1932

Abstract

In recent years, our view of coastal ecosystems has expanded and come into greater focus. We are currently making more types of observations over larger areas and at higher frequencies than ever before. These advances are timely, as coastal ecosystems are facing increasing pressures from climate change and anthropogenic stressors. This article synthesizes recent literature on emerging technologies for coastal ecosystem monitoring, including satellite monitoring, aerial and underwater drones, in situ sensor networks, fiber optic systems, and community science observatories. We also describe how advances in artificial intelligence and deep learning underpin all these technologies by enabling insights to be drawn from increasingly large data volumes. Even with these recent advances, there are still major gaps in coastal ecosystem monitoring that must be addressed to manage coastal ecosystems during a period of accelerating global change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040523-020221
2025-01-16
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-040523-020221.html?itemId=/content/journals/10.1146/annurev-marine-040523-020221&mimeType=html&fmt=ahah

Literature Cited

  1. Allen B, Stokey R, Austin T, Forrester N, Goldsborough R, et al. 1997.. REMUS: a small, low cost AUV; system description, field trials and performance results. . In Oceans ’97: MTS/IEEE Conference Proceedings, Vol. 2, pp. 9941000. Piscataway, NJ:: IEEE
    [Google Scholar]
  2. Anderlini E, Parker GG, Thomas G. 2019.. Docking control of an autonomous underwater vehicle using reinforcement learning. . Appl. Sci. 9:(17):3456
    [Crossref] [Google Scholar]
  3. Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA, et al. 2021.. Marine harmful algal blooms (HABs) in the United States: history, current status and future trends. . Harmful Algae 102::101975
    [Crossref] [Google Scholar]
  4. Antoine D, Morel A, Gordon HR, Banzon VF, Evans RH. 2005.. Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. . J. Geophys. Res. Oceans 110:(6):C06009
    [Google Scholar]
  5. Bailey K, Steinberg C, Davies C, Galibert G, Hidas M, et al. 2019.. Coastal mooring observing networks and their data products: recommendations for the next decade. . Front. Mar. Sci. 6::180
    [Crossref] [Google Scholar]
  6. Ballard MS, Lee KM, Sagers JD, Venegas GR, McNeese AR, et al. 2020.. Application of acoustical remote sensing techniques for ecosystem monitoring of a seagrass meadow. . J. Acoust. Soc. Am. 147:(3):200219
    [Crossref] [Google Scholar]
  7. Beaton AD, Cardwell CL, Thomas RS, Sieben VJ, Legiret FE, et al. 2012.. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. . Environ. Sci. Technol. 46:(17):954856
    [Crossref] [Google Scholar]
  8. Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL, et al. 2006.. Climate-driven trends in contemporary ocean productivity. . Nature 444:(7120):75255
    [Crossref] [Google Scholar]
  9. Bell TW, Allen JG, Cavanaugh KC, Siegel DA. 2020a.. Three decades of variability in California's giant kelp forests from the Landsat satellites. . Remote Sens. Environ. 238::110811
    [Crossref] [Google Scholar]
  10. Bell TW, Cavanaugh KC, Saccomanno VR, Cavanaugh KC, Houskeeper HF, et al. 2023.. Kelpwatch: a new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. . PLOS ONE 18:(3):e0271477
    [Crossref] [Google Scholar]
  11. Bell TW, Nidzieko NJ, Siegel DA, Miller RJ, Cavanaugh KC, et al. 2020b.. The utility of satellites and autonomous remote sensing platforms for monitoring offshore aquaculture farms: a case study for canopy forming kelps. . Front. Mar. Sci. 7::1083
    [Crossref] [Google Scholar]
  12. Bell TW, Siegel DA. 2022.. Nutrient availability and senescence spatially structure the dynamics of a foundation species. . PNAS 119:(1):e2105135118
    [Crossref] [Google Scholar]
