cunning R, Parker KE, Johnson-Sapp K, Karp RF, Wen AD, et al. 2021.. Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. . Proc. R. Soc. B 288:(1961):20211613
    [Crossref] [Google Scholar]
  35. Cunning R, Silverstein RN, Baker AC. 2015.. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. . Proc. R. Soc. B 282:(1809):20141725
    [Crossref] [Google Scholar]
  36. Cziesielski MJ, Schmidt-Roach S, Aranda M. 2019.. The past, present, and future of coral heat stress studies. . Ecol. Evol. 9:(17):1005566
    [Crossref] [Google Scholar]
  37. da Silveira CBL, Strenzel GMR, Maida M, Gaspar ALB, Ferreira BP. 2021.. Coral reef mapping with remote sensing and machine learning: a nurture and nature analysis in marine protected areas. . Remote Sens. 13:(15):2907
    [Crossref] [Google Scholar]
  38. D'Angelo C, Hume BCC, Burt J, Smith EG, Achterberg EP, Wiedenmann J. 2015.. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. . ISME J. 9:(12):255160
    [Crossref] [Google Scholar]
  39. Delgadillo-Ordoñez N, Garcias-Bonet N, Raimundo I, García FC, Villela H, et al. 2024.. Probiotics reshape the coral microbiome in situ without detectable off-target effects in the surrounding environment. . Commun. Biol. 7:(1):434
    [Crossref] [Google Scholar]
  40. DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, Medina M. 2010.. Coral host transcriptomic states are correlated with Symbiodinium genotypes. . Mol. Ecol. 19:(6):117486
    [Crossref] [Google Scholar]
  41. DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, et al. 2008.. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. . Mol. Ecol. 17:(17):395271
    [Crossref] [Google Scholar]
  42. Done T, Roelfsema C, Harvey A, Schuller L, Hill J, et al. 2017.. Reliability and utility of citizen science reef monitoring data collected by Reef Check Australia, 2002–2015. . Mar. Pollut. Bull. 117:(1):14855
    [Crossref] [Google Scholar]
  43. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, et al. 2012.. Climate change impacts on marine ecosystems. . Annu. Rev. Mar. Sci. 4::1137
    [Crossref] [Google Scholar]
  44. Donlon CJ, Minnett PJ, Gentemann C, Nightingale TJ, Barton IJ, et al. 2002.. Toward improved validation of satellite sea surface skin temperature measurements for climate research. . J. Clim. 15:(4):35369
    [Crossref] [Google Scholar]
  45. Donner SD, Heron SF, Skirving WJ. 2018.. Future scenarios: a review of modelling efforts to predict the future of coral reefs in an era of climate change. . In Coral Bleaching: Patterns, Processes, Causes and Consequences, ed. MJH van Oppen, JM Lough , pp. 32541. Cham, Switz:.: Springer
    [Google Scholar]
  46. Dörr M, Denger J, Maier CS, Kirsch JV, Manns H, Voolstra CR. 2023.. Short-term heat stress assays resolve effects of host strain, repeat stress, and bacterial inoculation on Aiptasia thermal tolerance phenotypes. . Coral Reefs 42:(6):127181
    [Crossref] [Google Scholar]
  47. Dungan AM, Maire J, Perez-Gonzalez A, Blackall LL, van Oppen MJH. 2022.. Lack of evidence for the oxidative stress theory of bleaching in the sea anemone, Exaiptasia diaphana, under elevated temperature. . Coral Reefs 41:(4):116172
    [Crossref] [Google Scholar]
  48. Eakin CM, Devotta D, Heron S, Connolly S, Liu G, et al. 2022.. The 2014–17 global coral bleaching event: the most severe and widespread coral reef destruction. . Res. Square 1555992. https://doi.org/10.21203/rs.3.rs-1555992/v1
  49. Eddy TD, Lam VWY, Reygondeau G, Cisneros-Montemayor AM, Greer K, et al. 2021.. Global decline in capacity of coral reefs to provide ecosystem services. . One Earth 4:(9):127885
    [Crossref] [Google Scholar]
