1932

Abstract

Coral reef islands are low-lying, wave-deposited sedimentary landforms. Using an eco-morphodynamic framework, this review examines the sensitivity of islands to climatic and environmental change. Reef island formation and morphological dynamics are directly controlled by nearshore wave processes and ecologically mediated sediment supply. The review highlights that reef islands are intrinsically dynamic landforms, able to adjust their morphology (size, shape, and location) on reef surfaces in response to changes in these processes. A suite of ecological and oceanographic processes also indirectly impact hydrodynamic and sediment processes and thereby regulate morphological change, though the temporal scales and magnitudes of impacts on islands vary, leading to divergent morphodynamic outcomes. Climatic change will modify the direct and indirect processes, causing complex positive and negative outcomes on islands. Understanding this complexity is critical to improve predictive capabilities for island physical change and resolve the timescales of change and lag times for impacts to be expressed in island systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032223-030921
2025-01-16
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-032223-030921.html?itemId=/content/journals/10.1146/annurev-marine-032223-030921&mimeType=html&fmt=ahah

Literature Cited

  1. Ainési B, Masselink G, Kench PS. 2024.. Meta-study of carbonate sediment delivery rates to Indo-Pacific coral reef islands. . Geophys. Res. Lett. 51::e2023GL105610
    [Crossref] [Google Scholar]
  2. Albert S, Leon JX, Grinham AR, Church JA, Gibbes BR, Woodroffe CD. 2016.. Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands. . Environ. Res. Lett. 11::054011
    [Crossref] [Google Scholar]
  3. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR. 2009.. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. . Proc. R. Soc. B 276::301925
    [Crossref] [Google Scholar]
  4. Aslam M, Kench PS. 2017.. Reef island dynamics and mechanisms of change: Huvadhoo Atoll, Republic of Maldives, Indian Ocean. . Anthropocene 18::5788
    [Crossref] [Google Scholar]
  5. Baines GBK, McLean RF. 1976.. Sequential studies of hurricane deposit evolution at Funafuti atoll. . Mar. Geol. 21::M18
    [Crossref] [Google Scholar]
  6. Bayliss-Smith TP. 1988.. The role of hurricanes in the development of reef islands, Ontong Java Atoll, Solomon Islands. . Geogr. J. 154::37791
    [Crossref] [Google Scholar]
  7. Becker JM, Merrifield MA, Ford M. 2014.. Water level effects on breaking wave setup for Pacific Island fringing reefs. . J. Geophys. Res. Oceans 119::91432
    [Crossref] [Google Scholar]
  8. Beetham E, Kench PS. 2018.. Predicting wave overtopping thresholds on coral reef-island shorelines with future sea-level rise. . Nat. Commun. 9::3997
    [Crossref] [Google Scholar]
  9. Beetham E, Kench PS, O'Callaghan J, Popinet S. 2015.. Wave transformation and shoreline water levels on Funafuti Atoll, Tuvalu. . J. Geophys. Res. Oceans 121::31126
    [Crossref] [Google Scholar]
  10. Benkwitt CE, D'Angelo C, Dunn RE, Gunn RL, Healing S, et al. 2023.. Seabirds boost coral reef resilience. . Sci. Adv. 9::eadj0390
    [Crossref] [Google Scholar]
  11. Berr T, Dias MP, Andréfouët S, Davies T, Handley J, et al. 2023.. Seabird and reef conservation must include coral islands. . Trends Ecol. Evol. 38::49094
    [Crossref] [Google Scholar]
  12. Blumenstock DI. 1958.. Typhoon effects at Jaluit Atoll in the Marshall Islands. . Nature 182::126769
    [Crossref] [Google Scholar]
  13. Bonesso JL, Browne NK, Murley M, Dee S, Cuttler MVW, et al. 2022.. Reef to island sediment connections within an inshore turbid reef island system of the eastern Indian Ocean. . Sed. Geol. 436::106177
    [Crossref] [Google Scholar]
  14. Bonesso JL, Cuttler MVW, Browne NK, Mather CC, Paumard V, et al. 2023.. Reef island evolution in a turbid-water coral reef province of the Indo-Pacific. . Depos. Rec. 9::92134
    [Crossref] [Google Scholar]
  15. Browne NK, Cuttler M, Moon K, Morgan K, Ross CL, et al. 2021.. Predicting responses of geo-ecological carbonate reef systems to climate change: a conceptual model and review. . Oceanogr. Mar. Biol. Annu. Rev. 59::229370
    [Google Scholar]
  16. Camoin GF, Webster JM. 2015.. Coral reef response to Quaternary sea-level and environmental changes: state of the science. . Sediment 62::40128
    [Crossref] [Google Scholar]
  17. Carlot J, Vousdoukas M, Rovere A, Karambas T, Lenihan HS, et al. 2023.. Coral reef structural complexity loss exposes coastlines to waves. . Sci. Rep. 13::1683
    [Crossref] [Google Scholar]