  13. Blaser L. 2014.. Old weather: approaching collections from a different angle. . In Crowdsourcing Our Cultural Heritage, ed. M Ridge , pp. 4556. London:: Routledge
    [Google Scholar]
  14. Bouffaut L, Taweesintananon K, Kriesell HJ, Rørstadbotnen RA, Potter JR, et al. 2022.. Eavesdropping at the speed of light: distributed acoustic sensing of baleen whales in the Arctic. . Front. Mar. Sci. 9::901348
    [Crossref] [Google Scholar]
  15. Boukabara SA, Krasnopolsky V, Stewart JQ, Maddy ES, Shahroudi N, Hoffman RN. 2019.. Leveraging modern artificial intelligence for remote sensing and NWP benefits and challenges. . Bull. Am. Meteorol. Soc. 100:(12):ES47391
    [Crossref] [Google Scholar]
  16. Bunting P, Rosenqvist A, Hilarides L, Lucas RM, Thomas N, et al. 2022.. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. . Remote Sens. 14:(15):3657
    [Crossref] [Google Scholar]
  17. Cai L, McGuire NE, Hanlon R, Mooney TA, Girdhar Y. 2023.. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles. . Int. J. Comput. Vis. 131:(6):140627
    [Crossref] [Google Scholar]
  18. Cavanaugh KC, Cavanaugh KC, Bell TW, Hockridge EG. 2021.. An automated method for mapping giant kelp canopy dynamics from UAV. . Front. Environ. Sci. 8::587354
    [Crossref] [Google Scholar]
  19. Cavanaugh KC, Cavanaugh KC, Pawlak CC, Bell TW, Saccomanno VR. 2023.. CubeSats show persistence of bull kelp refugia amidst a regional collapse in California. . Remote Sens. Environ. 290::113521
    [Crossref] [Google Scholar]
  20. Chapuis L, Williams B, Gordon TAC, Simpson SD. 2021.. Low-cost action cameras offer potential for widespread acoustic monitoring of marine ecosystems. . Ecol. Indic. 129::107957
    [Crossref] [Google Scholar]
  21. Chirayath V, Instrella R. 2019.. Fluid lensing and machine learning for centimeter-resolution airborne assessment of coral reefs in American Samoa. . Remote Sens. Environ. 235::111475
    [Crossref] [Google Scholar]
  22. Claustre H, Johnson KS, Takeshita Y. 2020.. Observing the global ocean with Biogeochemical-Argo. . Annu. Rev. Mar. Sci. 12::2348
    [Crossref] [Google Scholar]
  23. Connolly TP, Kirincich AR. 2019.. High-resolution observations of subsurface fronts and alongshore bottom temperature variability over the inner shelf. . J. Geophys. Res. Ocean. 124:(1):593614
    [Crossref] [Google Scholar]
  24. Crowell J. 2013.. Design challenges of a next generation small AUV. . In 2013 OCEANS—San Diego. Piscataway, NJ:: IEEE. https://ieeexplore.ieee.org/abstract/document/6740945
    [Google Scholar]
  25. Cruz C, McGuinness K, Perrin PM, O'Connell J, Martin JR, Connolly J. 2023.. Improving the mapping of coastal invasive species using UAV imagery and deep learning. . Int. J. Remote Sens. 44:(18):571335
    [Crossref] [Google Scholar]
  26. Das J, Py F, Harvey JBJ, Ryan JP, Gellene A, et al. 2015.. Data-driven robotic sampling for marine ecosystem monitoring. . Int. J. Robot. Res. 34:(12):143552
    [Crossref] [Google Scholar]
  27. Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NS. 2017.. Imaging flow cytometry for phytoplankton analysis. . Methods 1122017::188200
    [Crossref] [Google Scholar]
  28. Davidson NC. 2014.. How much wetland has the world lost? Long-term and recent trends in global wetland area. . Mar. Freshw. Res. 65:(10):93441
    [Crossref] [Google Scholar]
  29. Dierssen HM. 2010.. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. . PNAS 107:(40):1707378
    [Crossref] [Google Scholar]
  30. Dierssen HM, Bracher A, Brando V, Loisel H, Ruddick K. 2020.. Data needs for hyperspectral detection of algal diversity across the globe. . Oceanography 33:(1):7479
    [Crossref] [Google Scholar]
  31. Dierssen HM, Gierach M, Guild LS, Mannino A, Salisbury J, et al. 2023.. Synergies between NASA's hyperspectral aquatic missions PACE, GLIMR, and SBG: opportunities for new science and applications. . J. Geophys. Res. Biogeosci. 128:(10):e2023JG007574