  50. England H, Herdean A, Matthews J, Hughes DJ, Roper CD, et al. 2024.. A portable multi-taxa phenotyping device to retrieve physiological performance traits. . Sci. Rep. 14::21826
    [Crossref] [Google Scholar]
  51. Evensen NR, Fine M, Perna G, Voolstra CR, Barshis DJ. 2021.. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. . Limnol. Oceanogr. 66:(5):171829
    [Crossref] [Google Scholar]
  52. Evensen NR, Parker KE, Oliver TA, Palumbi SR, Logan CA, et al. 2023.. The Coral Bleaching Automated Stress System (CBASS): a low-cost, portable system for standardized empirical assessments of coral thermal limits. . Limnol. Oceanogr. Methods 21:(7):42134
    [Crossref] [Google Scholar]
  53. Evensen NR, Voolstra CR, Fine M, Perna G, Buitrago-López C, et al. 2022.. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. . Coral Reefs 41:(2):23952
    [Crossref] [Google Scholar]
  54. Fine M, Gildor H, Genin A. 2013.. A coral reef refuge in the Red Sea. . Glob. Change Biol. 19:(12):364047
    [Crossref] [Google Scholar]
  55. Fisher R, O'Leary RA, Low-Choy S, Mengersen K, Knowlton N, et al. 2015.. Species richness on coral reefs and the pursuit of convergent global estimates. . Curr. Biol. 25:(4):5005
    [Crossref] [Google Scholar]
  56. Forsman ZH, Page CA, Toonen RJ, Vaughan D. 2015.. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. . PeerJ 3::e1313
    [Crossref] [Google Scholar]
  57. Fox MD, Cohen AL, Rotjan RD, Mangubhai S, Sandin SA, et al. 2021.. Increasing coral reef resilience through successive marine heatwaves. . Geophys. Res. Lett. 48:(17):e2021GL094128
    [Crossref] [Google Scholar]
  58. Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, et al. 2015.. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. . ISME J. 9:(7):154356
    [Crossref] [Google Scholar]
  59. Fraune S, Bosch TCG. 2007.. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. . PNAS 104:(32):1314651
    [Crossref] [Google Scholar]
  60. Freeman A, Zlotnicki V, Liu T, Holt B, Kwok R, et al. 2010.. Ocean measurements from space in 2025. . Oceanography 23:(4):14461
    [Crossref] [Google Scholar]
  61. Fuller ZL, Mocellin VJL, Morris LA, Cantin N, Shepherd J, et al. 2020.. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. . Science 369:(6501):eaba4674
    [Crossref] [Google Scholar]
  62. Gomez AM, McDonald KC, Shein K, DeVries S, Armstrong RA, et al. 2020.. Comparison of satellite-based sea surface temperature to in situ observations surrounding coral reefs in La Parguera, Puerto Rico. . J. Mar. Sci. Eng. 8:(6):453
    [Crossref] [Google Scholar]
  63. Gomez-Campo K, Baums IB. 2024.. Fitted Fv/Fm temperature response curves: applying lessons from plant ecophysiology to acute thermal stress experiments in coral holobionts. . OSF Preprints. https://doi.org/10.31219/osf.io/g4eu8
    [Google Scholar]
  64. González-Rivero M, Beijbom O, Rodriguez-Ramirez A, Bryant DEP, Ganase A, et al. 2020.. Monitoring of coral reefs using artificial intelligence: a feasible and cost-effective approach. . Remote Sens. 12:(3):489
    [Crossref] [Google Scholar]
  65. Goreau T, Hayes R. 1994.. Coral bleaching and ocean “hot spots. .” Ambio 23::17680
    [Google Scholar]
  66. Grottoli AG, Toonen RJ, van Woesik R, Vega Thurber R, Warner ME, et al. 2021.. Increasing comparability among coral bleaching experiments. . Ecol. Appl. 31:(4):e02262
    [Crossref] [Google Scholar]
  67. Hagedorn M, Page CA, O'Neil KL, Flores DM, Tichy L, et al. 2021.. Assisted gene flow using cryopreserved sperm in critically endangered coral. . PNAS 118:(38):e2110559118
    [Crossref] [Google Scholar]
  68. Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. 2024.. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. . Biol. Rev. Camb. Philos. Soc. 99:(3):71552
    [Crossref] [Google Scholar]
  69. Hesley D, Kaufman M, Lirman D. 2023.. Citizen science benefits coral reefs and community members alike. . Front. Environ. Sci. 11::1250464
    [Crossref] [Google Scholar]
  70. Hodgson G. 1999.. A global assessment of human effects on coral reefs. . Mar. Pollut. Bull. 38:(5):34555
    [Crossref] [Google Scholar]
  71. Hoegh-Guldberg O, Fine M. 2004.. Low temperatures cause coral bleaching. . Coral Reefs 23:(3):444
    [Crossref] [Google Scholar]
  72. Hoegh-Guldberg O, Smith GJ. 1989.. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. . J. Exp. Mar. Biol. Ecol. 129:(3):279303
    [Crossref] [Google Scholar]
  73. Howells EJ, Bay LK, Bay RA. 2022.. Identifying, monitoring, and managing adaptive genetic variation in reef-building corals under rapid climate warming. . In Coral Reef Conservation and Restoration in the Omics Age, ed. MJH van Oppen, M Aranda Lastra , pp. 5570. Cham, Switz:.: Springer
    [Google Scholar]
  74. Hughes AD, Grottoli AG, Pease TK, Matsui Y. 2010.. Acquisition and assimilation of carbon in non-bleached and bleached corals. . Mar. Ecol. Prog. Ser. 420::91101
    [Crossref] [Google Scholar]
  75. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, et al. 2018a.. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. . Science 359:(6371):8083
    [Crossref] [Google Scholar]
  76. Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, et al. 2018b.. Global warming transforms coral reef assemblages. . Nature 556:(7702):49296
    [Crossref] [Google Scholar]
  77. Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, et al. 2019.. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. . Mol. Ecol. Resour. 19:(4):106380
    [Crossref] [Google Scholar]
  78. Hume BCC, Voolstra CR, Arif C, D'Angelo C, Burt JA, et al. 2016.. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. . PNAS 113:(16):441621
    [Crossref] [Google Scholar]
  79. Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, et al. 2018.. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. . PeerJ 6::e4816
    [Crossref] [Google Scholar]
  80. Iakovleva Y, Voolstra CR. 2023.. CBASSED50: R package to process CBASS-derived PAM data. Zenodo 10423471. . https://zenodo.org/records/10423471
  81. ICRI (Int. Coral Reef Initiat.). 2024.. NOAA and ICRI confirm fourth global coral bleaching event. Press Release, ICRI, Washington, DC:. https://icriforum.org/4gbe
    [Google Scholar]
  82. Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A. 2021.. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. . Nat. Microbiol. 6:(6):76982
    [Crossref] [Google Scholar]
  83. Jin YK, Lundgren P, Lutz A, Raina J-B, Howells EJ, et al. 2016.. Genetic markers for antioxidant capacity in a reef-building coral. . Sci. Adv. 2:(5):e1500842
    [Crossref] [Google Scholar]
  84. Jokiel PL, Coles SL. 1990.. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. . Coral Reefs 8:(4):15562
    [Crossref] [Google Scholar]
  85. Jones IT, Gray MD, Mooney TA. 2022.. Soundscapes as heard by invertebrates and fishes: particle motion measurements on coral reefs. . J. Acoust. Soc. Am. 152:(1):399
    [Crossref] [Google Scholar]
  86. Kawamura K, Nishitsuji K, Shoguchi E, Fujiwara S, Satoh N. 2021.. Establishing sustainable cell lines of a coral, Acropora tenuis. . Mar. Biotechnol. 23:(3):37388
    [Crossref] [Google Scholar]
  87. Kayanne H. 2017.. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. . Coral Reefs 36:(1):6370
    [Crossref] [Google Scholar]
  88. Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. 2013.. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. . Mol. Ecol. 22:(16):433548
    [Crossref] [Google Scholar]
  89. Kinzie RA III, Takayama M, Santos SR, Coffroth MA. 2001.. The adaptive bleaching hypothesis: experimental tests of critical assumptions. . Biol. Bull. 200:(1):5158
    [Crossref] [Google Scholar]
  90. Kittinger JN, Finkbeiner EM, Glazier EW, Crowder LB. 2012.. Human dimensions of coral reef social-ecological systems. . Ecol. Soc. 17:(4):17
    [Crossref] [Google Scholar]
  91. Klepac CN, Petrik CG, Karabelas E, Owens J, Hall ER, Muller EM. 2024.. Assessing acute thermal assays as a rapid screening tool for coral restoration. . Sci. Rep. 14:(1):1898
    [Crossref] [Google Scholar]
  92. Kleypas JA. 2011.. Ocean acidification, effects on calcification. . In Encyclopedia of Modern Coral Reefs: Structure, Form and Process, ed. D Hopley , pp. 73337. Dordrecht, Neth:.: Springer
    [Google Scholar]
  93. Lachs L, Donner SD, Mumby PJ, Bythell JC, Humanes A, et al. 2023.. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. . Nat. Commun. 14:(1):4939
    [Crossref] [Google Scholar]
  94. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, et al. 2018.. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. . Curr. Biol. 28:(16):257080.e6
    [Crossref] [Google Scholar]
  95. Lamont TAC, Chapuis L, Williams B, Dines S, Gridley T, et al. 2022.. HydroMoth: testing a prototype low-cost acoustic recorder for aquatic environments. . Remote Sens. Ecol. Conserv. 8:(3):36278
    [Crossref] [Google Scholar]
  96. Lau CM, Kee-Alfian AA, Affendi YA, Hyde J, Chelliah A, et al. 2019.. Tracing coral reefs: a citizen science approach in mapping coral reefs to enhance marine park management strategies. . Front. Mar. Sci. 6::539
    [Crossref] [Google Scholar]
  97. Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, et al. 2019.. Rapid coral decay is associated with marine heatwave mortality events on reefs. . Curr. Biol. 29:(16):272330.e4
    [Crossref] [Google Scholar]
  98. Lesser MP. 1997.. Oxidative stress causes coral bleaching during exposure to elevated temperatures. . Coral Reefs 16:(3):18792
    [Crossref] [Google Scholar]
  99. Liu G, Heron SF, Eakin CM, Muller-Karger FE, Vega-Rodriguez M, et al. 2014.. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. . Remote Sens. 6:(11):11579606
    [Crossref] [Google Scholar]
  100. Lobanov V, Gobet A, Joyce A. 2022.. Ecosystem-specific microbiota and microbiome databases in the era of big data. . Environ. Microbiome 17:(1):37
    [Crossref] [Google Scholar]
  101. Logan CA, Dunne JP, Ryan JS, Baskett ML, Donner SD. 2021.. Quantifying global potential for coral evolutionary response to climate change. . Nat. Clim. Change 11:(6):53742
    [Crossref] [Google Scholar]
  102. Lozada-Misa P, Schumacher B, Vargas-Ángel B. 2017.. Analysis of benthic survey images via CoralNet: a summary of standard operating procedures and guidelines. Adm. Rep. H-17-02 , Pac. Isl. Fish. Sci. Cent., Honolulu, HI:
    [Google Scholar]
  103. Lutterschmidt WI, Hutchison VH. 1997.. The critical thermal maximum: history and critique. . Can. J. Zool. 75:(10):156174
    [Crossref] [Google Scholar]
  104. Lyons M, Larsen K, Skone M. 2022.. CoralMapping/AllenCoralAtlas: DOI for paper at ∼ v1.3. Zenodo 3833242. . https://zenodo.org/doi/10.5281/zenodo.3833242
  105. Marzonie MR, Bay LK, Bourne DG, Hoey AS, Matthews S, et al. 2023.. The effects of marine heatwaves on acute heat tolerance in corals. . Glob. Change Biol. 29:(2):40416
    [Crossref] [Google Scholar]
  106. Matz MV, Treml EA, Haller BC. 2020.. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. . Glob. Change Biol. 26:(6):347381
    [Crossref] [Google Scholar]
  107. Mayer AG. 1914.. The Effects of Temperature upon Tropical Marine Animals. Washington, DC:: Carnegie Inst. Wash.
    [Google Scholar]
  108. Mayfield AB, Chen Y-J, Lu C-Y, Chen C-S. 2018.. The proteomic response of the reef coral Pocillopora acuta to experimentally elevated temperatures. . PLOS ONE 13:(1):e0192001
    [Crossref] [Google Scholar]
  109. Mayfield AB, Dempsey AC, Chen C-S, Lin C. 2022.. Expediting the search for climate-resilient reef corals in the coral triangle with artificial intelligence. . Appl. Sci. 12:(24):12955
    [Crossref] [Google Scholar]
  110. McCarthy OS, Smith JE, Petrovic V, Sandin SA. 2022.. Identifying the drivers of structural complexity on Hawaiian coral reefs. . Mar. Ecol. Prog. Ser. 702::7186
    [Crossref] [Google Scholar]
  111. McLachlan RH, Price JT, Solomon SL, Grottoli AG. 2020.. Thirty years of coral heat-stress experiments: a review of methods. . Coral Reefs 39:(4):885902
    [Crossref] [Google Scholar]
  112. Menon S, Mathew MR, Sam S, Keerthi K, Kumar KG. 2020.. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. . J. Electroanal. Chem. 878::114596
    [Crossref] [Google Scholar]
  113. Middlebrook R, Anthony KRN, Hoegh-Guldberg O, Dove S. 2010.. Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. . J. Exp. Biol. 213:(7):102634
    [Crossref] [Google Scholar]
  114. Mioduchowska M, Iglikowska A, Jastrzębski JP, Kaczorowska A-K, Kotlarska E, et al. 2022.. Challenges of comparing marine microbiome community composition data provided by different commercial laboratories and classification databases. . Water 14:(23):3855
    [Crossref] [Google Scholar]
  115. Morikawa MK, Palumbi SR. 2019.. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. . PNAS 116:(21):1058691
    [Crossref] [Google Scholar]
  116. Moya A. 2006.. Study of calcification during a daily cycle of the coral Stylophora pistillata: implications for “light-enhanced calcification. .” J. Exp. Biol. 209:(17):341319
    [Crossref] [Google Scholar]
  117. Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, et al. 2004.. Remote sensing of coral reefs and their physical environment. . Mar. Pollut. Bull. 48:(3–4):21928
    [Crossref] [Google Scholar]
  118. Muscatine L. 1990.. The role of symbiotic algae in carbon and energy flux in reef corals. . Ecosyst. World 25::7587
    [Google Scholar]
  119. Nakamura T, van Woesik R. 2001.. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. . Mar. Ecol. Prog. Ser. 212::3014
    [Crossref] [Google Scholar]
  120. Nichols PK, Marko PB. 2019.. Rapid assessment of coral cover from environmental DNA in Hawai'i. . Environ. DNA 1:(1):4053
    [Crossref] [Google Scholar]
  121. NOAA (Natl. Ocean. Atmos. Adm.). 2024a.. Coral Reef Temperature Anomaly Database. . NOAA. https://www.ncei.noaa.gov/products/coral-reef-temperature-anomaly-database
    [Google Scholar]
  122. NOAA (Natl. Ocean. Atmos. Adm.). 2024b.. CoRIS Geoportal – data & publication search. . NOAA. https://www.coris.noaa.gov/data/welcome.html
    [Google Scholar]
  123. NOAA (Natl. Ocean. Atmos. Adm.). 2024c.. Daily global 5km satellite coral bleaching heat stress monitoring. . NOAA. https://coralreefwatch.noaa.gov/product/5km
    [Google Scholar]
  124. NOAA (Natl. Ocean. Atmos. Adm.). 2024d.. Light stress damage product suite – Caribbean and eastern Pacific. . NOAA. https://coralreefwatch.noaa.gov/product/lsd
    [Google Scholar]
  125. NOAA (Natl. Ocean. Atmos. Adm.). 2024e.. Reporting coral bleaching data and observations to NOAA Coral Reef Watch. . NOAA. https://coralreefwatch.noaa.gov/satellite/research/coral_bleaching_report.php
    [Google Scholar]
  126. Obura DO, Aeby G, Amornthammarong N, Appeltans W, Bax N, et al. 2019.. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. . Front. Mar. Sci. 6::580
    [Crossref] [Google Scholar]
  127. Oliver TA, Palumbi SR. 2011.. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30:(2):42940
    [Crossref] [Google Scholar]
  128. Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, et al. 2018.. Thermal refugia against coral bleaching throughout the northern Red Sea. . Glob. Change Biol. 24:(2):e47484
    [Crossref] [Google Scholar]
  129. Pacherres CO, Ahmerkamp S, Schmidt-Grieb GM, Holtappels M, Richter C. 2020.. Ciliary vortex flows and oxygen dynamics in the coral boundary layer. . Sci. Rep. 10:(1):7541
    [Crossref] [Google Scholar]
  130. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014.. Mechanisms of reef coral resistance to future climate change. . Science 344:(6186):89598
    [Crossref] [Google Scholar]
  131. Paoli L, Ruscheweyh H-J, Forneris CC, Hubrich F, Kautsar S, et al. 2022.. Biosynthetic potential of the global ocean microbiome. . Nature 607:(7917):11118
    [Crossref] [Google Scholar]
  132. Peixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. 2017.. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. . Front. Microbiol. 8::341
    [Crossref] [Google Scholar]
  133. Pineda J, Starczak V, Tarrant A, Blythe J, Davis K, et al. 2013.. Two spatial scales in a bleaching event: corals from the mildest and the most extreme thermal environments escape mortality. . Limnol. Oceanogr. 58:(5):153145
    [Crossref] [Google Scholar]
  134. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013.. Marine taxa track local climate velocities. . Science 341:(6151):123942
    [Crossref] [Google Scholar]
  135. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. 2017.. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. . Glob. Change Biol. 23:(9):383848
    [Crossref] [Google Scholar]
  136. Ponsero AJ, Hurwitz BL. 2019.. The promises and pitfalls of machine learning for detecting viruses in aquatic metagenomes. . Front. Microbiol. 10::806
    [Crossref] [Google Scholar]
  137. Puntin G, Craggs J, Hayden R, Engelhardt KE, McIlroy S, et al. 2023.. The reef-building coral Galaxea fascicularis: a new model system for coral symbiosis research. . Coral Reefs 42:(1):23952
    [Crossref] [Google Scholar]
  138. Puntin G, Sweet M, Fraune S, Medina M, Sharp K, et al. 2022.. Harnessing the power of model organisms to unravel microbial functions in the coral holobiont. . Microbiol. Mol. Biol. Rev. 86:(4):e0005322
    [Crossref] [Google Scholar]
  139. Quigley KM, Alvarez-Roa C, Raina J-B, Pernice M, van Oppen MJH. 2023.. Heat-evolved microalgal symbionts increase thermal bleaching tolerance of coral juveniles without a trade-off against growth. . Coral Reefs 42:(6):122732
    [Crossref] [Google Scholar]
  140. Rädecker N, Escrig S, Spangenberg JE, Voolstra CR, Meibom A. 2023.. Coupled carbon and nitrogen cycling regulates the cnidarian-algal symbiosis. . Nat. Commun. 14:(1):6948
    [Crossref] [Google Scholar]
  141. Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, et al. 2021.. Heat stress destabilizes symbiotic nutrient cycling in corals. . PNAS 118:(5):e2022653118
    [Crossref] [Google Scholar]
  142. Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, et al. 2018.. Using Aiptasia as a model to study metabolic interactions in cnidarian-Symbiodinium symbioses. . Front. Physiol. 9::214
    [Crossref] [Google Scholar]
  143. Raimer JD, Peixoto RS, Davies SW, Traylor-Knowles N, Short ML, et al. 2024.. The fourth global coral bleaching event—where do we go from here?. Coral Reefs 43:(4):112125
    [Crossref] [Google Scholar]
  144. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC. 2014.. Review: the detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. . J. Appl. Ecol. 51:(5):145059
    [Crossref] [Google Scholar]
  145. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. 2006.. The coral probiotic hypothesis. . Environ. Microbiol. 8:(12):206873
    [Crossref] [Google Scholar]
  146. Rezende EL, Castañeda LE, Santos M. 2014.. Tolerance landscapes in thermal ecology. . Funct. Ecol. 28:(4):799809
    [Crossref] [Google Scholar]
  147. Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, et al. 2019.. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. . Nat. Microbiol. 4:(12):2090100
    [Crossref] [Google Scholar]
  148. Roberty S, Weis VM, Davy SK, Voolstra CR. 2024.. Editorial: Aiptasia: a model system in coral symbiosis research. . Front. Mar. Sci. 11::1370814
    [Crossref] [Google Scholar]
  149. Rohwer F, Seguritan V, Azam F, Knowlton N. 2002.. Diversity and distribution of coral-associated bacteria. . Mar. Ecol. Prog. Ser. 243::110
    [Crossref] [Google Scholar]
  150. Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, et al. 2016.. Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front. . Mar. Sci. 3::234
    [Google Scholar]
  151. Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, et al. 2018.. High frequency temperature variability reduces the risk of coral bleaching. . Nat. Commun. 9:(1):1671
    [Crossref] [Google Scholar]
  152. Sahin D, Schoepf V, Filbee-Dexter K, Thomson DP, Radford B, Wernberg T. 2023.. Heating rate explains species-specific coral bleaching severity during a simulated marine heatwave. . Mar. Ecol. Prog. Ser. 706::3346
    [Crossref] [Google Scholar]
  153. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. 2008.. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. . PNAS 105:(30):1044449
    [Crossref] [Google Scholar]
  154. Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, et al. 2021.. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. . Sci. Adv. 7:(33):eabg3088
    [Crossref] [Google Scholar]
  155. Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, et al. 2021.. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. . PNAS 118:(19):e2023298118
    [Crossref] [Google Scholar]
  156. Schlotheuber M, Voolstra CR, de Beer D, Camp EF, Klatt JM, et al. 2024.. High temporal resolution of hydrogen peroxide (H2O2) dynamics during heat stress does not support a causative role in coral bleaching. . Coral Reefs 43:(1):11933
    [Crossref] [Google Scholar]
  157. Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, et al. 2019.. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. . Nat. Commun. 10:(1):4031
    [Crossref] [Google Scholar]
  158. Schoepf V, Jung MU, McCulloch MT, White NE, Stat M, Thomas L. 2020.. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. . Front. Mar. Sci. 7::245
    [Crossref] [Google Scholar]
  159. Shchepetkin AF, McWilliams JC. 2005.. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. . Ocean Model. 9:(4):347404
    [Crossref] [Google Scholar]
  160. Shearer TL, van Oppen MJH, Romano SL, Wörheide G. 2002.. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). . Mol. Ecol. 11:(12):247587
    [Crossref] [Google Scholar]
  161. Silva DP, Duarte G, Villela HDM, Santos HF, Rosado PM, et al. 2019.. Adaptable mesocosm facility to study oil spill impacts on corals. . Ecol. Evol. 9:(9):517285
    [Crossref] [Google Scholar]
  162. Skirving W, Enríquez S, Hedley JD, Dove S, Eakin CM, et al. 2017.. Remote sensing of coral bleaching using temperature and light: progress towards an operational algorithm. . Remote Sens. 10:(1):18
    [Crossref] [Google Scholar]
  163. Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ, et al. 2023.. Biological impacts of marine heatwaves. . Annu. Rev. Mar. Sci. 15::11945
    [Crossref] [Google Scholar]
  164. Smith RT, Pinzón JH, LaJeunesse TC. 2009.. Symbiodinium (Dinophyta) diversity and stability in aquarium corals. . J. Phycol. 45:(5):103036
    [Crossref] [Google Scholar]
  165. Sofar. 2024.. Spotter platform. . Sofar. https://www.sofarocean.com/products/spotter
    [Google Scholar]
  166. Spady BL, Skirving WJ, Liu G, De La Cour JL, McDonald CJ, Manzello DP. 2022.. Unprecedented early-summer heat stress and forecast of coral bleaching on the Great Barrier Reef, 2021–2022. . F1000Research 11::127
    [Crossref] [Google Scholar]
  167. Staab S, Cardénas A, Peixoto RS, Schreiber F, Voolstra CR. 2023.. Coracle—a machine learning framework to identify bacteria associated with continuous variables. . Bioinformatics 40:(1):btad749
    [Crossref] [Google Scholar]
  168. Suggett DJ, Smith DJ. 2020.. Coral bleaching patterns are the outcome of complex biological and environmental networking. . Glob. Change Biol. 26:(1):6879
    [Crossref] [Google Scholar]
  169. Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R. 2019.. A global analysis of coral bleaching over the past two decades. . Nat. Commun. 10:(1):1264
    [Crossref] [Google Scholar]
  170. Szereday S, Voolstra CR, Amri AY. 2024.. Back-to-back bleaching events in Peninsular Malaysia (2019–2020) selectively affect hard coral taxa across- and within-reef scales. . Mar. Biol. 171::183
    [Crossref] [Google Scholar]
  171. Tagliafico A, Baker P, Kelaher B, Ellis S, Harrison D. 2022.. The effects of shade and light on corals in the context of coral bleaching and shading technologies. . Front. Mar. Sci. 9::919382
    [Crossref] [Google Scholar]
  172. Teague J, Megson-Smith DA, Allen MJ, Day JCC, Scott TB. 2022.. A review of current and new optical techniques for coral monitoring. . J. Geophys. Res. Oceans 3:(1):3045
    [Google Scholar]
  173. Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, et al. 2024.. The road forward to incorporate seawater microbes in predictive reef monitoring. . Environ. Microbiome 19:(1):5
    [Crossref] [Google Scholar]
  174. Theobald EJ, Ettinger AK, Burgess HK, DeBey LB, Schmidt NR, et al. 2015.. Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. . Biol. Conserv. 181::23644
    [Crossref] [Google Scholar]
  175. Tiwari R, Gloor E, da Cruz WJA, Schwantes Marimon B, Marimon-Junior BH, et al. 2021.. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. . Plant Cell Environ. 44:(7):242839
    [Crossref] [Google Scholar]