  18. Cheriton OM, Storlazzi CD, Rosenberger KJ. 2016.. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding. . J. Geophys. Res. Oceans 121::312140
    [Crossref] [Google Scholar]
  19. Chivas A, Chappell J, Polach H, Pillans B, Flood P. 1986.. Radiocarbon evidence for the timing and rate of island development, beach-rock formation and phosphatization at Lady Elliot Island, Queensland, Australia. . Mar. Geol. 69::27387
    [Crossref] [Google Scholar]
  20. Collen J, Garton DW. 2004.. Larger foraminifera and sedimentation around Fongafale Island, Funafuti Atoll, Tuvalu. . Coral Reefs 23::44554
    [Crossref] [Google Scholar]
  21. Cornwall CE, Comeau S, Donner SD, Perry CT, Dunn J, et al. 2023.. Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change. . Glob. Change Biol. 29::301018
    [Crossref] [Google Scholar]
  22. Cornwall CE, Comeau S, Kornder NA, Perry CT, van Hooidonk R, et al. 2021.. Global declines in coral reef calcium carbonate production under ocean acidification and warming. . PNAS 118::e2015265118
    [Crossref] [Google Scholar]
  23. Costa MB, Macedo EC, Siegle E. 2017.. Planimetric and volumetric changes of reef islands in response to wave conditions. . Earth Surf. Process. Landf. 42::266378
    [Crossref] [Google Scholar]
  24. Costa MB, Macedo EC, Siegle E. 2019.. Wave refraction and reef island stability under rising sea level. . Glob. Planet. Change 172::25667
    [Crossref] [Google Scholar]
  25. Dawson JL, Smithers SG. 2014.. Carbonate sediment production, transport, and supply to a coral cay at Raine Reef, northern Great Barrier Reef, Australia: a facies approach. . J. Sediment. Res. 84::112038
    [Crossref] [Google Scholar]
  26. Dawson JL, Smithers SG, Hua Q. 2014.. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. . Geomorphology 222::6881
    [Crossref] [Google Scholar]
  27. de Kruiff M, Slootman A, de Boer RA, Reijmer JJG. 2021.. On the settling of marine carbonate grains: review and challenges. . Earth-Sci. Rev. 217::103532
    [Crossref] [Google Scholar]
  28. Dickinson WR. 1999.. Holocene sea-level record on Funafuti and potential impact of global warming on central Pacific atolls. . Quat. Res. 51::12432
    [Crossref] [Google Scholar]
  29. Dickinson WR. 2003.. Impact of mid-Holocene hydro-isostatic highstand in regional sea level on habitability of islands in Pacific Oceania. . J. Coast. Res. 19::489502
    [Google Scholar]
  30. Dickinson WR. 2009.. Pacific atoll living: how long already and until when?. GSA Today 19:(3):410
    [Crossref] [Google Scholar]
  31. Done TJ. 1983.. Coral zonation, its nature and significance. . In Perspectives on Coral Reefs, ed. DJ Barnes , pp. 10747. Manuka:: Aust. Inst. Mar. Sci.
    [Google Scholar]
  32. Doo S, Hamylton S, Bryne M. 2012.. Reef-scale assessment of intertidal large benthic foraminifera populations on one tree island, great barrier reef and their future carbonate production potential in a warming ocean. . Zool. Stud. 51::1298307
    [Google Scholar]
  33. Droxler AW, Jorry JS. 2013.. The origin of modern atolls: challenging Darwin's deeply ingrained theory. . Annu. Rev. Mar. Sci. 13::53773
    [Crossref] [Google Scholar]
  34. Duvat VKE. 2018.. A global assessment of atoll island planform changes over the past decades. . WIREs Clim. Change 10::e557
    [Crossref] [Google Scholar]
  35. Duvat VKE, Magnan AK. 2019.. Rapid human-driven undermining of atoll island capacity to adjust to ocean climate-related pressures. . Sci. Rep. 9::15129
    [Crossref] [Google Scholar]
  36. East HK, Johnson JA, Perry CT, Finlay G, Musthag A, et al. 2023.. Seagrass meadows are valuable sources of reef island-building sediment. . Commun. Earth Environ. 4::33
    [Crossref] [Google Scholar]
  37. East HK, Perry CT, Kench PS, Liang Y, Gulliver P. 2018.. Coral reef island initiation and development under higher than present sea levels. . Geophys. Res. Lett. 45::1126574
    [Crossref] [Google Scholar]
  38. Emery KO, Tracey JI Jr., Ladd HS. 1954.. Geology of Bikini and nearby atolls. Geol. Surv. Prof. Pap. 260-1 , US Dep. Interior, Washington, DC:
    [Google Scholar]
  39. Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, et al. 2018.. Coral reefs will transition to net dissolving before end of century. . Science 359::90811
    [Crossref] [Google Scholar]
  40. Ferrario F, Beck M, Storlazzi C, Micheli F, Shepard CC, et al. 2014.. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. . Nat. Commun. 5::3794
    [Crossref] [Google Scholar]
  41. Folk RL, Robles R. 1964.. Carbonate sands of Isla Perez, Alacran Reef complex, Yucatán. . J. Geol. 72::25592
    [Crossref] [Google Scholar]
  42. Ford MR, Kench PS. 2012.. The durability of bioclastic sediments and implications for coral reef deposit formation. . Sediment 59::83042
    [Crossref] [Google Scholar]
  43. Ford MR, Kench PS. 2016.. Spatiotemporal variability of typhoon impacts and relaxation intervals on Jaluit Atoll, Marshall Islands. . Geology 44::15962
    [Crossref] [Google Scholar]
  44. Ford MR, Kench PS, Owen SD, Qua H. 2020.. Active sediment generation on coral reef flats contributes to recent island expansion. . Geophys. Res. Lett. 47::e2020GL088752
    [Crossref] [Google Scholar]
  45. Fuentes MMBP, Limpus CJ, Hamann M. 2011.. Vulnerability of sea turtle nesting grounds to climate change. . Glob. Change Biol. 17::14053
    [Crossref] [Google Scholar]
  46. Garner GG, Hermans T, Kopp RE, Slangen ABA, Edwards TL, et al. 2021.. IPCC AR6 sea level projections, version 20210809. Zenodo 5914710. . https://doi.org/10.5281/zenodo.5914710
  47. Gattuso JP, Magnan A, Bille R, Cheung WWL, Howes EL, et al. 2015.. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. . Science 349::eaac4722
    [Crossref] [Google Scholar]
  48. Gourlay MR. 1988.. Coral cays: products of wave action and geological processes in a biogenic environment. . In Proceedings of the 6th International Coral Reef Symposium, Vol. 2, pp. 49196. Townsville, Aust:.: 6th Int. Coral Reef Symp. Exec. Comm.
    [Google Scholar]
  49. Gourlay MR, Colleter G. 2005.. Wave-generated flow on coral reefs—an analysis for two-dimensional horizontal reef-tops with steep faces. . Coast. Eng. 52::35387
    [Crossref] [Google Scholar]
  50. Grady AE, Moore LJ, Storlazzi CD, Elias E, Reidenbach MA. 2013.. The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport. . Geophys. Res. Lett. 40::3096101
    [Crossref] [Google Scholar]
  51. Graham NAJ, Wilson SK, Carr P, Hoey AS, Jennings S, MacNeil MA. 2018.. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. . Nature 559::25053
    [Crossref] [Google Scholar]
  52. Hallmann N, Camoin G, Eisenhauer A, Botella A, Milne GA, et al. 2018.. Ice volume and climate changes from a 6,000 year sea-level record in French Polynesia. . Nat. Commun. 9::285
    [Crossref] [Google Scholar]
  53. Harmelin-Vivien ML. 1994.. The effects of storms and cyclones on coral reefs: a review. . J. Coast. Res. Spec. Issue 12::21131
    [Google Scholar]
  54. Harney JN, Fletcher CH. 2003.. A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii. . J. Sediment. Res. 73::85668
    [Crossref] [Google Scholar]
  55. Harris DL, Rovere A, Casella E, Power H, Canavesio R, et al. 2018.. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. . Sci. Adv. 4::eaao4350
    [Crossref] [Google Scholar]
  56. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al. 2007.. Coral reefs under rapid climate change and ocean acidification. . Science 318::173742
    [Crossref] [Google Scholar]
  57. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, et al. 2018a.. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. . Science 359::8083
    [Crossref] [Google Scholar]
  58. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, et al. 2017.. Global warming and recurrent mass bleaching of corals. . Nature 543::37377
    [Crossref] [Google Scholar]
  59. Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, et al. 2018b.. Global warming transforms coral reef assemblages. . Nature 556::49296
    [Crossref] [Google Scholar]
  60. Husband E, East HK, Hocking EP, Guest J. 2023.. Honduran reef island shoreline change and planform evolution over the last 15 years: implications for reef island monitoring and futures. . Remote Sens. 15::4787
    [Crossref] [Google Scholar]
  61. Jago OK, Kench PS, Brander RW. 2007.. Field observations of wave-driven water-level gradients across a coral reef flat. . J. Geophys. Res. 112::C06027
    [Google Scholar]
  62. Kane HH, Fletcher CH. 2020.. Rethinking reef island stability in relation to anthropogenic sea level rise. . Earth's Future 8::e2020EF001525
    [Crossref] [Google Scholar]
  63. Kayanne H, Yasukochi T, Yamaguchi T, Yamano H, Yonedas M. 2011.. Rapid settlement of Majuro Atoll, central Pacific, following its emergence at 2000 years CalBP. . Geophys. Res. Lett. 38::L20405
    [Crossref] [Google Scholar]
  64. Kench PS. 2011.. Eco-morphodynamics. . In Encyclopedia of Modern Coral Reefs, ed. D Hopley , pp. 63945. Dordrecht, Neth:.: Springer
    [Google Scholar]
  65. Kench PS. 2012.. Compromising reef island shoreline dynamics: legacies of the engineering paradigm in the Maldives. . In Pitfalls of Shoreline Stabilization, ed. JA Cooper, OH Pilkey , pp. 16586. Dordrecht, Neth:.: Springer
    [Google Scholar]
  66. Kench PS, Beetham E. 2019.. Evidence of vertical building of reef islands through overwash and implications for island futures. . In Coastal Sediments 2019, ed. P Wang, JD Rosati, M Vallee , pp. 91629. Singapore:: World Sci.
    [Google Scholar]
  67. Kench PS, Beetham E, Bosserelle C, Kruger J, Pohler S, et al. 2017.. Nearshore hydrodynamics, shoreline sediment fluxes and morphodynamics on a Pacific atoll Motu. . Mar. Geol. 389::1731
    [Crossref] [Google Scholar]
  68. Kench PS, Brander RW. 2006a.. Response of reef island shorelines to seasonal climate oscillations: South Maalhosmadulu atoll, Maldives. . J. Geophys. Res. 111::F01001
    [Google Scholar]
  69. Kench PS, Brander RW. 2006b.. Wave processes on coral reef flats: implications for reef geomorphology using Australian case studies. . J. Coast. Res. 22::20923
    [Crossref] [Google Scholar]
  70. Kench PS, Brander RW, Parnell KE. 2009a.. Monsoonally influenced circulation around coral reef islands and seasonal dynamics of reef island shorelines. . Mar. Geol. 266::91108
    [Crossref] [Google Scholar]
  71. Kench PS, Chan J, Owen SD, McLean RF. 2014a.. The geomorphology, development and temporal dynamics of Tepuka Island, Funafuti Atoll, Tuvalu. . Geomorphology 222::4658
    [Crossref] [Google Scholar]
  72. Kench PS, Ford MR, Bramante JF, Ashton AD, Donnelly JP, et al. 2022.. Heightened storm activity drives late Holocene reef island formation in the central Pacific Ocean. . Glob. Planet. Change 215::103888
    [Crossref] [Google Scholar]
  73. Kench PS, Ford MR, Owen SD. 2018a.. Patterns of island change and persistence provide alternate opportunities for adaption in atoll nations. . Nat. Commun. 9::605
    [Crossref] [Google Scholar]
  74. Kench PS, Liang Y, Ford MR, Owen SD, Mohamed A, et al. 2023.. Reef islands have continually adjusted to environmental change over the past two millennia. . Nat. Commun. 14::508
    [Crossref] [Google Scholar]
  75. Kench PS, Mann T. 2017.. Reef island evolution and dynamics: insights from the Indian and Pacific oceans and perspectives for the Spermonde Archipelago. . Front. Mar. Sci. 4::145
    [Crossref] [Google Scholar]
  76. Kench PS, McLean RF. 1996.. Hydraulic characteristics of heterogeneous bioclastic deposits: new possibilities for interpreting environmental processes. . Sedimentology 43::53140
    [Crossref] [Google Scholar]
  77. Kench PS, McLean RF. 2004.. Hydrodynamics and sediment flux of hoa in an Indian Ocean atoll. . Earth Surf. Process. Landf. 29::93353
    [Crossref] [Google Scholar]
  78. Kench PS, McLean RF, Brander RF, Nichol SL, Smithers SG, et al. 2006.. Geological effects of tsunami on mid-ocean atoll islands: the Maldives before and after the Sumatran tsunami. . Geology 34::17780
    [Crossref] [Google Scholar]
  79. Kench PS, McLean RF, Nichol SL. 2005.. New model of reef-island evolution: Maldives, Indian Ocean. . Geology 33::14548
    [Crossref] [Google Scholar]
  80. Kench PS, McLean RF, Owen SD, Ryan E, Morgan KM, et al. 2020a.. Climate-forced sea-level lowstands in the Indian Ocean during the last two millennia. . Nat. Geol. 13::6164
    [Crossref] [Google Scholar]
  81. Kench PS, McLean RF, Owen SD, Tuck M, Ford MR. 2018b.. Storm-deposited coral reef blocks: a mechanism of island genesis, Tutaga, Funafuti, Tuvalu. . Geology 46::91518
    [Crossref] [Google Scholar]
  82. Kench PS, Owen SD. 2022.. Coral systems. . In Treatise on Geomorphology, Vol. 8: Glacial and Periglacial Geomorphology, ed. JF Shroder , pp. 62255. Amsterdam:: Elsevier
    [Google Scholar]
  83. Kench PS, Owen SD, Beetham EP, McLean RF, Mann T, Ashton A. 2020b.. Holocene sea level dynamics drives formation of a large atoll island in the central Indian Ocean. . Glob. Planet. Change 195::103354
    [Crossref] [Google Scholar]
  84. Kench PS, Owen SD, Ford MR. 2014b.. Evidence for coral island formation during rising sea level in the central Pacific Ocean. . Geophys. Res. Lett. 41::82027
    [Crossref] [Google Scholar]
  85. Kench PS, Smithers SG, McLean RF. 2012.. Rapid reef island formation and stability over an emerging reef flat: Bewick Cay, northern Great Barrier Reef, Australia. . Geology 40::34750
    [Crossref] [Google Scholar]
  86. Kench PS, Smithers SG, McLean RF, Nichol SL. 2009b.. Holocene reef growth in the Maldives: evidence of a mid-Holocene sea level highstand in the central Indian Ocean. . Geology 37::45558
    [Crossref] [Google Scholar]
  87. Kench PS, Thompson D, Ford M, Ogawa H, McLean RF. 2015.. Coral islands defy sea-level rise over the past century: records from a central Pacific atoll. . Geology 43::51518
    [Crossref] [Google Scholar]
  88. Kenyon TM, Harris D, Baldock T, Callaghan D, Doropoulos C, et al. 2023.. Mobilisation thresholds for coral rubble and consequences for windows of reef recovery. . Biogeosciences 20::433957
    [Crossref] [Google Scholar]
  89. Liang Y, Kench PS, Ford MR, East HK. 2022.. Lagoonal reef island formation in Huvadhoo atoll, Maldives, highlights marked temporal variations in island building across the archipelago. . Geomorphology 414::108395
    [Crossref] [Google Scholar]
  90. Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, et al. 2005.. Spectral wave dissipation over a barrier reef. . J. Geophys. Res. 110::C04001
    [Google Scholar]
  91. Lowe RJ, Falter JL, Koseff JR, Monismith SG, Atkinson MJ. 2007.. Spectral wave flow attenuation within submerged canopies: implications for wave energy dissipation. . J. Geophys. Res. 112::C05018
    [Google Scholar]
  92. Madin JS, Connolly SRR. 2006.. Ecological consequences of major hydrodynamic disturbances on coral reefs. . Nature 444::47780
    [Crossref] [Google Scholar]
  93. Mandlier PG, Kench PS. 2012.. Analytical modeling of wave refraction and convergence on coral reef platforms: implications for island formation and stability. . Geomorphology 159–160::8492
    [Crossref] [Google Scholar]
  94. Mann T, Bender M, Lorscheid T, Stocchi P, Vacchi M, et al. 2019.. Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. . Quat. Sci. Rev. 219::11225
    [Crossref] [Google Scholar]
  95. Maragos JE, Baines GB, Beveridge PJ. 1973.. Tropical cyclone Bebe creates a new land formation on Funafuti Atoll. . Science 181::116164
    [Crossref] [Google Scholar]
  96. Massel SR, Done TJ. 1993.. Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography. . Coral Reefs 12::15366
    [Crossref] [Google Scholar]
  97. Masselink G, Beetham EP, Kench PS. 2020.. Coral reef islands can accrete vertically in response to sea-level rise. . Sci. Adv. 6::eaay3656
    [Crossref] [Google Scholar]
  98. Masselink G, McCall R, Beetham E, Kench P, Storlazzi CD. 2021.. Role of future reef growth on morphological response of coral reef islands to sea-level rise. . J. Geophys. Res. Earth Surf. 126::e2020JF005749
    [Crossref] [Google Scholar]
  99. Masselink G, Tuck M, McCall R, van Dongeren A, Ford M, Kench P. 2019.. Physical and numerical modeling of infragravity wave generation and transformation on coral reef platforms. . J. Geophys. Res. Oceans 124::141033
    [Crossref] [Google Scholar]
  100. Matheen N, Kench PS. 2024.. Morphological response of coral reef islands to the 2019 extreme positive Indian Ocean dipole event. . J. Coast. Res. 40::24656
    [Google Scholar]
  101. McKee ED, Chronic J, Leopold EB. 1959.. Sedimentary belts in lagoon of Kapingamarangi Atoll. . AAPG Bull. 43::50162
    [Google Scholar]
  102. McKoy H, Kennedy DM, Kench PS. 2010.. Sand cay evolution on reef platforms, Mamanuca Islands, Fiji. . Mar. Geol. 269::6173
    [Crossref] [Google Scholar]
  103. McLean RF, Hosking P. 1991.. Geomorphology of reef islands and atoll motu in Tuvalu. . S. Pac. J. Nat. Sci. 11::16789
    [Google Scholar]
  104. McLean RF, Kench PS. 2015.. Destruction or persistence of coral atoll islands in the face of 20th and 21st century sea level rise?. WIREs Clim. Change 6::44563
    [Crossref] [Google Scholar]
  105. McLean RF, Stoddart DR. 1978.. Reef island sediments of the northern Great Barrier Reef. . Philos. Trans. R. Soc. A 291::10117
    [Google Scholar]
  106. McLean RF, Woodroffe CD. 1994.. Coral atolls. . In Coastal Evolution: Late Quaternary Shoreline Dynamics, ed. RWG Carter, CD Woodroffe , pp. 267302. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  107. McNamara K, Westboy R, Smithers S. 2017.. Identification of limits and barriers to climate change adaptation: case study of two islands in Torres Strait, Australia. . Geogr. Res. 54::43855
    [Crossref] [Google Scholar]
  108. Merrifield M, Becker J, Ford M, Yao Y. 2014.. Observations and estimates of wave-driven water level extremes at the Marshall Islands. . Geophys. Res. Lett. 41::724553
    [Crossref] [Google Scholar]
  109. Meucci A, Young IR, Hemer M, Kirezci E, Ranasinghe R. 2020.. Projected 21st century changes in extreme wind-wave events. . Sci. Adv. 6::eaaz7295
    [Crossref] [Google Scholar]
  110. Milliman JD. 1967.. Carbonate sedimentation on Hogsty Reef, a Bahamian Atoll. . J. Sediment. Res. 37::65876
    [Google Scholar]
  111. Montaggioni LF. 2005.. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. . Earth-Sci. Rev. 71::175
    [Crossref] [Google Scholar]
  112. Montaggioni LF, Salvat B, Aubanel A, Pons-Branchu E, Martin-Garin B, et al. 2019.. New insights into the Holocene development history of a Pacific, low-lying coral reef island: Takapoto Atoll, French Polynesia. . Quat. Sci. Rev. 223::105947
    [Crossref] [Google Scholar]
  113. Montaggioni LF, Salvat B, Pons-Branchu E, Martin-Garin B, Dapoigny A, et al. 2023.. Holocene depositional history of low-lying reef-rim carbonate islets of Fakarava Atoll, northwest Tuamotu, central South Pacific. . Geosciences 13::389
    [Crossref] [Google Scholar]
  114. Morgan KM, Kench PS. 2014a.. Carbonate production rates of encruster communities on a lagoonal patch reef: Vabbinfaru reef platform, Maldives. . Mar. Freshw. Res. 65::72026
    [Crossref] [Google Scholar]
  115. Morgan KM, Kench PS. 2014b.. A detrital sediment budget of a Maldivian reef platform. . Geomorphology 222::12231
    [Crossref] [Google Scholar]
  116. Morgan KM, Kench PS. 2016.. Parrotfish erosion underpins reef growth, sand talus development and island building in the Maldives. . Sediment. Geol. 341::5057
    [Crossref] [Google Scholar]
  117. Multer G. 1988.. Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W.I. . Coral Reefs 6::17986
    [Crossref] [Google Scholar]
  118. Mycoo M, Wairiu M, Campbell D, Duvat V, Golbuu Y, et al. 2022.. Small islands. . In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. HO Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck, et al. , pp. 2660766. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  119. Naidu R, Ford MR, Kench PS, Hallock P, Prasad R. 2021.. Growth and fecundity of Marginopora vertebralis and Amphistegina lobifera in laboratory culture. . J. Foraminifer. Res. 51::21024
    [Crossref] [Google Scholar]
  120. Narayan GR, Reymond CE, Stuhr M, Doo S, Schmidt C, et al. 2022.. Response of large benthic foraminifera to climate and local changes: implications for future carbonate production. . Sediment 69::12161
    [Crossref] [Google Scholar]
  121. Nott J, Hayne M. 2001.. High frequency of “super-cyclones” along the Great Barrier Reef over the past 5,000 years. . Nature 413::50812
    [Crossref] [Google Scholar]
  122. Nunn PD, Klöck C, Duvat V. 2021.. Seawalls as maladaptations along island coasts. . Ocean Coast. Manag. 205::105554
    [Crossref] [Google Scholar]
  123. Ortiz AC, Ashton AD. 2019.. Exploring carbonate reef flat hydrodynamics and potential formation and growth mechanisms for motu. . Mar. Geol. 412::17386
    [Crossref] [Google Scholar]
  124. Pearson SG, Storlazzi CD, van Dongeren AR, Tissier MFS, Reniers AJHM. 2017.. A Bayesian based system to assess wave-driven flooding hazards on coral reef-lined coasts. . J. Geophys. Res. Oceans. 122::10099117
    [Crossref] [Google Scholar]
  125. Pequignet AC, Becker JM, Merrifield MA, Boc SJ. 2011.. The dissipation of wind wave energy across a fringing reef at Ipan, Guam. . Coral Reefs 30::7182