    [Crossref] [Google Scholar]
  32. Doherty K, Flaspohler G, Roy N, Girdhar Y. 2018.. Approximate distributed spatiotemporal topic models for multi-robot terrain characterization. . In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 373037. Piscataway, NJ:: IEEE
    [Google Scholar]
  33. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, et al. 2012.. Climate change impacts on marine ecosystems. . Annu. Rev. Mar. Sci. 4::1137
    [Crossref] [Google Scholar]
  34. Dos Santos MM, De Giacomo GG, Drews PLJ, Botelho SSC. 2019.. Underwater sonar and aerial images data fusion for robot localization. . In 2019 19th International Conference on Advanced Robotics, pp. 57883. Piscataway, NJ:: IEEE
    [Google Scholar]
  35. Edgar GJ, Bates AE, Bird TJ, Jones AH, Kininmonth S, et al. 2016.. New approaches to marine conservation through the scaling up of ecological data. . Annu. Rev. Mar. Sci. 8::43561
    [Crossref] [Google Scholar]
  36. Edgar GJ, Stuart-Smith RD. 2014.. Systematic global assessment of reef fish communities by the Reef Life Survey program. . Sci. Data 1::140007
    [Crossref] [Google Scholar]
  37. Ford DA, Grossberg S, Rinaldi G, Menon PP, Palmer MR, et al. 2022.. A solution for autonomous, adaptive monitoring of coastal ocean ecosystems: integrating ocean robots and operational forecasts. . Front. Mar. Sci. 9::1067174
    [Crossref] [Google Scholar]
  38. Friess DA, Yando ES, Abuchahla GMO, Adams JB, Cannicci S, et al. 2020.. Mangroves give cause for conservation optimism, for now. . Curr. Biol. 30:(4):R15354
    [Crossref] [Google Scholar]
  39. Garcia-Soto C, Seys JJC, Zielinski O, Busch JA, Luna SI, et al. 2021.. Marine citizen science: current state in Europe and new technological developments. . Front. Mar. Sci. 8::621472
    [Crossref] [Google Scholar]
  40. Girdhar Y, McGuire N, Cai L, Jamieson S, McCammon S, et al. 2023.. CUREE: a Curious Underwater Robot for Ecosystem Exploration. . In 2023 IEEE International Conference on Robotics and Automation, pp. 1141117. Piscataway, NJ:: IEEE
    [Google Scholar]
  41. Glenn SM, Dickey TD, Parker B, Boicourt W. 2000.. Long-term real-time coastal ocean observation networks. . Oceanography 13:(1):2434
    [Crossref] [Google Scholar]
  42. Glover HE, Wengrove ME, Holman R. 2024.. Measuring hydrodynamics and exploring nearshore processes using distributed sensing of fiber-optic cable strain. . Coast. Eng. 190::104487
    [Crossref] [Google Scholar]
  43. Ha NT, Manley-Harris M, Pham TD, Hawes I. 2020.. A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New Zealand. . Remote Sens. 12:(3):355
    [Crossref] [Google Scholar]
  44. Hallegraeff GM, Anderson DM, Belin C, Bottein MYD, Bresnan E, et al. 2021.. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. . Commun. Earth Environ. 2::117
    [Crossref] [Google Scholar]
  45. Hamilton SE, Casey D. 2016.. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). . Glob. Ecol. Biogeogr. 25:(6):72938
    [Crossref] [Google Scholar]
  46. Harley MD, Kinsela MA. 2022.. CoastSnap: a global citizen science program to monitor changing coastlines. . Cont. Shelf Res. 245::104796
    [Crossref] [Google Scholar]
  47. Haskins J, Endris C, Thomsen AS, Gerbl F, Fountain MC, Wasson K. 2021.. UAV to inform restoration: a case study from a California tidal marsh. . Front. Environ. Sci. 9::642906
    [Crossref] [Google Scholar]
  48. Hausner MB, Suárez F, Glander KE, de Giesen N, Selker JS, Tyler SW. 2011.. Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data. . Sensors 11:(11):1085979
    [Crossref] [Google Scholar]
  49. He Q, Silliman BR. 2019.. Climate change, human impacts, and coastal ecosystems in the Anthropocene. . Curr. Biol. 29:(19):R102135
    [Crossref] [Google Scholar]
  50. Hendricks A, Mackie CM, Luy E, Sonnichsen C, Smith J, et al. 2023.. Compact and automated eDNA sampler for in situ monitoring of marine environments. . Sci. Rep. 13::5210
    [Crossref] [Google Scholar]
  51. Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, et al. 2008.. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. . Remote Sens. Environ. 112:(11):403447
    [Crossref] [Google Scholar]
  52. Hladik C, Schalles J, Alber M. 2013.. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. . Remote Sens. Environ. 139::31830
    [Crossref] [Google Scholar]
  53. Hodgson G. 1999.. A global assessment of human effects on coral reefs. . Mar. Pollut. Bull. 38:(5):34555
    [Crossref] [Google Scholar]
  54. Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. 2017.. Coral reef ecosystems under climate change and ocean acidification. . Front. Mar. Sci. 4::158
    [Crossref] [Google Scholar]
  55. Hollinger GA, Sukhatme GS. 2014.. Sampling-based robotic information gathering algorithms. . Int. J. Robot. Res. 33:(9):127187
    [Crossref] [Google Scholar]
  56. Hwang J, Bose N, Fan S. 2019.. AUV adaptive sampling methods: a review. . Appl. Sci. 9:(15):3145
    [Crossref] [Google Scholar]
  57. Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. 2020.. A review of machine learning applications in wildfire science and management. . Environ. Rev. 28:(4):478505
    [Crossref] [Google Scholar]
  58. Jamieson S, Fathian K, Khosoussi K, How JP, Girdhar Y. 2021.. Multi-robot distributed semantic mapping in unfamiliar environments through online matching of learned representations. . In 2021 IEEE International Conference on Robotics and Automation, pp. 858793. Piscataway, NJ:: IEEE
    [Google Scholar]
  59. Jones FM, Allen C, Arteta C, Arthur J, Black C, et al. 2018.. Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project. . Sci. Data 5::180124
    [Crossref] [Google Scholar]
  60. Kavanaugh MT, Bell T, Catlett D, Cimino MA, Doney SC, et al. 2021.. Satellite remote sensing and the marine biodiversity observation network: current science and future steps. . Oceanography 34:(2):6279
    [Crossref] [Google Scholar]
  61. Klemas V. 2011.. Remote sensing techniques for studying coastal ecosystems: an overview. . J. Coast. Res. 27:(1):217
    [Google Scholar]
  62. Konar B, Iken K. 2018.. The use of unmanned aerial vehicle imagery in intertidal monitoring. . Deep-Sea Res. II 147::7986
    [Google Scholar]
  63. Kramer SJ, Siegel DA, Maritorena S, Catlett D. 2022.. Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales. . Remote Sens. Environ. 270::112879
    [Crossref] [Google Scholar]
  64. Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ, et al. 2016.. Global patterns of kelp forest change over the past half-century. . PNAS 113:(48):1378590
    [Crossref] [Google Scholar]
  65. Kudela RM, Anderson C, Ruhl H. 2021.. The California Harmful Algal Bloom Monitoring and Alert Program: a success story for coordinated ocean observing. . Oceanography 34:(4):8485
    [Crossref] [Google Scholar]
  66. Kuhlman MJ, Jones D, Sofge DA, Hollinger GA, Gupta SK. 2021.. Collaborating underwater vehicles conducting large-scale geospatial tasks. . IEEE J. Ocean. Eng. 46:(3):785807
    [Crossref] [Google Scholar]
  67. Land-Zandstra AM, Devilee JLA, Snik F, Buurmeijer F, van den Broek JM. 2016.. Citizen science on a smartphone: participants’ motivations and learning. . Public Underst. Sci. 25:(1):4560
    [Crossref] [Google Scholar]
  68. Lassalle G, Ferreira MP, Cué La Rosa LE, Del'Papa Moreira Scafutto R, de Souza Filho CR. 2023.. Advances in multi- and hyperspectral remote sensing of mangrove species: a synthesis and study case on airborne and multisource spaceborne imagery. . ISPRS J. Photogramm. Remote Sens. 195::298312
    [Crossref] [Google Scholar]
  69. Li J, Knapp DE, Fabina NS, Kennedy EV, Larsen K, et al. 2020.. A global coral reef probability map generated using convolutional neural networks. . