1932

Abstract

Sediments covering Arctic continental shelves are uniquely impacted by ice processes. Delivery of sediments is generally limited to the summer, when rivers are ice free, permafrost bluffs are thawing, and sea ice is undergoing its seasonal retreat. Once delivered to the coastal zone, sediments follow complex pathways to their final depocenters—for example, fluvial sediments may experience enhanced seaward advection in the spring due to routing under nearshore sea ice; during the open-water season, boundary-layer transport may be altered by strong stratification in the ocean due to ice melt; during the fall storm season, sediments may be entrained into sea ice through the production of anchor ice and frazil; and in the winter, large ice keels more than 20 m tall plow the seafloor (sometimes to seabed depths of 1–2 m), creating a type of physical mixing that dwarfs the decimeter-scale mixing from bioturbation observed in lower-latitude shelf systems. This review summarizes the work done on subtidal sediment dynamics over the last 50 years in Arctic shelf systems backed by soft-sediment coastlines and suggests directions for future sediment studies in a changing Arctic. Reduced sea ice, increased wave energy, and increased sediment supply from bluffs (and possibly rivers) will likely alter marine sediment dynamics in the Arctic now and into the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040423-023827
2025-01-16
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-040423-023827.html?itemId=/content/journals/10.1146/annurev-marine-040423-023827&mimeType=html&fmt=ahah

Literature Cited

  1. Ackermann NL, Shen HT, Sanders B. 1994.. Experimental studies of sediment enrichment of Arctic ice covers due to wave action and frazil entrainment. . J. Geophys. Res. Oceans 99:(C4):776170
    [Crossref] [Google Scholar]
  2. Albatal A, Stark N. 2017.. Rapid sediment mapping and in situ geotechnical characterization in challenging aquatic areas. . Limnol. Oceanogr. Methods 15:(8):690705
    [Crossref] [Google Scholar]
  3. Alkire MB, Trefry JH. 2006.. Transport of spring floodwater from rivers under ice to the Alaskan Beaufort Sea. . J. Geophys. Res. Oceans 111:(C12):2005JC003446
    [Crossref] [Google Scholar]
  4. Allard M, Michaud Y, Ruz MH, Héquette A. 1998.. Ice foot, freeze-thaw of sediments, and platform erosion in a subarctic microtidal environment, Manitounuk Strait, northern Quebec, Canada. . Can. J. Earth Sci. 35:(9):96579
    [Crossref] [Google Scholar]
  5. Angelopoulos M, Overduin PP, Miesner F, Grigoriev MN, Vasiliev AA. 2020.. Recent advances in the study of Arctic submarine permafrost. . Permafr. Periglac. Process. 31:(3):44253
    [Crossref] [Google Scholar]
  6. Arden R, Wigle T. 1972.. Dynamics of ice formation in the upper Niagara River. . In International Symposium on the Role of Snow and Ice in Hydrology, Banff, Alberta , Vol. 2, pp. 1296313. Paris:: UN Educ. Sci. Cult. Organ.
    [Google Scholar]
  7. Arenson LU, Springman SM. 2005.. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0°C. . Can. Geotech. J. 42:(2):43142
    [Crossref] [Google Scholar]
  8. Arnborg L, Walker HJ, Peippo J. 1967.. Suspended load in the Colville River, Alaska, 1962. . Geogr. Ann. A 49:(2–4):13144
    [Crossref] [Google Scholar]
  9. Barnes PW, Minkler PW. 1982.. Sedimentation in the vicinity of a causeway groin; Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  10. Barnes PW, Rearic DM, Reimnitz E. 1984.. Ice gouging characteristics and processes. . In The Alaskan Beaufort Sea: Ecosystems and Environments, ed. PW Barnes, DM Schell, E Reimnitz , pp. 185212. Amsterdam:: Elsevier
    [Google Scholar]
  11. Barnes PW, Reimnitz E. 1973.. Shore fast ice cover and its influence on currents and sediment along coast of northern Alaska. . Eos Trans. AGU 54:(11):1108 ( Abstr. )
    [Google Scholar]
  12. Barnes PW, Reimnitz E. 1979.. Ice gouge obliteration and sediment redistribution event: 1977–1978, Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  13. Barnes PW, Reimnitz E, Fox D. 1982.. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea. , Alaska. J. Sediment. Res. 52:(2):493502
    [Google Scholar]
  14. Barnes PW, Reimnitz E, Ross R. 1980.. Nearshore surficial sediment textures, Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  15. Barnes PW, Reiss TE. 1983.. Erosion and migration of an artificial sand and gravel island, Niakuk III, Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  16. Barnhart KR, Anderson RS, Overeem I, Wobus C, Clow GD, Urban FE. 2014.. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. . J. Geophys. Res. Earth Surf. 119:(5):115579
    [Crossref] [Google Scholar]
  17. Barrette P. 2011.. Offshore pipeline protection against seabed gouging by ice: an overview. . Cold Reg. Sci. Technol. 69:(1):320
