1932

Abstract

Oyster reef loss represents one of the most dramatic declines of a foundation species worldwide. Oysters provide valuable ecosystem services (ES), including habitat provisioning, water filtration, and shoreline protection. Since the 1990s, a global community of science and practice has organized around oyster restoration with the goal of restoring these valuable services. We highlight ES-based approaches throughout the restoration process, consider applications of emerging technologies, and review knowledge gaps about the life histories and ES provisioning of underrepresented species. Climate change will increasingly affect oyster populations, and we assess how restoration practices can adapt to these changes. Considering ES throughout the restoration process supports adaptive management. For a rapidly growing restoration practice, we highlight the importance of early community engagement, long-term monitoring, and adapting actions to local conditions to achieve desired outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040423-023007
2025-01-16
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-040423-023007.html?itemId=/content/journals/10.1146/annurev-marine-040423-023007&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson A, Reed DC, Edgar GJ, Smith CS, Kendrick GA, et al. 2020.. Challenges for restoration of coastal marine ecosystems in the Anthropocene. . Front. Mar. Sci. 7::544105
    [Crossref] [Google Scholar]
  2. Allen RJ, Webb BM. 2011.. Determination of wave transmission coefficients for oyster shell bag breakwaters. . In Coastal Engineering Practice, ed. OT Magoon, RM Noble, DD Treadwell, YC Kim , pp. 68497. San Diego, CA:: Am. Soc. Civil Eng.
    [Google Scholar]
  3. Altieri AH, Gedan KB. 2015.. Climate change and dead zones. . Glob. Change Biol. 21:(4):1395406
    [Crossref] [Google Scholar]
  4. Andréfouët S, Le Gendre R, Thomas Y, Lo-Yat A, Reisser CMO. 2021.. Understanding connectivity of pearl oyster populations within Tuamotu atoll semi-closed lagoons: cumulative insight from genetics and biophysical modelling approaches. . Mar. Pollut. Bull. 167::112324
    [Crossref] [Google Scholar]
  5. Baggett LP, Powers SP, Brumbaugh RD, Coen LD, DeAngelis BM, et al. 2014.. Oyster Habitat Restoration: Monitoring and Assessment Handbook. Arlington, VA:: Nat. Conserv.
    [Google Scholar]
  6. Baggett LP, Powers SP, Brumbaugh RD, Coen LD, DeAngelis BM, et al. 2015.. Guidelines for evaluating performance of oyster habitat restoration. . Restor. Ecol. 23:(6):73745
    [Crossref] [Google Scholar]
  7. Battista W, Tourgee A, Wu C, Fujita R. 2017.. How to achieve conservation outcomes at scale: an evaluation of scaling principles. . Front. Mar. Sci. 3::278
    [Crossref] [Google Scholar]
  8. Bayraktarov E, Saunders MI, Abdullah S, Mills M, Beher J, et al. 2016.. The cost and feasibility of marine coastal restoration. . Ecol. Appl. 26:(4):105574
    [Crossref] [Google Scholar]
  9. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, et al. 2011.. Oyster reefs at risk and recommendations for conservation, restoration, and management. . BioScience 61:(2):10716
    [Crossref] [Google Scholar]
  10. Belgrad BA, Knudson W, Roney SH, Walton WC, Lunt J, Smee DL. 2023.. Induced defenses as a management tool: shaping individuals to their environment. . J. Environ. Manag. 338::117808
    [Crossref] [Google Scholar]
  11. Benthotage C, Cole VJ, Schulz KG, Benkendorff K. 2020.. A review of the biology of the genus Isognomon (Bivalvia; Pteriidae) with a discussion on shellfish reef restoration potential of Isognomon ephippium. . Molluscan Res. 40:(4):286307
    [Crossref] [Google Scholar]
  12. Bersoza Hernández A, Brumbaugh RD, Frederick P, Grizzle R, Luckenbach MW, et al. 2018.. Restoring the eastern oyster: How much progress has been made in 53 years?. Front. Ecol. Environ. 16:(8):46371
    [Crossref] [Google Scholar]
  13. Bishop MJ, Lanham BS, Esquivel-Muelbert JR, Cole VJ, Faelnar KM, et al. 2023.. Oyster reef restoration–aquaculture interactions: maximizing positive synergies. . Front. Mar. Sci. 10::1162487
    [Crossref] [Google Scholar]
  14. Botta R, Asche F, Borsum JS, Camp EV. 2020.. A review of global oyster aquaculture production and consumption. . Mar. Policy 117::103952
    [Crossref] [Google Scholar]
  15. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso J, et al. 2018.. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. . Glob. Change Biol. 24:(6):223961
    [Crossref] [Google Scholar]
  16. Boyd PW, Hutchins D. 2012.. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. . Mar. Ecol. Prog. Ser. 470::12535
    [Crossref] [Google Scholar]
  17. Breitburg DL, Hondorp D, Audemard C, Carnegie RB, Burrell RB, et al. 2015.. Landscape-level variation in disease susceptibility related to shallow-water hypoxia. . PLOS ONE 10:(2):e0116223
    [Crossref] [Google Scholar]
  18. Brumbaugh RD, Beck MW, Coen LD, Craig L, Hicks P. 2006.. A practitioners guide to the design and monitoring of shellfish restoration projects: an ecosystem services approach. Rep. , Nat. Conserv., Arlington, VA:
    [Google Scholar]
  19. Brumbaugh RD, Coen LD. 2009.. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. . J. Shellfish Res. 28:(1):14761
    [Crossref] [Google Scholar]
  20. Cai W-J, Feely RA, Testa JM, Li M, Evans W, et al. 2021.. Natural and anthropogenic drivers of acidification in large estuaries. . Annu. Rev. Mar. Sci. 13::2355
    [Crossref] [Google Scholar]
  21. Camara MD, Griffith SM, Evans S. 2005.. Can selective breeding reduce the heavy metals content of Pacific oysters (Crassostrea gigas), and are there trade-offs with growth or survival?. J. Shellfish Res. 24:(4):97986
    [Crossref] [Google Scholar]
  22. Camara MD, Vadopalas B. 2009.. Genetic aspects of restoring Olympia oysters and other native bivalves: balancing the need for action, good intentions, and the risks of making things worse. . J. Shellfish Res. 28:(1):12145
    [Crossref] [Google Scholar]
  23. Carranza A, Defeo O, Gracia A, Pascual M, Henriques M, et al. 2011.. Towards a South American network for shellfish conservation and restoration. . Tentacle 19::38
    [Google Scholar]
  24. Carrasco MF, Venerus LA, Weiler NE, Barón PJ. 2019.. Effects of different intertidal hard substrates on the recruitment of Crassostrea gigas. . Hydrobiologia 827:(1):26375
    [Crossref] [Google Scholar]
  25. Casas SM, La Peyre J, La Peyre MK. 2015.. Restoration of oyster reefs in an estuarine lake: population dynamics and shell accretion. . Mar. Ecol. Prog. Ser. 524::17184
    [Crossref] [Google Scholar]
  26. Catalano AS, Lyons-White J, Mills MM, Knight AT. 2019.. Learning from published project failures in conservation. . Biol. Conserv. 238::108223
    [Crossref] [Google Scholar]
  27. Chowdhury MSN, Walles B, Sharifuzzaman S, Shahadat Hossain M, Ysebaert T, Smaal AC. 2019a.. Oyster breakwater reefs promote adjacent mudflat stability and salt marsh growth in a monsoon dominated subtropical coast. . Sci. Rep. 9:(1):8549
    [Crossref] [Google Scholar]
  28. Chowdhury MSN, Wijsman JWM, Hossain MS, Ysebaert T, Smaal AC. 2019b.. A verified habitat suitability model for the intertidal rock oyster, Saccostrea cucullata. . PLOS ONE 14:(6):e0217688
    [Crossref] [Google Scholar]
  29. Coen LD, Brumbaugh RD, Bushek D, Grizzle R, Luckenbach MW, et al. 2007.. Ecosystem services related to oyster restoration. . Mar. Ecol. Prog. Ser. 341::3037
    [Crossref] [Google Scholar]
  30. Coen LD, Luckenbach MW. 2000.. Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation?. Ecol. Eng. 15:(3–4):32343
    [Crossref] [Google Scholar]
  31. Colden AM, Latour RJ, Lipcius RN. 2017.. Reef height drives threshold dynamics of restored oyster reefs. . Mar. Ecol. Prog. Ser. 582::113
    [Crossref] [Google Scholar]
  32. Cole VJ, Parker LM, O'Connor SJ, O'Connor WA, Scanes E, et al. 2016.. Effects of multiple climate change stressors: Ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi. . Mar. Biol. 163:(5):125
    [Crossref] [Google Scholar]
  33. Colsoul B, Boudry P, Pérez-Parallé ML, Bratoš Cetinić A, Hugh-Jones T, et al. 2021.. Sustainable large-scale production of European flat oyster (Ostrea edulis) seed for ecological restoration and aquaculture: a review. . Rev. Aquac. 13:(3):142368
    [Crossref] [Google Scholar]
  34. Cornwell JC, Bricker S, Lacatell M, Luckenbach MW, Marenghi F, et al. 2023.. Nitrogen and phosphorus reduction associated with harvest of hatchery-produced oysters and reef restoration: assimilation and enhanced denitrification; panel recommendations. 2nd Increm. Rep. , Oyster BMP Exp. Panel:
    [Google Scholar]
  35. Coutts A, O'Brien A, Weeks AR, Swearer SE, Van Rooyen A, et al. 2022.. An environmental DNA approach to informing restoration of the functionally extinct oyster, Ostrea angasi. . Aquat. Conserv. Mar. Freshw. Ecosyst. 32:(11):173244
    [Crossref] [Google Scholar]
  36. Darling ES, Côté IM. 2018.. Seeking resilience in marine ecosystems. . Science 359:(6379):98687
    [Crossref] [Google Scholar]
  37. Davenport TM, Hughes AR, zu Ermgassen PSE, Grabowski JH. 2021.. Recruitment enhancement varies by taxonomic group and oyster reef habitat characteristics. . Ecol. Appl. 31:(5):e02340
    [Crossref] [Google Scholar]
  38. Dennis HD, Evans AJ, Banner AJ, Moore PJ. 2018.. Reefcrete: reducing the environmental footprint of concretes for eco-engineering marine structures. . Ecol. Eng. 120::66878
    [Crossref] [Google Scholar]
  39. Diaz RJ, Rosenberg R. 2008.. Spreading dead zones and consequences for marine ecosystems. . Science 321:(5891):92629
    [Crossref] [Google Scholar]
  40. Doney SC, Busch DS, Cooley SR, Kroeker KJ. 2020.. The impacts of ocean acidification on marine ecosystems and reliant human communities. . Annu. Rev. Environ. Resour. 45::83112
    [Crossref] [Google Scholar]
  41. Du J, Park K, Jensen C, Dellapenna TM, Zhang WG, Shi Y. 2021.. Massive oyster kill in Galveston Bay caused by prolonged low-salinity exposure after Hurricane Harvey. . Sci. Total Environ. 774::145132
    [Crossref] [Google Scholar]
  42. Eckert LE, Ban NC, Tallio S-C, Turner N. 2018.. Linking marine conservation and Indigenous cultural revitalization: First Nations free themselves from externally imposed social-ecological traps. . Ecol. Soc. 23:(4):23
    [Crossref] [Google Scholar]
  43. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, et al. 2005.. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. . Front. Ecol. Environ. 3:(9):47986
    [Crossref] [Google Scholar]
  44. Espriella MC, Lecours V, Camp EV, Lassiter HA, Wilkinson B, et al. 2023.. Drone lidar-derived surface complexity metrics as indicators of intertidal oyster reef condition. . Ecol. Indic. 150::110190
    [Crossref] [Google Scholar]
  45. Fernandez-Nunez M, Burningham H, Ojeda Zujar J. 2017.. Improving accuracy of LiDAR-derived digital terrain models for saltmarsh management. . J. Coast. Conserv. 21:(1):20922
    [Crossref] [Google Scholar]
  46. Fitzsimons JA, Branigan S, Brumbaugh RD, McDonald T, zu Ermgassen PSE, eds. 2019.. Restoration Guidelines for Shellfish Reefs. Arlington, VA:: Nat. Conserv.
    [Google Scholar]
  47. Fitzsimons JA, Branigan S, Gillies CL, Brumbaugh RD, Cheng J, et al. 2020.. Restoring shellfish reefs: global guidelines for practitioners and scientists. . Conserv. Sci. Pract. 2:(6):e198
    [Crossref] [Google Scholar]
  48. Fodrie FJ, Rodriguez AB, Baillie CJ, Brodeur MC, Coleman SE, et al. 2014.. Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration. . J. Appl. Ecol. 51:(5):131425
    [Crossref] [Google Scholar]
  49. Froehlich HE, Gentry RR, Halpern BS. 2017.. Conservation aquaculture: shifting the narrative and paradigm of aquaculture's role in resource management. . Biol. Conserv. 215::16268
    [Crossref] [Google Scholar]
  50. Gaffney PM. 2006.. The role of genetics in shellfish restoration. . Aquat. Living Resour. 19:(3):27782
    [Crossref] [Google Scholar]
  51. Gancel HN, Carmichael RH, Du J, Park K. 2021.. Use of settlement patterns and geochemical tagging to test population connectivity of eastern oysters Crassostrea virginica. . Mar. Ecol. Prog. Ser. 673::85105
    [Crossref] [Google Scholar]
  52. Gancel HN, Carmichael RH, Park K, Krause JW, Rikard S. 2019.. Field mark-recapture of calcein-stained larval oysters (Crassostrea virginica) in a freshwater-dominated estuary. . Estuaries Coasts 42:(6):155869
    [Crossref] [Google Scholar]
  53. Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, et al. 2019.. International principles and standards for the practice of ecological restoration. Second edition. . Restor. Ecol. 27:(S1):S146
    [Crossref] [Google Scholar]
  54. Garg A, Green SJ. 2022.. An integrative method for enhancing the ecological realism of aquatic artificial habitat designs using 3D scanning, printing, moulding and casting. . Front. Built Environ. 8::763315
    [Crossref] [Google Scholar]
  55. Gazeau F, Parker LM, Comeau S, Gattuso J-P, O'Connor WA, et al. 2013.. Impacts of ocean acidification on marine shelled molluscs. . Mar. Biol. 160:(8):220745
    [Crossref] [Google Scholar]
  56. Geraldi N, Simpson M, Fegley S, Holmlund P, Peterson C. 2013.. Addition of juvenile oysters fails to enhance oyster reef development in Pamlico Sound. . Mar. Ecol. Prog. Ser. 480::11929
    [Crossref] [Google Scholar]
  57. Gibbs M, Ross P, Scanes E, Gibbs J, Rotolo-Ross R, Parker L. 2023.. Extending conservation of coastal and oyster reef restoration for First Nations cultural revitalization. . Conserv. Biol. 37:(6):e14158
    [Crossref] [Google Scholar]
  58. Gilby BL, Olds AD, Connolly RM, Henderson CJ, Schlacher TA. 2018.. Spatial restoration ecology: placing restoration in a landscape context. . BioScience 68:(12):100719
    [Crossref] [Google Scholar]
  59. Gillies CL, McLeod IM, Alleway HK, Cook P, Crawford C, et al. 2018.. Australian shellfish ecosystems: past distribution, current status and future direction. . PLOS ONE 13:(2):e0190914
    [Crossref] [Google Scholar]
  60. Glandon HL, Kilbourne KH, Miller TJ. 2019.. Winter is (not) coming: Warming temperatures will affect the overwinter behavior and survival of blue crab. . PLOS ONE 14:(7):e0219555
    [Crossref] [Google Scholar]
  61. Gledhill JH, Barnett AF, Slattery M, Willett KL, Easson GL, et al. 2020.. Mass mortality of the eastern oyster Crassostrea virginica in the western Mississippi Sound following unprecedented Mississippi River flooding in 2019. . J. Shellfish Res. 39:(2):23544
    [Crossref] [Google Scholar]
  62. Goelz T, Vogt B, Hartley T. 2020.. Alternative substrates used for oyster reef restoration: a review. . J. Shellfish Res. 39:(1):112
    [Crossref] [Google Scholar]
  63. Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ, et al. 2012.. Economic valuation of ecosystem services provided by oyster reefs. . BioScience 62:(10):9009
    [Crossref] [Google Scholar]
  64. Gray MW, Chaparro O, Huebert KB, O'Neill SP, Couture T, et al. 2019.. Life history traits conferring larval resistance against ocean acidification: the case of brooding oysters of the genus Ostrea. . J. Shellfish Res. 38:(3):75161
    [Crossref] [Google Scholar]
  65. Grizzle R, Lodge J, Ward K, Mosher K, Jacobs F, Krebs J. 2023.. Successful initial restoration of oyster habitat in the lower Hudson River Estuary, United States. . Restor. Ecol. 32:(3):e14077
    [Crossref] [Google Scholar]
  66. Guy C, Smyth D, Roberts D. 2019.. The importance of population density and inter-individual distance in conserving the European oyster Ostrea edulis. . J. Mar. Biol. Assoc. 99:(3):58793
    [Crossref] [Google Scholar]
  67. Hall E, DeAngelis BM. 2024.. The business of oyster restoration: using traditional market-based approaches to estimate the oyster restoration economy. . Restor. Ecol. 32:(5):e14143
    [Crossref] [Google Scholar]
  68. Hanke M, Posey M, Alphin T. 2017.. The influence of habitat characteristics on intertidal oyster Crassostrea virginica populations. . Mar. Ecol. Prog. Ser. 571::12138
    [Crossref] [Google Scholar]
  69. Harwell HD, Posey MH, Alphin TD. 2011.. Landscape aspects of oyster reefs: effects of fragmentation on habitat utilization. . J. Exp. Mar. Biol. Ecol. 409:(1–2):3041
    [Crossref] [Google Scholar]
  70. Hemraj DA, Bishop MJ, Hancock B, Minuti JJ, Thurstan RH, et al. 2022.. Oyster reef restoration fails to recoup global historic ecosystem losses despite substantial biodiversity gain. . Sci. Adv. 8:(47):eabp8747
    [Crossref] [Google Scholar]
  71. Hogan S, Reidenbach MA. 2019.. Quantifying and mapping intertidal oyster reefs utilizing LiDAR-based remote sensing. . Mar. Ecol. Prog. Ser. 630::8399
    [Crossref] [Google Scholar]
  72. Hogan S, Reidenbach MA. 2022.. Quantifying tradeoffs in ecosystem services under various oyster reef restoration designs. . Estuaries Coasts 45:(3):67790