  176. van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, et al. 2022.. Coral-bleaching responses to climate change across biological scales. . Glob. Change Biol. 28:(14):422950
    [Crossref] [Google Scholar]
  177. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR. 2014.. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. . Glob. Change Biol. 20:(2):54454
    [Crossref] [Google Scholar]
  178. Voolstra CR, Buitrago-López C, Perna G, Cárdenas A, Hume BCC, et al. 2020.. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. . Glob. Change Biol. 26:(8):432843
    [Crossref] [Google Scholar]
  179. Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, et al. 2017.. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. . Sci. Rep. 7:(1):17583
    [Crossref] [Google Scholar]
  180. Voolstra CR, Raina J-B, Dörr M, Cárdenas A, Pogoreutz C, et al. 2024.. The coral microbiome in sickness, in health and in a changing world. . Nat. Rev. Microbiol. 22::46075
    [Crossref] [Google Scholar]
  181. Voolstra CR, Suggett DJ, Peixoto RS, Parkinson JE, Quigley KM, et al. 2021a.. Extending the natural adaptive capacity of coral holobionts. . Nat. Rev. Earth Environ. 2::74762
    [Crossref] [Google Scholar]
  182. Voolstra CR, Valenzuela JJ, Turkarslan S, Cárdenas A, Hume BCC, et al. 2021b.. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. . Mol. Ecol. 30:(18):446680
    [Crossref] [Google Scholar]
  183. Voolstra CR, Ziegler M. 2020.. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. . BioEssays 42:(7):e2000004
    [Crossref] [Google Scholar]
  184. Wang L, Bin Q, Liu H, Zhang Y, Wang S, et al. 2024.. New insights into the on-site monitoring of probiotics eDNA using biosensing technology for heat-stress relieving in coral reefs. . Biosens. Bioelectron. 243::115790
    [Crossref] [Google Scholar]
  185. Wang L, Xu J, Liu H, Wang S, Ou W, et al. 2023.. Ultrasensitive and on-site eDNA detection for the monitoring of crown-of-thorns starfish densities at the pre-outbreak stage using an electrochemical biosensor. . Biosens. Bioelectron. 230::115265
    [Crossref] [Google Scholar]
  186. Warner ME, Fitt WK, Schmidt GW. 1996.. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. . Plant Cell Environ. 19:(3):29199
    [Crossref] [Google Scholar]
  187. Warner ME, Fitt WK, Schmidt GW. 1999.. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. . PNAS 96:(14):800712
    [Crossref] [Google Scholar]
  188. West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, et al. 2020.. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. . Mol. Ecol. 29:(6):106986
    [Crossref] [Google Scholar]
  189. Wiedenmann J. 2012.. An experimental mesocosm for long-term studies of reef corals. . J. Mar. Biol. Assoc. UK 92:(4):76975
    [Crossref] [Google Scholar]
  190. Wiedenmann J, D'Angelo C, Smith EG, Hunt AN, Legiret F-E, et al. 2012.. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. . Nat. Clim. Change 3:(2):16064
    [Crossref] [Google Scholar]
  191. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, et al. 2016.. The FAIR Guiding Principles for scientific data management and stewardship. . Sci. Data 3::160018
    [Crossref] [Google Scholar]
  192. Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, et al. 2016.. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. . Sci. Rep. 6:(1):32366
    [Crossref] [Google Scholar]
  193. Wyatt ASJ, Leichter JJ, Toth LT, Miyajima T, Aronson RB, Nagata T. 2019.. Heat accumulation on coral reefs mitigated by internal waves. . Nat. Geosci. 13:(1):2834
    [Crossref] [Google Scholar]
  194. Xiang N, Rädecker N, Pogoreutz C, Cárdenas A, Meibom A, et al. 2022.. Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model. . ISME Commun. 2:(1):105
    [Crossref] [Google Scholar]
  195. Yadav S, Roach TNF, McWilliam MJ, Caruso C, de Souza MR, et al. 2023.. Fine-scale variability in coral bleaching and mortality during a marine heatwave. . Front. Mar. Sci. 10::1108365
    [Crossref] [Google Scholar]
  196. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. 2017.. Bacterial community dynamics are linked to patterns of coral heat tolerance. . Nat. Commun. 8::14213
    [Crossref] [Google Scholar]
  197. Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, et al. 2015.. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. . Sci. Rep. 5:(1):9983
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-032223-024511
Loading
/content/journals/10.1146/annurev-marine-032223-024511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error