    [Crossref] [Google Scholar]
  18. Barry R, Moritz RE, Rogers J. 1979.. The fast ice regimes of the Beaufort and Chukchi Sea coasts, Alaska. . Cold Reg. Sci. Technol. 1:(2):12952
    [Crossref] [Google Scholar]
  19. Baskaran M. 2011.. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. . J. Environ. Radioact. 102:(5):50013
    [Crossref] [Google Scholar]
  20. Baskaran M, Naidu A. 1995.. 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, east Chukchi Sea, Alaskan Arctic. . Geochim. Cosmochim. Acta 59:(21):443548
    [Crossref] [Google Scholar]
  21. Batchelor C, Dowdeswell J, Pietras J. 2014.. Evidence for multiple Quaternary ice advances and fan development from the Amundsen Gulf cross-shelf trough and slope, Canadian Beaufort Sea margin. . Mar. Pet. Geol. 52::12543
    [Crossref] [Google Scholar]
  22. Bauch HA, Kassens H, Erlenkeuser H, Grootes PM, Thiede J. 1999.. Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene. . Boreas 28:(1):194204
    [Crossref] [Google Scholar]
  23. Bauch HA, Mueller-Lupp T, Taldenkova E, Spielhagen RF, Kassens H, et al. 2001.. Chronology of the Holocene transgression at the North Siberian margin. . Glob. Planet. Change 31:(1–4):12539
    [Crossref] [Google Scholar]
  24. Becker D, Jefferies M, Crooks J, Been K. 2006.. Geology, characterization and properties of Beaufort Sea clays. . In Characterization and Engineering Properties of Natural Soils, ed. TS Tan, KK Phoon, DW Hight, S Leroueil , pp. 185591. London:: CRC
    [Google Scholar]
  25. Bilici C, Stark N. 2019.. Performance of a novel sediment sampler as an add-on unit for portable free-fall penetrometers: combining in situ geotechnical testing with sediment sampling. . Limnol. Oceanogr. Methods 17:(2):16376
    [Crossref] [Google Scholar]
  26. Bornhold BD. 1975.. Suspended matter in the southern Beaufort Sea. Tech. Rep. 25b, Beaufort Sea Proj., Victoria, Can:.
    [Google Scholar]
  27. Brilli N. 2022.. Influence of geotechnical properties on sediment dynamics, erodibility, and geomorphodynamics in coastal environments based on field measurements. PhD Thesis, Va. Tech, Blacksburg:
    [Google Scholar]
  28. Cameron G. 2019.. Mass-failure complexes on the central Beaufort slope, offshore Northwest Territories. Rep., Geol. Surv. Can., Ottawa:
    [Google Scholar]
  29. Carmack EC, Macdonald RW. 2002.. Oceanography of the Canadian shelf of the Beaufort Sea: a setting for marine life. . Arctic 55:(5):2945
    [Crossref] [Google Scholar]
  30. Chan NH, Langer M, Juhls B, Rettelbach T, Overduin P, et al. 2023.. An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures. . Earth Surface Dyn. 11:(2):25985
    [Crossref] [Google Scholar]
  31. Coakley B, Brumley K, Lebedeva-Ivanova N, Mosher D. 2016.. Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time. . J. Geol. Soc. 173:(6):96787
    [Crossref] [Google Scholar]
  32. Cooper C. 2023.. Modeling the effects of sea ice on Arctic delta evolution: a case study on the Colville River delta, AK. MS Thesis, Univ. N.C., Chapel Hill:
    [Google Scholar]
  33. Cooper LW, Larsen IL, Grebmeier JM, Moran SB. 2005.. Detection of rapid deposition of sea ice-rafted material to the Arctic Ocean benthos using the cosmogenic tracer 7Be. . Deep-Sea Res. II 52:(24–26):345261
    [Google Scholar]
  34. Costello MJ, Cheung A, De Hauwere N. 2010.. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries. . Environ. Sci. Technol. 44:(23):882128
    [Crossref] [Google Scholar]
  35. Crawford A, Stroeve J, Smith A, Jahn A. 2021.. Arctic open-water periods are projected to lengthen dramatically by 2100. . Commun. Earth Environ. 2:(1):109
    [Crossref] [Google Scholar]
  36. Darby DA, Myers WB, Jakobsson M, Rigor I. 2011.. Modern dirty sea ice characteristics and sources: the role of anchor ice. . J. Geophys. Res. Oceans 116:(C9):C09008
    [Crossref] [Google Scholar]
  37. Darby DA, Ortiz J, Polyak L, Lund S, Jakobsson M, Woodgate R. 2009.. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi–Alaskan margin sediments. . Glob. Planet. Change 68:(1–2):5872
    [Crossref] [Google Scholar]
  38. Darby DA, Polyak L, Bauch HA. 2006.. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas—a review. . Prog. Oceanogr. 71:(2–4):12944
    [Crossref] [Google Scholar]
  39. Dayal U. 1980.. Free fall penetrometer: a performance evaluation. . Appl. Ocean Res. 2:(1):3943
    [Crossref] [Google Scholar]
  40. Dethleff D. 2005.. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. . J. Geophys. Res. Oceans 110:(C7):C07009. Correction . 2005.. J. Geophys. Res. Oceans 110:(C10):C10099
    [Google Scholar]
  41. Dethleff D, Kuhlmann G. 2009.. Entrainment of fine-grained surface deposits into new ice in the southwestern Kara Sea, Siberian Arctic. . Cont. Shelf Res. 29:(4):691701
    [Crossref] [Google Scholar]
  42. Dinter DA. 1982.. Holocene marine sediments on the middle and outer continental shelf of the Beaufort Sea north of Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  43. Dinter DA. 1985.. Quaternary sedimentation of the Alaskan Beaufort shelf: influence of regional tectonics, fluctuating sea levels, and glacial sediment sources. . Tectonophysics 114:(1–4):13361
    [Crossref] [Google Scholar]
  44. Doxaran D, Devred E, Babin M. 2015.. A 50% increase in the mass of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years. . Biogeosciences 12:(11):355165
    [Crossref] [Google Scholar]
  45. Doxaran D, Ehn J, Bélanger S, Matsuoka A, Hooker S, Babin M. 2012.. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. . Biogeosciences 9:(8):321329
    [Crossref] [Google Scholar]
  46. Duchkov A. 2006.. Characteristics of permafrost in Siberia. . In Advances in the Geological Storage of Carbon Dioxide: International Approaches to Reduce Anthropogenic Greenhouse Gas Emissions, ed. S Lombardi, L Altunina, S Beaubien , pp. 8191. Dordrecht, Neth:.: Springer
    [Google Scholar]
  47. Dunton KH, Reimnitz E, Schonberg S. 1982.. An Arctic kelp community in the Alaskan Beaufort Sea. . Arctic 36:(4):46584
    [Google Scholar]
  48. Eicken H, Gradinger R, Gaylord A, Mahoney A, Rigor I, Melling H. 2005.. Sediment transport by sea ice in the Chukchi and Beaufort Seas: increasing importance due to changing ice conditions?. Deep-Sea Res. II 52:(24–26):3281302
    [Google Scholar]
  49. Eicken H, Kolatschek J, Freitag J, Lindemann F, Kassens H, Dmitrenko I. 2000.. A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice. . Geophys. Res. Lett. 27:(13):191922
    [Crossref] [Google Scholar]
  50. Eidam EF. 2023.. Seabed grain-size data from Harrison Bay (Beaufort Sea continental shelf), Alaska 2021. Dataset, Arctic Data Cent. https://doi.org/10.18739/A2JW86P50
    [Google Scholar]
  51. Eidam EF, Cooper C, Heath A, Nienhuis JH, Seim H. 2023.. Summertime sediment-transport dynamics on an Arctic continental shelf. . Paper presented at the AGU Annual Meeting, San Francisco:, Dec. 11–15
    [Google Scholar]
  52. Eidam EF, Thomson J, Malito JG, Hošeková L. 2024.. Morphology and sediment dynamics of blossom shoals at Icy Cape, Alaska. . J. Geophys. Res. Earth Surf. 129:(4):e2023JF007398
    [Crossref] [Google Scholar]
  53. Erikson LH, Gibbs AE, Richmond BM, Storlazzi CD, Jones BM, Ohman K. 2020.. Changing storm conditions in response to projected 21st century climate change and the potential impact on an Arctic barrier island–lagoon system—a pilot study for Arey Island and Lagoon, eastern Arctic Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  54. Feng D, Gleason CJ, Lin P, Yang X, Pan M, Ishitsuka Y. 2021.. Recent changes to Arctic river discharge. . Nat. Commun. 12:(1):6917
    [Crossref] [Google Scholar]
  55. Forbes DL. 2019.. Arctic deltas and estuaries: a Canadian perspective. . In Coasts and Estuaries: The Future, ed. E Wolanski, JW Day, M Elliott, R Ramachandran , pp. 1247. Amsterdam:: Elsevier
    [Google Scholar]
  56. Forbes DL, Taylor RB. 1994.. Ice in the shore zone and the geomorphology of cold coasts. . Prog. Phys. Geogr. Earth Environ. 18:(1):5989
    [Crossref] [Google Scholar]
  57. Foucher A, Chaboche PA, Sabatier P, Evrard O. 2021.. A worldwide meta-analysis (1977–2020) of sediment core dating using fallout radionuclides including 137Cs and 210Pbxs. . Earth Syst. Sci. Data 13:(10):495166
    [Crossref] [Google Scholar]
  58. Frederick J, Mota A, Tezaur I, Bull D. 2021.. A thermo-mechanical terrestrial model of Arctic coastal erosion. . J. Comput. Appl. Math. 397::113533
    [Crossref] [Google Scholar]
  59. French HM. 2017.. The Periglacial Environment. Chichester, UK:: Wiley & Sons
    [Google Scholar]
  60. French-McCay DP, Tajalli-Bakhsh T, Jayko K, Spaulding ML, Li Z. 2017.. Validation of oil spill transport and fate modeling in Arctic ice. . Arctic Sci. 4:(1):7197
    [Google Scholar]
  61. Gebhardt A, Gaye-Haake B, Unger D, Lahajnar N, Ittekkot V. 2005.. A contemporary sediment and organic carbon budget for the Kara Sea shelf (Siberia). . Mar. Geol. 220:(1–4):83100
    [Crossref] [Google Scholar]
  62. Gibbs AE, Nolan M, Richmond BM, Snyder AG, Erikson LH. 2019.. Assessing patterns of annual change to permafrost bluffs along the North Slope coast of Alaska using high-resolution imagery and elevation models. . Geomorphology 336::15264
    [Crossref] [Google Scholar]
  63. Gibbs AE, Richmond BM. 2017.. National assessment of shoreline change—summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska, US-Canadian border to Icy Cape. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  64. Gordeev V. 2006.. Fluvial sediment flux to the Arctic Ocean. . Geomorphology 80:(1–2):94104
    [Crossref] [Google Scholar]
  65. Hanna AJ, Allison MA, Bianchi TS, Marcantonio F, Goff JA. 2014.. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta. , Alaska. Cont. Shelf Res. 74::1124
    [Crossref] [Google Scholar]
  66. Harms I, Karcher M, Dethleff D. 2000.. Modelling Siberian river runoff—implications for contaminant transport in the Arctic Ocean. . J. Mar. Syst. 27:(1–3):95115
    [Crossref] [Google Scholar]
  67. Heath A, Eidam EF, Cooper C. 2024.. Sediment deposition on the Alaskan Beaufort Shelf: a geochronology study in a changing Arctic environment. . Paper presented at the Ocean Sciences Meeting, New Orleans, LA, Feb:. 1823
    [Google Scholar]
  68. Hequette A, Barnes PW. 1990.. Coastal retreat and shoreface profile variations in the Canadian Beaufort Sea. . Mar. Geol. 91:(1–2):11332
    [Crossref] [Google Scholar]
  69. Hequette A, Desrosiers M, Barnes PW. 1995.. Sea ice scouring on the inner shelf of the southeastern Canadian Beaufort Sea. . Mar. Geol. 128:(3–4):20119
    [Crossref] [Google Scholar]
  70. Hequette A, Desrosiers M, Hill PR, Forbes DL. 2001.. The influence of coastal morphology on shoreface sediment transport under storm-combined flows, Canadian Beaufort Sea. . J. Coast. Res. 17:(3):50716
    [Google Scholar]
  71. Herman Y, ed. 1974.. Marine Geology and Oceanography of the Arctic Seas. New York:: Springer
    [Google Scholar]
  72. Hill PR, Blasco SM, Harper JR, Fissel DB. 1991.. Sedimentation on the Canadian Beaufort Shelf. . Cont. Shelf. Res. 11:(8–10):82142
    [Crossref] [Google Scholar]
  73. Hill PR, Mudie PJ, Moran K, Blasco SM. 1985.. A sea-level curve for the Canadian Beaufort Shelf. . Can. J. Earth Sci. 22:(10):138393
    [Crossref] [Google Scholar]
  74. Hillaire-Marcel C, de Vernal A, Rong Y, Roberge P, Song T. 2022.. Challenging radiocarbon chronostratigraphies in central Arctic ocean sediment. . Geophys. Res. Lett. 49:(21):e2022GL100446
    [Crossref] [Google Scholar]
  75. Hoffecker JF, Elias SA, Potapova O. 2020.. Arctic Beringia and Native American origins. . PaleoAmerica 6:(2):15868
    [Crossref] [Google Scholar]
  76. Holland DM. 2013.. The marine cryosphere. . In Ocean Circulation and Climate: A 21st Century Perspective, ed. G Siedler, SM Griffies, J Gould, JA Church , pp. 41342. Int. Geophys . 103. Amsterdam:: Elsevier
    [Google Scholar]
  77. Holmes ML, Creager JS. 1974.. Holocene history of the Laptev Sea continental shelf. . In Marine Geology and Oceanography of the Arctic Seas, ed. Y Herman , pp. 21129. New York:: Springer
    [Google Scholar]
  78. Holmes RM, McClelland JW, Peterson BJ, Shiklomanov IA, Shiklomanov AI, et al. 2002.. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. . Glob. Biogeochem. Cycles 16:(4):45114
    [Crossref] [Google Scholar]
  79. Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, et al. 2012.. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. . Estuaries Coasts 35:(2):36982
    [Crossref] [Google Scholar]
  80. Huck P, Light B, Eicken H, Haller M. 2007.. Mapping sediment-laden sea ice in the Arctic using AVHRR remote-sensing data: atmospheric correction and determination of reflectances as a function of ice type and sediment load. . Remote Sens. Environ. 107:(3):48495
    [Crossref] [Google Scholar]
  81. Ingram RG, Larouche P. 1987.. Variability of an under-ice river plume in Hudson Bay. . J. Geophys. Res. Oceans 92:(C9):954147
    [Crossref] [Google Scholar]
  82. Irrgang AM, Bendixen M, Farquharson LM, Baranskaya AV, Erikson LH, et al. 2022. Drivers, dynamics and impacts of changing Arctic coasts. . Nat. Rev. Earth Environ. 3:(1):3954
    [Crossref] [Google Scholar]
  83. Ivanov V, Piskun A. 1999.. Distribution of river water and suspended sediment loads in the deltas of rivers in the basins of the Laptev and East-Siberian Seas. . In Land–Ocean Systems in the Siberian Arctic: Dynamics and History, ed. H Kassens, HA Bauch, IA Dmitrenko, H Eicken, HW Hubberten, et al. , pp. 23950. Berlin:: Springer
    [Google Scholar]
  84. Jones BM, Arp CD, Jorgenson MT, Hinkel KM, Schmutz JA, Flint PL. 2009.. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. . Geophys. Res. Lett. 36:(3):2008GL036205
    [Crossref] [Google Scholar]
  85. Jorgenson MT, Brown J. 2005.. Classification of the Alaskan Beaufort Sea coast and estimation of carbon and sediment inputs from coastal erosion. . Geo-Mar. Lett. 25:(2–3):6980
    [Crossref] [Google Scholar]
  86. Jorgenson MT, Yoshikawa K, Kanevskiy M, Shur Y, Romanovsky V, et al. 2008.. Permafrost characteristics of Alaska. . In Ninth International Conference on Permafrost, Vol. 3, ed. DL Kane, KM Hinkel , pp. 12122. Fairbanks: Univ. Alsk. Fairbanks
    [Google Scholar]