    [Crossref] [Google Scholar]
  73. Howie AH, Bishop MJ. 2021.. Contemporary oyster reef restoration: responding to a changing world. . Front. Ecol. Evol. 9::689915
    [Crossref] [Google Scholar]
  74. Howie AH, Reeves SE, Gillies CL, Bishop MJ. 2024.. Integration of social data into restoration suitability modelling for oyster reefs. . Ecol. Indic. 158::11531
    [Crossref] [Google Scholar]
  75. Huang W, Hagen S, Bacopoulos P, Wang D. 2015.. Hydrodynamic modeling and analysis of sea-level rise impacts on salinity for oyster growth in Apalachicola Bay, Florida. . Estuar. Coast. Shelf Sci. 156::718
    [Crossref] [Google Scholar]
  76. Hubbard AB, Reidenbach MA. 2015.. Effects of larval swimming behavior on the dispersal and settlement of the eastern oyster Crassostrea virginica. . Mar. Ecol. Prog. Ser. 535::16176
    [Crossref] [Google Scholar]
  77. Hughes A, Bonačić K, Cameron T, Collins K, Da Costa F, et al. 2023.. Site selection for European native oyster (Ostrea edulis) habitat restoration projects: an expert-derived consensus. . Aquat. Conserv. Mar. Freshw. Ecosyst. 33:(7):72136
    [Crossref] [Google Scholar]
  78. IPCC (Intergov. Panel Clim. Change). 2023.. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva:: IPCC
    [Google Scholar]
  79. Jackson J, Kirby MX, Berger W, Bjorndal K, Botsford LW, et al. 2001.. Historical overfishing and the recent collapse of coastal ecosystems. . Science 293::62938
    [Crossref] [Google Scholar]
  80. Jiang W, Shi W-J, Li N-N, Zhang W-K, Chen L-Z, et al. 2023.. Gonad development and recruitment pattern of the oysters Crassostrea ariakensis and Crassostrea sikamea in a subtropical bay in China. . Reg. Stud. Mar. Sci. 58::102781
    [Google Scholar]
  81. Kellogg ML, Smyth AR, Luckenbach MW, Carmichael RH, Brown BL, et al. 2014.. Use of oysters to mitigate eutrophication in coastal waters. . Estuar. Coast. Shelf Sci. 151::15668
    [Crossref] [Google Scholar]
  82. Kennedy VS, Breitburg DL, Christman MC, Luckenbach MW, Paynter K, et al. 2011.. Lessons learned from efforts to restore oyster populations in Maryland and Virginia, 1990 to 2007. . J. Shellfish Res. 30:(3):71931
    [Crossref] [Google Scholar]
  83. Kimbro DL, White JW, Tillotson H, Cox N, Christopher M, et al. 2017.. Local and regional stressors interact to drive a salinization-induced outbreak of predators on oyster reefs. . Ecosphere 8:(11):e01992
    [Crossref] [Google Scholar]
  84. King NG, Wilmes SB, Smyth D, Tinker J, Robins PE, et al. 2021.. Climate change accelerates range expansion of the invasive non-native species, the Pacific oyster, Crassostrea gigas. . ICES J. Mar. Sci. 78:(1):7081
    [Crossref] [Google Scholar]
  85. King WL, Jenkins C, Seymour JR, Labbate M. 2019.. Oyster disease in a changing environment: decrypting the link between pathogen, microbiome and environment. . Mar. Environ. Res. 143::12440
    [Crossref] [Google Scholar]
  86. Kirby MX. 2004.. Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins. . PNAS 101:(35):1309699
    [Crossref] [Google Scholar]
  87. Kruft Welton RA, Hoppit G, Schmidt DN, Witts JD, Moon BC. 2024.. Reviews and syntheses: the clam before the storm—a meta-analysis showing the effect of combined climate change stressors on bivalves. . Biogeosciences 21:(1):22339
    [Crossref] [Google Scholar]
  88. La Peyre MK, Aguilar Marshall D, Miller LS, Humphries AT. 2019.. Oyster reefs in Northern Gulf of Mexico estuaries harbor diverse fish and decapod crustacean assemblages: a meta-synthesis. Front. . Mar. Sci. 6::666
    [Google Scholar]
  89. La Peyre MK, Buie SCL, Rossi RE, Roberts BJ. 2022.. Long-term assessments are critical to determining persistence and shoreline protection from oyster reef nature-based coastal defenses. . Ecol. Eng. 178::106603
    [Crossref] [Google Scholar]
  90. La Peyre MK, Furlong J, Brown LA, Piazza BP, Brown K. 2014.. Oyster reef restoration in the northern Gulf of Mexico: extent, methods, and outcomes. . Ocean Coast. Manag. 89::2028
    [Crossref] [Google Scholar]
  91. La Peyre MK, Marshall DA, Sable SE. 2021.. Oyster model inventory: identifying critical data and modeling approaches to support restoration of oysters reefs in coastal U.S. Gulf of Mexico waters. Open-File Rep. 2021-1063 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  92. La Peyre MK, Nix A, Laborde L, Piazza BP. 2012.. Gauging state-level and user group views of oyster reef restoration activities in the northern Gulf of Mexico. . Ocean Coast. Manag. 67::18
    [Crossref] [Google Scholar]
  93. La Peyre MK, Serra K, Joyner TA, Humphries A. 2015.. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs. . PeerJ 3::e1317
    [Crossref] [Google Scholar]
  94. Lam K, Morton B. 2006.. Morphological and mitochondrial-DNA analysis of the Indo-West Pacific rock oysters (Ostreidae: Saccostrea species). . J. Molluscan Stud. 72:(3):23545
    [Crossref] [Google Scholar]
  95. Lau SCY, Thomas M, Hancock B, Russell BD. 2020.. Restoration potential of Asian oysters on heavily developed coastlines. . Restor. Ecol. 28:(6):164353
    [Crossref] [Google Scholar]
  96. Lemasson AJ, Fletcher S, Hall-Spencer JM, Knights AM. 2017.. Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: a review. . J. Exp. Mar. Biol. Ecol. 492::4962
    [Crossref] [Google Scholar]
  97. Lenihan HS. 1999.. Physical-biological coupling on oyster reefs: how habitat structure influences individual performance. . Ecol. Monogr. 69:(3):25175
    [Google Scholar]
  98. Lenihan HS, Peterson CH. 1998.. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. . Ecol. Appl. 8:(1):12840
    [Crossref] [Google Scholar]
  99. Levine E, Gosnell J, Goetz E, Malinowski C. 2017.. Natural cultch type influences habitat preference and predation, but not survival, in reef-associated species. . Restor. Ecol. 25:(1):10111
    [Crossref] [Google Scholar]
  100. Levinton J, Doall M, Ralston D, Starke A, Allam B. 2011.. Climate change, precipitation and impacts on an estuarine refuge from disease. . PLOS ONE 6:(4):e18849
    [Crossref] [Google Scholar]
  101. Lillis A, Eggleston D, Bohnenstiehl D. 2014.. Estuarine soundscapes: distinct acoustic characteristics of oyster reefs compared to soft-bottom habitats. . Mar. Ecol. Prog. Ser. 505::117
    [Crossref] [Google Scholar]
  102. Lipcius RN, Burke R, McCulloch D, Schreiber S, Schulte D, et al. 2015.. Overcoming restoration paradigms: value of the historical record and metapopulation dynamics in native oyster restoration. . Front. Mar. Sci. 2::65
    [Crossref] [Google Scholar]
  103. Lipcius RN, Eggleston DB, Schreiber SJ, Seitz RD, Shen J, et al. 2008.. Importance of metapopulation connectivity to restocking and restoration of marine species. . Rev. Fish. Sci. 16:(1–3):10110
    [Crossref] [Google Scholar]
  104. Livingston RJ, Howell RL, Niu XF, Lewis FG, Woodsum GC. 1999.. Recovery of oyster reefs (Crassostrea virginica) in a gulf estuary following disturbance by two hurricanes. . Bull. Mar. Sci. 64:(3):46583
    [Google Scholar]
  105. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. 2006.. Depletion, degradation, and recovery potential of estuaries and coastal seas. . Science 312:(5781):18069
    [Crossref] [Google Scholar]
  106. Lowe WH, Allendorf FW. 2010.. What can genetics tell us about population connectivity?. Mol. Ecol. 19:(15):303851
    [Crossref] [Google Scholar]
  107. Malham SK, Cotter E, O'Keeffe S, Lynch S, Culloty SC, et al. 2009.. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrients on health and survival. . Aquaculture 287:(1–2):12838
    [Crossref] [Google Scholar]
  108. Mann R, Powell EN. 2007.. Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. . J. Shellfish Res. 26:(4):90517
    [Crossref] [Google Scholar]
  109. Martinez MJ, Palmer TA, Breaux NJ, Beseres Pollack J. 2022.. Dynamics of restored and natural oyster reefs after a hurricane. . Front. Ecol. Evol. 10::791739
    [Crossref] [Google Scholar]
  110. McAfee D, Bishop MJ, Yu T, Williams GA. 2018a.. Structural traits dictate abiotic stress amelioration by intertidal oysters. . Funct. Ecol. 32:(12):266677
    [Crossref] [Google Scholar]
  111. McAfee D, Connell SD. 2020.. Cuing oyster recruitment with shell and rock: implications for timing reef restoration. . Restor. Ecol. 28:(3):50611
    [Crossref] [Google Scholar]
  112. McAfee D, Connell SD. 2021.. The global fall and rise of oyster reefs. . Front. Ecol. Environ. 19:(2):11825
    [Crossref] [Google Scholar]
  113. McAfee D, Cumbo V, Bishop M, Raftos D. 2018b.. Intraspecific differences in the transcriptional stress response of two populations of Sydney rock oyster increase with rising temperatures. . Mar. Ecol. Prog. Ser. 589::11527
    [Crossref] [Google Scholar]
  114. McAfee D, O'Connor WA, Bishop MJ. 2017.. Fast-growing oysters show reduced capacity to provide a thermal refuge to intertidal biodiversity at high temperatures. . J. Anim. Ecol. 86:(6):135262
    [Crossref] [Google Scholar]
  115. McAfee D, Williams BR, McLeod L, Reuter A, Wheaton Z, Connell SD. 2023.. Soundscape enrichment enhances recruitment and habitat building on new oyster reef restorations. . J. Appl. Ecol. 60:(1):11120
    [Crossref] [Google Scholar]
  116. McClenachan G, Witt M, Walters LJ. 2021.. Replacement of oyster reefs by mangroves: unexpected climate-driven ecosystem shifts. . Glob. Change Biol. 27:(6):122638
    [Crossref] [Google Scholar]
  117. McDonald T, Jonson J, Dixon KW. 2016.. National standards for the practice of ecological restoration in Australia. . Restor. Ecol. 24:(S1):S432. Erratum . 2016.. Restor. Ecol. 24:(5):705
    [Google Scholar]
  118. McLeod IM, zu Ermgassen PSE, Gillies CL, Hancock B, Humphries A. 2019.. Can bivalve habitat restoration improve degraded estuaries?. In Coasts and Estuaries: The Future, ed. E Wolanski, JW Day, M Elliott, R Ramachandran , pp. 42742. Amsterdam:: Elsevier
    [Google Scholar]
  119. Michaelis AK, Walton WC, Webster DW, Shaffer LJ. 2021.. Cultural ecosystem services enabled through work with shellfish. . Mar. Policy 132::104689
    [Crossref] [Google Scholar]
  120. Millenn. Ecosyst. Assess. 2005.. Ecosystems and Human Well-Being: Synthesis. Washington, DC:: Island
    [Google Scholar]
  121. Mohammed JS. 2016.. Applications of 3D printing technologies in oceanography. . Methods Oceanogr. 17::97117
    [Crossref] [Google Scholar]
  122. Moore JL, Puckett BJ, Schreiber SJ. 2018.. Restoration of eastern oyster populations with positive density dependence. . Ecol. Appl. 28:(4):897909
    [Crossref] [Google Scholar]
  123. Morris JP, Backeljau T, Chapelle G. 2019.. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. . Rev. Aquac. 11:(1):4257
    [Crossref] [Google Scholar]
  124. Morris RL, Bilkovic DM, Boswell MK, Bushek D, Cebrian J, et al. 2019.. The application of oyster reefs in shoreline protection: Are we over-engineering for an ecosystem engineer?. J. Appl. Ecol. 56:(7):170311
    [Crossref] [Google Scholar]
  125. Morris RL, La Peyre MK, Webb BM, Marshall DA, Bilkovic DM, et al. 2021.. Large-scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration. . Ecol. Appl. 31:(6):e02382
    [Crossref] [Google Scholar]
  126. Mos B, Dworjanyn SA, Mamo LT, Kelaher BP. 2019.. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate. . Sci. Total Environ. 646::134958
    [Crossref] [Google Scholar]
  127. NASEM (Natl. Acad. Sci. Eng. Med.). 2017.. Effective Monitoring to Evaluate Ecological Restoration in the Gulf of Mexico. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  128. Nat. Conserv. Aust. 2024.. Reef Builder: rebuilding Australia's lost shellfish reefs. . Nature Conservancy Australia. https://www.natureaustralia.org.au/what-we-do/our-priorities/oceans/ocean-stories/restoring-shellfish-reefs
    [Google Scholar]
  129. Paerl HW. 2023.. Climate change, phytoplankton and HABs. . In Climate Change and Estuaries, ed. MJ Kennish, HW Paerl, JR Crosswell , pp. 31534. Boca Raton, FL:: CRC
    [Google Scholar]
  130. Perog BD, Bowers-Doerning C, Lopez Ramirez CY, Marks AN, Torres RF Jr., et al. 2023.. Shell cover, rugosity, and tidal elevation impact native and non-indigenous oyster recruitment: implications for reef ball design. . Ecol. Eng. 192::106969
    [Crossref] [Google Scholar]
  131. Piazza B, Banks P, La Peyre M. 2005.. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. . Restor. Ecol. 13:(3):499506
    [Crossref] [Google Scholar]
  132. Pine WE, Brucker J, Davis M, Geiger S, Gandy R, et al. 2023.. Collapsed oyster populations in large Florida estuaries appear resistant to restoration using traditional cultching methods—insights from ongoing efforts in multiple systems. . Mar. Coast. Fish. 15:(5):e10249
    [Crossref] [Google Scholar]
  133. Plummer ML. 2009.. Assessing benefit transfer for the valuation of ecosystem services. . Front. Ecol. Environ. 7:(1):3845
    [Crossref] [Google Scholar]
  134. Pogoda B, Boudry P, Bromley C, Cameron TC, Colsoul B, et al. 2020.. NORA moving forward: developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation. . Aquat. Conserv. Mar. Freshw. Ecosyst. 30:(11):203137
    [Crossref] [Google Scholar]
  135. Pontee N. 2013.. Defining coastal squeeze: a discussion. . Ocean Coast. Manag. 84::2047
    [Crossref] [Google Scholar]
  136. Powers SP, Peterson C, Grabowski J, Lenihan H. 2009.. Success of constructed oyster reefs in no-harvest sanctuaries: implications for restoration. . Mar. Ecol. Prog. Ser. 389::15970
    [Crossref] [Google Scholar]
  137. Powers SP, Roman H, Meixner J, Wirasaet D, Brus S, et al. 2023.. Establishing connectivity patterns of eastern oysters Crassostrea virginica on regional oceanographic scales. . Ecosphere 14:(1):e4337
    [Crossref] [Google Scholar]
  138. Preston J, Gamble C, Debney A, Helmer L, Hancock B, zu Ermgassen P. 2020.. European Native Oyster Habitat Restoration Handbook. London:: Zool. Soc. Lond.
    [Google Scholar]
  139. Pritchard C, Shanks A, Rimler R, Oates M, Rumrill S. 2015.. The Olympia oyster Ostrea lurida: recent advances in natural history, ecology, and restoration. . J. Shellfish Res. 34:(2):25971
    [Crossref] [Google Scholar]
  140. Prober SM, Byrne M, McLean EH, Steane DA, Potts BM, et al. 2015.. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. . Front. Ecol. Evol. 3::65
    [Crossref] [Google Scholar]
  141. Pruett JL, Pandelides AF, Keylon J, Willett KL, Showalter Otts S, Gochfeld DJ. 2022.. Life-stage-dependent effects of multiple flood-associated stressors on a coastal foundational species. . Ecosphere 13:(12):e4343
    [Crossref] [Google Scholar]
  142. Pruett JL, Weissburg MJ. 2019.. Eastern oysters use predation risk cues in larval settlement decisions and juvenile inducible morphological defenses. . Mar. Ecol. Prog. Ser. 621::8394
    [Crossref] [Google Scholar]
  143. Puckett BJ, Theuerkauf SJ, Eggleston DB, Guajardo R, Hardy C, et al. 2018.. Integrating larval dispersal, permitting, and logistical factors within a validated habitat suitability index for oyster restoration. . Front. Mar. Sci. 5::29314
    [Crossref] [Google Scholar]
  144. Reeder-Myers L, Braje TJ, Hofman CA, Elliott Smith EA, Garland CJ, et al. 2022.. Indigenous oyster fisheries persisted for millennia and should inform future management. . Nat. Commun. 13::2383
    [Crossref] [Google Scholar]
  145. Richardson MA, Zhang Y, Connolly RM, Gillies CL, McDougall C. 2022.. Some like it hot: the ecology, ecosystem benefits and restoration potential of oyster reefs in tropical waters. . Front. Mar. Sci. 9::873768
    [Crossref] [Google Scholar]
  146. Ridge JT, Gray PC, Windle AE, Johnston DW. 2020.. Deep learning for coastal resource conservation: automating detection of shellfish reefs. . Remote Sens. Ecol. Conserv. 6:(4):43140
    [Crossref] [Google Scholar]
  147. Ridge JT, Johnston DW. 2020.. Unoccupied aircraft systems (UAS) for marine ecosystem restoration. . Front. Mar. Sci. 7::438
    [Crossref] [Google Scholar]
  148. Ridge JT, Rodriguez AB, Fodrie FJ. 2017.. Evidence of exceptional oyster-reef resilience to fluctuations in sea level. . Ecol. Evol. 7:(23):1040920
    [Crossref] [Google Scholar]
  149. Ridge JT, Rodriguez AB, Fodrie FJ, Lindquist NL, Brodeur MC, et al. 2015.. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise. . Sci. Rep. 5:(1):14785
    [Crossref] [Google Scholar]
  150. Ridlon AD, Marks A, Zabin CJ, Zacherl D, Allen B, et al. 2021a.. Conservation of marine foundation species: learning from native oyster restoration from California to British Columbia. . Estuaries Coasts 44:(7):172343
    [Crossref] [Google Scholar]
  151. Ridlon AD, Wasson K, Waters T, Adams J, Donatuto J, et al. 2021b.. Conservation aquaculture as a tool for imperiled marine species: evaluation of opportunities and risks for Olympia oysters, Ostrea lurida. . PLOS ONE 16:(6):e0252810
    [Crossref] [Google Scholar]
  152. Rodriguez AB, Fodrie FJ, Ridge JT, Lindquist NL, Theuerkauf EJ, et al. 2014.. Oyster reefs can outpace sea-level rise. . Nat. Clim. Change 4::49397
    [Crossref] [Google Scholar]
  153. Ross PM, Scanes E, Byrne M, Ainsworth TD, Donelson JM, et al. 2023.. Surviving the Anthropocene: the resilience of marine animals to climate change. . Oceanogr. Mar. Biol. Annu. Rev. 61::3580
    [Google Scholar]
  154. Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, et al. 2005.. Introduction of non-native oysters: ecosystem effects and restoration implications. . Annu. Rev. Ecol. Evol. Syst. 36::64389
    [Crossref] [Google Scholar]
  155. Rybovich M, Peyre MKL, Hall SG, Peyre JFL. 2016.. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. . J. Shellfish Res. 35:(1):10113
    [Crossref] [Google Scholar]
  156. Salvador de Paiva JN, Walles B, Ysebaert T, Bouma TJ. 2018.. Understanding the conditionality of ecosystem services: the effect of tidal flat morphology and oyster reef characteristics on sediment stabilization by oyster reefs. . Ecol. Eng. 112::8995
    [Crossref] [Google Scholar]
  157. Salvi D, Mariottini P. 2021.. Revision shock in Pacific oysters taxonomy: the genus Magallana (formerly Crassostrea in part) is well-founded and necessary. . Zool. J. Linn. Soc. 192:(1):4358
    [Crossref] [Google Scholar]
  158. Salzman J, Bennett G, Carroll N, Goldstein A, Jenkins M. 2018.. The global status and trends of payments for ecosystem services. . Nat. Sustain. 1:(3):13644
    [Crossref] [Google Scholar]
  159. Scherer AE, Lunt J, Draper AM, Smee DL. 2016.. Phenotypic plasticity in oysters (Crassostrea virginica) mediated by chemical signals from predators and injured prey. . Invertebr. Biol. 135:(2):97107
    [Crossref] [Google Scholar]
  160. Scyphers SB, Powers SP, Heck KL Jr., Byron D. 2011.. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. . PLOS ONE 6:(8):e22396
    [Crossref] [Google Scholar]
  161. Sekino M, Yamashita H. 2016.. Mitochondrial and nuclear DNA analyses of Saccostrea oysters in Japan highlight the confused taxonomy of the genus. . J. Molluscan Stud. 82:(4):492506
    [Crossref] [Google Scholar]
  162. Shaw R, Arnold DC, Stallworthy WB. 1970.. Effects of light on spat settlement of the American oyster (Crassostrea virginica). . J. Fish. Board Can. 27:(4):74348
    [Crossref] [Google Scholar]
  163. Smith RS, Castorani MCN. 2023.. Meta-analysis reveals drivers of restoration success for oysters and reef community. . Ecol. Appl. 33:(5):e2865
    [Crossref] [Google Scholar]
  164. Smith RS, Cheng SL, Castorani MCN. 2022a.. Meta-analysis of ecosystem services associated with oyster restoration. . Conserv. Biol. e13966
    [Google Scholar]
  165. Smith RS, Lusk B, Castorani MC. 2022b.. Restored oyster reefs match multiple functions of natural reefs within a decade. . Conserv. Lett. 15:(4):e12883
    [Crossref] [Google Scholar]
  166. Smyth AR, Piehler MF, Grabowski JH. 2015.. Habitat context influences nitrogen removal by restored oyster reefs. . J. Appl. Ecol. 52:(3):71625
    [Crossref] [Google Scholar]
  167. Strain EMA, Morris RL, Coleman RA, Figueira WF, Steinberg PD, et al. 2018.. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. . Ecol. Eng. 120::63744
    [Crossref] [Google Scholar]
  168. Tan K, Zhang H, Zheng H. 2020.. Selective breeding of edible bivalves and its implication of global climate change. . Rev. Aquac. 12:(4):255972
    [Crossref] [Google Scholar]
  169. Theuerkauf SJ, Burke RP, Lipcius RN. 2015.. Settlement, growth, and survival of eastern oysters on alternative reef substrates. . J. Shellfish Res. 34:(2):24150
    [Crossref] [Google Scholar]
  170. Theuerkauf SJ, Lipcius RN. 2016.. Quantitative validation of a habitat suitability index for oyster restoration. . Front. Mar. Sci. 3::64
    [Crossref] [Google Scholar]
  171. Theuerkauf SJ, Puckett BJ, Eggleston DB. 2021.. Metapopulation dynamics of oysters: sources, sinks, and implications for conservation and restoration. . Ecosphere 12:(7):e03573
    [Crossref] [Google Scholar]
  172. Thompson EL, O'Connor W, Parker L, Ross P, Raftos DA. 2015.. Differential proteomic responses of selectively bred and wild-type Sydney rock oyster populations exposed to elevated CO2. . Mol. Ecol. 24:(6):124862
    [Crossref] [Google Scholar]
  173. Tickle E. 2023.. Oyster reef restoration tile. US Patent 11,598,879
    [Google Scholar]
  174. Tomasetti SJ, Gobler CJ. 2023.. Estuarine shellfish and climate change. . In Climate Change and Estuaries, ed. MJ Kennish, HW Paerl, JR Crosswell , pp. 45174. Boca Raton, FL:: CRC
    [Google Scholar]
  175. Tracy A, Heggie K, Ritter C, Norman D, Aguilar R, Ogburn M. 2023.. Oyster reef habitat depends on environmental conditions and management across large spatial scales. . Mar. Ecol. Prog. Ser. 721::10317
    [Crossref] [Google Scholar]
  176. Tronske NB, Parker TA, Henderson HD, Burnaford JL, Zacherl DC. 2018.. Densities and zonation patterns of native and non-indigenous oysters in southern California bays. . Wetlands 38:(6):131326
    [Crossref] [Google Scholar]
  177. van den Burg SWK, Termeer EEW, Skirtun M, Poelman M, Veraart JA, Selnes T. 2022.. Exploring mechanisms to pay for ecosystem services provided by mussels, oysters and seaweeds. . Ecosyst. Serv. 54::101407
    [Crossref] [Google Scholar]
  178. van der Schatte Olivier A, Jones L, Vay LL, Christie M, Wilson J, Malham SK. 2020.. A global review of the ecosystem services provided by bivalve aquaculture. . Rev. Aquac. 12:(1):325
    [Crossref] [Google Scholar]
  179. Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ. 2014.. Coastal ocean acidification: the other eutrophication problem. . Estuar. Coast. Shelf Sci. 148::113
    [Crossref] [Google Scholar]
  180. Walles B, Fodrie FJ, Nieuwhof S, Jewell OJD, Herman PMJ, Ysebaert T. 2016.. Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: reply to Baggett et al. . Restor. Ecol. 24:(1):47
    [Crossref] [Google Scholar]
  181. Waltham NJ, Elliott M, Lee SY, Lovelock C, Duarte CM, et al. 2020.. UN Decade on Ecosystem Restoration 2021–2030—what chance for success in restoring coastal ecosystems?. Front. Mar. Sci. 7::71
    [Crossref] [Google Scholar]
  182. Wang T, Fan R, Cheng Q, Sun Z, Fan X, et al. 2020.. Intertidal zonation of the suminoe oyster Crassostrea ariakensis and the kumamoto oyster Crassostrea sikamea on the coast of the northern East China Sea. . J. Shellfish Res. 39:(1):3141
    [Crossref] [Google Scholar]
  183. Wasson K, Gossard DJ, Gardner L, Hain PR, Zabin CJ, et al. 2020.. A scientific framework for conservation aquaculture: a case study of oyster restoration in central California. . Biol. Conserv. 250::108745
    [Crossref] [Google Scholar]
  184. Wasson K, Hughes BB, Berriman JS, Chang AL, Deck AK, et al. 2016.. Coast-wide recruitment dynamics of Olympia oysters reveal limited synchrony and multiple predictors of failure. . Ecology 97:(12):350316
    [Crossref] [Google Scholar]
  185. Webster MS, Colton MA, Darling ES, Armstrong J, Pinsky ML, et al. 2017.. Who should pick the winners of climate change?. Trends Ecol. Evol. 32:(3):16773
    [Crossref] [Google Scholar]
  186. Wellman EH, Baillie CJ, Puckett BJ, Donaher SE, Trackenberg SN, Gittman RK. 2022.. Reef design and site hydrodynamics mediate oyster restoration and marsh stabilization outcomes. . Ecol. Appl. 32:(2):e2506
    [Crossref] [Google Scholar]
  187. Wernberg T, Thomsen MS, Baum JK, Bishop MJ, Bruno JF, et al. 2024.. Impacts of climate change on marine foundation species. . Annu. Rev. Mar. Sci. 16::24782
    [Crossref] [Google Scholar]
  188. Wiberg PL, Taube SR, Ferguson AE, Kremer MR, Reidenbach MA. 2019.. Wave attenuation by oyster reefs in shallow coastal bays. . Estuaries Coasts 42:(2):33147
    [Crossref] [Google Scholar]
  189. Wight NA, Suzuki J, Vadopalas B, Friedman CS. 2009.. Development and optimization of quantitative PCR assays to aid Ostrea lurida Carpenter 1864 restoration efforts. . J. Shellfish Res. 28:(1):3341
    [Crossref] [Google Scholar]
  190. Williams BR, McAfee D, Connell SD. 2022.. Oyster larvae swim along gradients of sound. . J. Appl. Ecol. 59:(7):181524
    [Crossref] [Google Scholar]
  191. Williams BR, McAfee D, Connell SD. 2023.. Combining ecology and technology to kick-start oyster reef restoration. . Restor. Ecol. 31:(8):e13975
    [Crossref] [Google Scholar]
  192. Windle AE, Poulin SK, Johnston DW, Ridge JT. 2019.. Rapid and accurate monitoring of intertidal oyster reef habitat using unoccupied aircraft systems and structure from motion. . Remote Sens. 11:(20):2394
    [Crossref] [Google Scholar]
  193. Windle AE, Puckett B, Huebert KB, Knorek Z, Johnston DW, Ridge JT. 2022.. Estimation of intertidal oyster reef density using spectral and structural characteristics derived from unoccupied aircraft systems and structure from motion photogrammetry. . Remote Sens. 14:(9):2163
    [Crossref] [Google Scholar]
  194. Windle AE, Silsbe GM. 2021.. Evaluation of unoccupied aircraft system (UAS) remote sensing reflectance retrievals for water quality monitoring in coastal waters. . Front. Environ. Sci. 9::674247
    [Crossref] [Google Scholar]
  195. Wu X, Xiao S, Yu Z. 2013.. Mitochondrial DNA and morphological identification of Crassostrea zhanjiangensis sp. nov. (Bivalvia: Ostreidae): a new species in Zhanjiang, China. . Aquat. Living Resour. 26:(4):27380
    [Crossref] [Google Scholar]
  196. Yokouchi K, Ito H, Togawa M, Ueda K, Kakehi S. 2022.. Larval occurrence and environmental factors associated with spawning of Pacific oyster Crassostrea gigas in Matsushima Bay, Japan. . Fish. Oceanogr. 31:(6):64152
    [Crossref] [Google Scholar]
  197. Zacherl DC, Moreno A, Crossen S. 2015.. Exploring restoration methods for the Olympia oyster Ostrea lurida Carpenter, 1864: effects of shell bed thickness and shell deployment methods on shell cover, oyster recruitment, and oyster density. . J. Shellfish Res. 34:(3):81930
    [Crossref] [Google Scholar]
  198. zu Ermgassen PSE, Gair JR, Jarvis B, Geselbracht L, Birch A, et al. 2024.. Using an ecosystem service model to inform restoration planning: a spatially explicit oyster filtration model for Pensacola Bay, Florida. . Conserv. Sci. Pract. 6:(2):e13061
    [Crossref] [Google Scholar]
  199. zu Ermgassen PSE, Grabowski JH, Gair JR, Powers SP. 2016a.. Quantifying fish and mobile invertebrate production from a threatened nursery habitat. . J. Appl. Ecol. 53:(2):596606
    [Crossref] [Google Scholar]
  200. zu Ermgassen PSE, Hancock B, DeAngelis B, Greene J, Schuster E, et al. 2016b.. Setting Objectives for Oyster Habitat Restoration Using Ecosystem Services: A Manager's Guide. Arlington, VA:: Nat. Conserv.
    [Google Scholar]
  201. zu Ermgassen PSE, Spalding MD, Blake B, Coen LD, Dumbauld B, et al. 2012a.. Historical ecology with real numbers: past and present extent and biomass of an imperilled estuarine habitat. . Proc. R. Soc. B 279:(1742):3393400
    [Crossref] [Google Scholar]
  202. zu Ermgassen PSE, Spalding MD, Grizzle RE, Brumbaugh RD. 2012b.. Quantifying the loss of a marine ecosystem service: filtration by the eastern oyster in US estuaries. . Estuaries Coasts 36:(1):3643
    [Crossref] [Google Scholar]
  203. zu Ermgassen PSE, Thurstan RH, Corrales J, Alleway H, Carranza A, et al. 2020.. The benefits of bivalve reef restoration: a global synthesis of underrepresented species. . Aquat. Conserv. Mar. Freshw. Ecosyst. 30:(11):205065
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040423-023007
Loading
/content/journals/10.1146/annurev-marine-040423-023007
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error