    [Crossref] [Google Scholar]
  126. Perry CT, Alvarez-Filip L. 2019.. Changing geo-ecological functions of coral reefs in the Anthropocene. . Funct. Ecol. 33::97688
    [Crossref] [Google Scholar]
  127. Perry CT, Alvarez-Filip L, Graham NAJ, Mumby PJ, Kench PS, et al. 2018.. Loss or coral reef growth capacity to track future increases in sea level. . Nature 558::396400
    [Crossref] [Google Scholar]
  128. Perry CT, Kench PS, O'Leary MJ, Morgan KM, Januchowski-Hartley F. 2015.. Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. . Geology 43::5036
    [Crossref] [Google Scholar]
  129. Perry CT, Kench PS, Smithers SG, Riegl B, Yamano H, O'Leary MJ. 2011.. Implications of reef ecosystem change for the stability and maintenance of coral reef islands?. Glob. Change Biol. 17::367996
    [Crossref] [Google Scholar]
  130. Perry CT, Lange ID, Stuhr M. 2023.. Quantifying reef-derived sediment generation: introducing the SedBudget methodology to support tropical coastline and island vulnerability studies. . Camb. Prisms Coast. Futures 1::e26
    [Crossref] [Google Scholar]
  131. Perry CT, Morgan KM, Lange ID, Yarlett RT. 2020.. Bleaching-driven reef community shifts drive pulses of increased reef sediment generation. . R. Soc. Open Sci. 7::192153
    [Crossref] [Google Scholar]
  132. Quataert E, Storlazzi CD, van Rooijen A, Cheriton O, van Dongeren A. 2015.. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. . Geophys. Res. Lett. 42::640715
    [Crossref] [Google Scholar]
  133. Saintilan N, Horton B, Törnqvist TE, Ashe EL, Khan NS, et al. 2023.. Widespread retreat of coastal habitat is likely at warming levels above 1.5°C. . Nature 621::11219
    [Crossref] [Google Scholar]
  134. Schofield JC. 1977.. Effect of Late Holocene sea-level fall on atoll development. . N. Z. J. Geol. Geophys. 20::53136
    [Crossref] [Google Scholar]
  135. Scoffin TP. 1992.. Taphonomy of coral reefs: a review. . Coral Reefs 11::5777
    [Crossref] [Google Scholar]
  136. Scoffin TP. 1993.. The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. . Coral Reefs 12::20321
    [Crossref] [Google Scholar]
  137. Sengupta M, Ford MR, Kench PS. 2021a.. Multi-decadal planform changes on coral reef islands from atolls and mid-ocean reef platforms of the equatorial Pacific Ocean: Gilbert Islands, Republic of Kiribati. . Geomorphology 398::107831
    [Crossref] [Google Scholar]
  138. Sengupta M, Ford MR, Kench PS. 2021b.. Shoreline changes in coral reef islands of the Federated States of Micronesia since the mid-20th century. . Geomorphology 377::107584
    [Crossref] [Google Scholar]
  139. Sengupta M, Ford MR, Kench PS, Perry GLW. 2023.. Drivers of shoreline change on Pacific coral reef islands: linking island change to processes. . Reg. Environ. Change 23::110
    [Crossref] [Google Scholar]
  140. Sheppard C, Dixon DJ, Gourlay M, Sheppard A, Payet R. 2005.. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. . Estuar. Coast. Shelf Sci. 64::22334
    [Crossref] [Google Scholar]
  141. Simeone S, Molinaroli E, Conforti A, De Falco G. 2018.. Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. . Clim. Change 150::22742
    [Crossref] [Google Scholar]
  142. Smithers SG, Hoeke RK. 2014.. Geomorphological impacts of high-latitude storm waves on low-latitude reef islands—observations of the December 2008 event on Nukutoa, Takuu, Papua New Guinea. . Geomorphology 222::10621
    [Crossref] [Google Scholar]
  143. Steibl S, Kench PS, Bunbury N, Davies N, Holmes N, et al. 2024.. Re-thinking atoll futures: local resilience to global challenges. . Trends Ecol. Evol. 39::25866
    [Crossref] [Google Scholar]
  144. Stoddart DR. 1962a.. Catastrophic storm effects on the British Honduras reefs and cays. . Nature 196::51215
    [Crossref] [Google Scholar]
  145. Stoddart DR. 1962b.. Three Caribbean atolls: Turneff Islands, Lighthouse Reef, and Glover's Reef, British Honduras. . Atoll Res. Bull. 87::1140
    [Crossref] [Google Scholar]
  146. Stoddart DR, Steers JA. 1977.. The nature and origin of reef islands. . In Biology and Geology of Coral Reefs, Vol. 4: Geology 2, ed. OA Jones, R Endean , pp. 59105. London:: Academic
    [Google Scholar]
  147. Storlazzi CD, Gingerich SB, van Dongeren A, Cheriton OM, Swarzenski PW, et al. 2018.. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. . Sci. Adv. 4::eaap9741
    [Crossref] [Google Scholar]
  148. Symonds G, Black KP, Young IR. 1995.. Wave-driven flow over shallow reefs. . J. Geophys Res. 100::263948
    [Crossref] [Google Scholar]
  149. Tuck M, Kench PS, Ford MR, Masselink G. 2019.. Wave overwash processes provide mechanism for reef island to keep up with sea level rise. . Geology 47::8036
    [Crossref] [Google Scholar]
  150. Tudhope AW, Scoffin TP, Stoddart DR, Woodroffe CD. 1985.. Sediments of Suwarrow Atoll. . In Proceedings of the 5th International Coral Reef Congress, Vol. 6, pp. 61116. Moorea, Fr. Polyn.:: Antenne Mus.-Ephe
    [Google Scholar]
  151. Vila-Concejo A, Kench PS. 2017.. Storms in coral reefs. . In Coastal Storms, Processes and Impacts, ed. P Ciavola, G Coco , pp. 12745. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  152. Webb A, Kench PS. 2010.. The dynamic response of reef islands to sea-level rise: evidence from multi-decadal analysis of island change in the Central Pacific. . Glob. Planet. Change 72::23446
    [Crossref] [Google Scholar]
  153. Weber JN, Woodhead PMJ. 1972.. Carbonate lagoon and beach sediments of Tarawa Atoll, Gilbert Islands. . Atoll Res. Bull. 157::121
    [Crossref] [Google Scholar]
  154. Woodroffe CD. 1992.. Morphology and evolution of reef islands in the Maldives. . In Proceedings of the 7th International Coral Reef Symposium, Vol. 2, pp. 121726. Mangilao:: Univ. Guam Mar. Lab.
    [Google Scholar]
  155. Woodroffe CD. 2008.. Reef-island topography and the vulnerability of atolls to sea-level rise. . Glob. Planet. Change 62::7796
    [Crossref] [Google Scholar]
  156. Woodroffe CD, McLean RF, Smithers SG, Lawson EM. 1999.. Atoll reef-island formation and response to sea-level change: West Island, Cocos (Keeling) Islands. . Mar. Geol. 160::85104
    [Crossref] [Google Scholar]
  157. Woodroffe CD, Morrison RJ. 2001.. Reef-island accretion and soil development on Makin, Kiribati, central Pacific. . Catena 44::24561
    [Crossref] [Google Scholar]
  158. Woodroffe CD, Samosorn B, Hua Q, Hart DE. 2007.. Incremental accretion of a sandy reef island over the past 3000 years indicated by component-specific radiocarbon dating. . Geophys. Res. Lett. 34::L03602
    [Crossref] [Google Scholar]
  159. Wu M, Duvat VKE, Purkis SJ. 2021.. Multi-decadal atoll-island dynamics in the Indian Ocean Chagos Archipelago. . Glob. Planet. Change 202::103519
    [Crossref] [Google Scholar]
  160. Yamano H, Cabioch G, Chevillon C, Join J-L. 2014.. Late Holocene sea-level change and reef-island evolution in New Caledonia. . Geomorphology 222::3945
    [Crossref] [Google Scholar]
  161. Yamano H, Miyajima T, Koike I. 2000.. Importance of foraminifera for the formation and maintenance of a coral sand cay: Green Island, Australia. . Coral Reefs 19::5158
    [Crossref] [Google Scholar]
  162. Yao Y, Zhou B, Zhao Z, Chen X, Chen L. 2023.. An investigation of the morphodynamic change of reef islands under monochromatic waves. . Acta Oceanol. Sin. 42::4150
    [Crossref] [Google Scholar]
  163. Young IR. 1989.. Wave transformation over coral reefs. . J. Geophys. Res. 94::977989
    [Crossref] [Google Scholar]
  164. Zhou S, Shi Q, Yang H, Wang L, Zhang X, et al. 2023.. Geomorphic development of an unvegetated shingle cay on the Ximen Reef in the southern South China Sea. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 609::111314
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-032223-030921
Loading
/content/journals/10.1146/annurev-marine-032223-030921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error