  87. Kasper JL, Weingartner TJ. 2015.. The spreading of a buoyant plume beneath a landfast ice cover. . J. Phys. Oceanogr. 45:(2):47894
    [Crossref] [Google Scholar]
  88. Keigwin LD, Donnelly JP, Cook MS, Driscoll NW, Brigham-Grette J. 2006.. Rapid sea-level rise and Holocene climate in the Chukchi Sea. . Geology 34:(10):86164
    [Crossref] [Google Scholar]
  89. Kempema E, Reimnitz E. 1989.. Sea ice sediment entrainment and rafting in the Arctic. . J. Sed. Res. 59:(2):30817
    [Google Scholar]
  90. Kempema E, Reimnitz E, Clayton J Jr., Payne J. 1993.. Interactions of frazil and anchor ice with sedimentary particles in a flume. . Cold Reg. Sci. Technol. 21:(2):13749
    [Crossref] [Google Scholar]
  91. Kleiber HP, Niessen F, Weiel D. 2001.. The Late Quaternary evolution of the western Laptev Sea continental margin, Arctic Siberia—implications from sub-bottom profiling. . Glob. Planet. Change 31:(1–4):10524
    [Crossref] [Google Scholar]
  92. Kokin O, Usyagina I, Meshcheriakov N, Ananiev R, Arkhipov V, et al. 2023.. Pb-210 dating of ice scour in the Kara Sea. . J. Mar. Sci. Eng. 11:(7):1404
    [Crossref] [Google Scholar]
  93. Kolesnik A, Selyutin S, Kolesnik O, Bosin A, Astakhov A, et al. 2023.. An efficient approach to the sequence stratigraphic study of monotonous holocene sediments from the Arctic shelf. . Dokl. Earth Sci. 512::102431
    [Crossref] [Google Scholar]
  94. Korte S, Gieschen R, Stolle J, Goseberg N. 2020.. Physical modelling of Arctic coastlines—progress and limitations. . Water 12:(8):2254
    [Crossref] [Google Scholar]
  95. Kovacs A, Mellor M. 1974.. Sea ice morphology and ice as a geologic agent in the southern Beaufort Sea. . In The Coast and Shelf of the Beaufort Sea, ed. JC Reed, JE Sater , pp. 11361. Arlington, VA:: Arctic Inst.
    [Google Scholar]
  96. Kurfurst P, Dallimore S. 1989.. Geological and geotechnical conditions of the Beaufort Sea coastal zone, Arctic Canada. . In Coastal Lowlands: Geology and Geotechnology, ed. WJM van der Linden, SAPL Cloetingh, JPK Kaasschieter, WJE van de Graaff, J Vandenbergh, JAM van der Gun , pp. 12129. Dordrecht, Neth:.: Springer
    [Google Scholar]
  97. Kuzyk ZZA, Gobeil C, Macdonald RW. 2013. 210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging. . Glob. Biogeochem. Cycles 27:(2):42239
    [Crossref] [Google Scholar]
  98. Lantuit H, Overduin PP, Couture N, Wetterich S, Aré F, et al. 2012.. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. . Estuaries Coasts 35:(2):383400
    [Crossref] [Google Scholar]
  99. Lantuit H, Overduin PP, Wetterich S. 2013.. Recent progress regarding permafrost coasts. . Permafr. Periglac. Process. 24:(2):12030
    [Crossref] [Google Scholar]
  100. Lauzon R, Piliouras A, Rowland JC. 2019.. Ice and permafrost effects on delta morphology and channel dynamics. . Geophys. Res. Lett. 46:(12):657482
    [Crossref] [Google Scholar]
  101. Lee HJ, Winters WJ, Chamberlain EJ. 1985.. Geotechnical properties and freeze/thaw consolidation behavior of sediment from the Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  102. Li MZ, King EL, Forest A, Melling H, Osborne PD. 2020.. Synthesis of near-bed currents and sediment mobility on the Beaufort Shelf edge and upper slope, offshore Northwest Territories. Open File 8579 , Geol. Surv. Can., Ottawa:
    [Google Scholar]
  103. Li MZ, Wu Y, Hannah CG, Perrie WA. 2021.. Seabed disturbance and sediment mobility due to tidal current and waves on the continental shelves of Canada. . Can. J. Earth Sci. 58:(11):120932
    [Crossref] [Google Scholar]
  104. Light B, Eicken H, Maykut G, Grenfell T. 1998.. The effect of included participates on the spectral albedo of sea ice. . J. Geophys. Res. Oceans 103:(C12):2773952
    [Crossref] [Google Scholar]
  105. Lim Y, Levy JS, Goudge TA, Kim W. 2019.. Ice cover as a control on the morphodynamics and stratigraphy of Arctic deltas. . Geology 47:(5):399402
    [Crossref] [Google Scholar]
  106. Lindemann F, Hölemann J, Korablev A, Zachek A. 1999.. Particle entrainment into newly forming sea ice—freeze-up studies in October 1995. . In Land–Ocean Systems in the Siberian Arctic: Dynamics and History, ed. H Kassens, HA Bauch, IA Dmitrenko, H Eicken, HW Hubberten, et al. , pp. 11323. Berlin:: Springer
    [Google Scholar]
  107. Lionas A. 2023.. Repair vessel en route to fix Quintillion's fiberoptic cable. Nome Nugget:, Aug. 4. http://nomenugget.com/news/repair-vessel-en-route-fix-quintillion's-fiberoptic-cable
    [Google Scholar]
  108. Macdonald R, Solomon S, Cranston R, Welch H, Yunker M, Gobeil C. 1998.. A sediment and organic carbon budget for the Canadian Beaufort Shelf. . Mar. Geol. 144:(4):25573
    [Crossref] [Google Scholar]
  109. Malito J, Eidam EF, Nienhuis JH. 2022.. Increasing wave energy moves Arctic continental shelves toward a new future. . J. Geophys. Res. Oceans 127:(9):e2021JC018374
    [Crossref] [Google Scholar]
  110. Mann DH, Groves P, Kunz ML, Reanier RE, Gaglioti BV. 2013.. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. . Quat. Sci. Rev. 70::91108
    [Crossref] [Google Scholar]
  111. Martens S, Eshraghian A, Rogers B. 2009.. Geotechnical conditions and ice loading for an offshore drilling platform in the Canadian Beaufort Sea. Paper presented at GeoHalifax2009, Halifax, Can., Sept:. 2023
    [Google Scholar]
  112. Martin S. 1981.. Frazil ice in rivers and oceans. . Annu. Rev. Fluid Mech. 13::37997
    [Crossref] [Google Scholar]
  113. McClelland JW, Holmes R, Dunton K, Macdonald R. 2012.. The Arctic Ocean estuary. . Estuaries Coasts 35::35368
    [Crossref] [Google Scholar]
  114. McManus DA, Kelley JC, Creager JS. 1969.. Continental shelf sedimentation in an Arctic environment. . Geol. Soc. Am. Bull. 80:(10):196184
    [Crossref] [Google Scholar]
  115. Milliman JD, Farnsworth KL. 2013.. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  116. Mulligan RP, Perrie W, Solomon S. 2010.. Dynamics of the Mackenzie River plume on the inner Beaufort shelf during an open water period in summer. . Estuar. Coast. Shelf Sci. 89:(3):21420
    [Crossref] [Google Scholar]
  117. Myers R. 1996.. 1990 Beaufort Sea ice scour repetitive mapping program. Rep. 129 , Environ. Stud. Res. Fund, Ottawa, Can:.
    [Google Scholar]
  118. Naidu AS, Mowatt TC. 1983.. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. . Geol. Soc. Am. Bull. 94:(7):841
    [Crossref] [Google Scholar]
  119. Naidu AS, Mowatt TC, Rawlinson SE, Weiss HV. 1984.. Sediment characteristics of the lagoons of the Alaskan Beaufort Sea coast, and evolution of Simpson Lagoon. . In The Alaskan Beaufort Sea: Ecosystems and Environments, ed. PW Barnes, DM Schell, E Reimnitz , pp. 27592. Amsterdam:: Elsevier
    [Google Scholar]
  120. Nederhoff K, Erikson L, Engelstad A, Pearson S. 2023.. Numerical model characterization of sediment transport potentials pre- and post-construction of an artificial island in Foggy Island Bay, Alaska. . In The Proceedings of the Coastal Sediments 2023, ed. P Wang, E Royer, JD Rosati , pp. 48796. Singapore:: World Sci.
    [Google Scholar]
  121. Nielsen DM, Pieper P, Barkhordarian A, Overduin P, Ilyina T, et al. 2022.. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. . Nat. Clim. Change 12:(3):26370
    [Crossref] [Google Scholar]
  122. Nürnberg D, Wollenburg I, Dethleff D, Eicken H, Kassens H, et al. 1994.. Sediments in Arctic sea ice: implications for entrainment, transport and release. . Mar. Geol. 119:(3–4):185214
    [Crossref] [Google Scholar]
  123. O'Brien M, Macdonald R, Melling H, Iseki K. 2006.. Particle fluxes and geochemistry on the Canadian Beaufort Shelf: implications for sediment transport and deposition. . Cont. Shelf. Res. 26:(1):4181
    [Crossref] [Google Scholar]
  124. Obu J, Lantuit H, Grosse G, Günther F, Sachs T, et al. 2017.. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. . Geomorphology 293::33146
    [Crossref] [Google Scholar]
  125. Ogorodov S. 2003.. The role of sea ice in the coastal zone dynamics of the Arctic seas. . Water Resour. 30:(5):50918
    [Crossref] [Google Scholar]
  126. Okkonen SR, Laney SR. 2021. Optical, structural and kinematic characteristics of freshwater plumes under landfast sea ice during the spring freshet in the Alaskan coastal Arctic. . J. Geophys. Res. Oceans 126:(12):e2021JC017549
    [Crossref] [Google Scholar]
  127. Osadchiev AA, Asadulin EE, Miroshnikov AY, Zavialov IB, Dubinina EO, Belyakova PA. 2019.. bottom sediments reveal inter-annual variability of interaction between the Ob and Yenisei Plumes in the Kara Sea. . Sci. Rep. 9:(1):18642
    [Crossref] [Google Scholar]
  128. Osborne PD, Forest A. 2016.. Sediment dynamics from coast to slope—southern Canadian Beaufort Sea. . J. Coast. Res. 75::53741
    [Crossref] [Google Scholar]
  129. Osterkamp TE. 2001.. Sub-sea permafrost. . In Encyclopedia of Ocean Sciences, ed. JH Steele, pp. 290212. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  130. Overduin PP, Strzelecki MC, Grigoriev MN, Couture N, Lantuit H, et al. 2014.. Coastal changes in the Arctic. . Geol. Soc. Lond. Spec. Publ. 388:(1):10329
    [Crossref] [Google Scholar]
  131. Overeem I, Nienhuis JH, Piliouras A. 2022.. Ice-dominated Arctic deltas. . Nat. Rev. Earth Environ. 3:(4):22540
    [Crossref] [Google Scholar]
  132. Paull CK, Dallimore SR, Jin YK, Caress DW, Lundsten E, et al. 2022.. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. . PNAS 119:(12):e2119105119
    [Crossref] [Google Scholar]
  133. Pfirman S, Wollenburg I, Thiede J, Lange MA. 1989.. Lithogenic sediment on Arctic pack ice: potential aeolian flux and contribution to deep sea sediments. . In Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport, ed. M Leinen, M Sarnthein , pp. 46393. Dordrecht, Neth:.: Springer
    [Google Scholar]
  134. Phillips RL, Barnes P, Hunter R, Reiss T, Rearic D. 1988.. Geologic investigations in the Chukchi Sea, 1984, NOAA ship SURVEYOR cruise. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  135. Phillips RL, Reiss TE. 1984.. Nearshore marine geologic investigations, Icy Cape to Wainwright, Northeast Chukchi Sea. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  136. Piliouras A, Lauzon R, Rowland JC. 2021.. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. . J. Geophys. Res. Earth Surf. 126:(4):e2020JF005706
    [Crossref] [Google Scholar]
  137. Polyak L, Bischof J, Ortiz JD, Darby DA, Channell JE, et al. 2009.. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. . Glob. Planet. Change 68:(1–2):517
    [Crossref] [Google Scholar]
  138. Qi J, Vermeer PA, Cheng G. 2006.. A review of the influence of freeze-thaw cycles on soil geotechnical properties. . Permafr. Periglac. Process. 17:(3):24552
    [Crossref] [Google Scholar]
  139. Rachold V, Are FE, Atkinson DE, Cherkashov G, Solomon SM. 2005.. Arctic coastal dynamics (ACD): an introduction. . Geo-Mar. Lett. 25:(2–3):6368
    [Crossref] [Google Scholar]
  140. Rachold V, Grigoriev MN, Are FE, Solomon S, Reimnitz E, et al. 2000.. Coastal erosion versus riverine sediment discharge in the Arctic Shelf seas. . Int. J. Earth Sci. 89:(3):45060
    [Crossref] [Google Scholar]
  141. Rearic DM. 1982.. Temporal and spatial character of newly formed ice gouges in eastern Harrison Bay, Alaska, 1977–1982. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  142. Rearic DM, Barnes PW, Reimnitz E. 1990.. Bulldozing and resuspension of shallow-shelf sediment by ice keels: implications for Arctic sediment transport trajectories. . Mar. Geol. 91:(1–2):13347
    [Crossref] [Google Scholar]
  143. Reimnitz E. 1987.. Anchor ice and bottom-freezing in high-latitude marine sedimentary environments: observations from the Alaskan Beaufort Sea. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  144. Reimnitz E. 2002.. Interaction of river discharge with sea ice in proximity of Arctic deltas: a review. . Polarforschung 70::12334
    [Google Scholar]
  145. Reimnitz E, Barnes P. 1974.. Sea-ice as a geologic agent on the Beaufort Sea shelf of Alaska. . In The Coast and Shelf of the Beaufort Sea, ed. JC Reed, JE Sater , pp. 30151. Arlington, VA:: Arctic Inst.
    [Google Scholar]
  146. Reimnitz E, Bruder KF. 1972.. River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, coast of Alaska. . Geol. Soc. Am. Bull. 83:(3):86166
    [Crossref] [Google Scholar]
  147. Reimnitz E, Graves SM, Barnes PW. 1985.. Beaufort Sea coastal erosion, shoreline evolution, and sediment flux. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  148. Reimnitz E, Kempema E. 1983.. High rates of bedload transport measured from infilling rate of large strudel-scour craters in the Beaufort Sea. , Alaska. Cont. Shelf. Res. 1:(3):23751
    [Crossref] [Google Scholar]
  149. Reimnitz E, Marincovich L Jr., McCormick M, Briggs W. 1992.. Suspension freezing of bottom sediment and biota in the northwest passage and implications for Arctic Ocean sedimentation. . Can. J. Earth Sci. 29:(4):693703
    [Crossref] [Google Scholar]
  150. Reimnitz E, Maurer D, Barnes P, Toimil L. 1977.. Some physical properties of shelf surface sediments, Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  151. Reimnitz E, McCormick M, McDougall K, Brouwers E. 1993.. Sediment export by ice rafting from a coastal polynya, Arctic Alaska, U.S.A. . Arctic Alpine Res. 25:(2):8398
    [Crossref] [Google Scholar]
  152. Reimnitz E, Rodeick CA, Wolf SC. 1974.. Strudel scour; a unique Arctic marine geologic phenomenon. . J. Sediment. Res. 44:(2):40920
    [Google Scholar]
  153. Reimnitz E, Toimil L, Barnes P. 1978.. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska. . Mar. Geol. 28:(3–4):179210
    [Crossref] [Google Scholar]
  154. Reimnitz E, Wolf SC, Rodeick CA. 1972.. Preliminary interpretation of seismic profiles in the Prudhoe Bay area, Beaufort Sea, Alaska. Rep., US Geol. Surv., Reston, VA:
    [Google Scholar]
  155. Regard V, Prémaillon M, Dewez TJB, Carretier S, Jeandel C, et al. 2022.. Rock coast erosion: an overlooked source of sediments to the ocean. Europe as an example. . Earth Planet. Sci. Lett. 579::117356
    [Crossref] [Google Scholar]
  156. Rember RD, Trefry JH. 2004.. Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic. . Geochim. Cosmochim. Acta 68:(3):47789
    [Crossref] [Google Scholar]
  157. Rudels B, Carmack E. 2022.. Arctic ocean water mass structure and circulation. . Oceanography 35:(3–4):5265
    [Google Scholar]
  158. Sættem J, Rise L, Rokoengen K. 1996.. Soil investigations, offshore mid Norway: a case study of glacial influence on geotechnical properties. . Glob. Planet. Change 12:(1–4):27185
    [Crossref] [Google Scholar]
  159. Saint-Ange F, Kuus P, Blasco S, Piper DJ, Clarke JH, MacKillop K. 2014.. Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada. . Mar. Geol. 355::13649
    [Crossref] [Google Scholar]
  160. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, et al. 2000.. Observational evidence of recent change in the northern high-latitude environment. . Clim. Change 46::159207
    [Crossref] [Google Scholar]
  161. Sherwood C. 2000.. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea. . J. Geophys. Res. Oceans 105:(C6):1406180
    [Crossref] [Google Scholar]
  162. Smedsrud LH. 2002.. A model for entrainment of sediment into sea ice by aggregation between frazil-ice crystals and sediment grains. . J. Glaciol. 48:(160):5161
    [Crossref] [Google Scholar]
  163. Smedsrud LH. 2003.. Formation of turbid ice during autumn freeze-up in the Kara Sea. . Polar Res. 22:(2):26786
    [Crossref] [Google Scholar]
  164. Stark N, Green B, Brilli N, Eidam EF, Franke KW, Markert K. 2022.. Geotechnical measurements for the investigation and assessment of Arctic coastal erosion—a review and outlook. . J. Mar. Sci. Eng. 10:(7):914
    [Crossref] [Google Scholar]
  165. Stark N, Radosavljevic B, Quinn B, Lantuit H. 2017.. Application of portable free-fall penetrometer for geotechnical investigation of Arctic nearshore zone. . Can. Geotech. J. 54:(1):3146
    [Crossref] [Google Scholar]
  166. Syvitski JP. 2002.. Sediment discharge variability in Arctic rivers: implications for a warmer future. . Polar Res. 21:(2):32330
    [Crossref] [Google Scholar]
  167. Tang S, Larouche P, Niemi A, Michel C. 2013.. Regional algorithms for remote-sensing estimates of total suspended matter in the Beaufort Sea. . Int. J. Remote Sens. 34:(19):656276
    [Crossref] [Google Scholar]
  168. Thomas MA, Mota A, Jones BM, Choens RC, Frederick JM, Bull DL. 2020.. Geometric and material variability influences stress states relevant to coastal permafrost bluff failure. . Front. Earth Sci. 8::143
    [Crossref] [Google Scholar]
  169. Undzis B, Moriarty J. 2024.. Variability in sediment dynamics on the Alaskan Beaufort Sea shelf during the open water season: a numerical modeling study. . Paper presented at the Ocean Sciences Meeting, New Orleans, LA, Feb:. 1823
    [Google Scholar]
  170. Vasiliev A, Kanevskiy M, Cherkashov G, Vanshtein B. 2005.. Coastal dynamics at the Barents and Kara Sea key sites. . Geo-Mar. Lett. 25::11020
    [Crossref] [Google Scholar]
  171. Waga H, Eicken H, Light B, Fukamachi Y. 2022.. A neural network-based method for satellite-based mapping of sediment-laden sea ice in the Arctic. . Remote Sens. Environ. 270::112861
    [Crossref] [Google Scholar]
  172. Walker HJ. 1974.. The Colville River and the Beaufort Sea: some interactions. . In The Coast and Shelf of the Beaufort Sea, ed. JC Reed, JE Sater , pp. 51340. Arlington, VA:: Arctic Inst.
    [Google Scholar]
  173. Warner JC, Armstrong B, He R, Zambon JB. 2010.. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. . Ocean Model. 35:(3):23044
    [Crossref] [Google Scholar]
  174. Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG. 2008.. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. . Comput. Geosci. 34:(10):1284306
    [Crossref] [Google Scholar]
  175. Wegner C, Holemann J, Dmitrenko I, Kirillov S, Kassens H. 2005.. Seasonal variations in Arctic sediment dynamics—evidence from 1-year records in the Laptev Sea (Siberian Arctic). . Glob. Planet. Change 48:(1–3):12640
    [Crossref] [Google Scholar]
  176. Wegner C, Wittbrodt K, Hölemann J, Janout M, Krumpen T, et al. 2017.. Sediment entrainment into sea ice and transport in the Transpolar Drift: a case study from the Laptev Sea in winter 2011/2012. . Cont. Shelf. Res. 141::110
    [Crossref] [Google Scholar]
  177. Zhang F, Wang J, Baskaran M, Zhong Q, Wang Y, et al. 2021.. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux. . Earth Syst. Sci. Data 13:(6):296394
    [Crossref] [Google Scholar]
  178. Zhang T, Li D, East AE, Walling DE, Lane S, et al. 2022.. Warming-driven erosion and sediment transport in cold regions. . Nat. Rev. Earth Environ. 3:(12):83251
    [Crossref] [Google Scholar]
  179. Zimmermann M, Erikson LH, Gibbs AE, Prescott MM, Escarzaga SM, et al. 2022.. Nearshore bathymetric changes along the Alaska Beaufort Sea coast and possible physical drivers. . Cont. Shelf. Res. 242::104745
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040423-023827
Loading
/content/journals/10.1146/annurev-marine-040423-023827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error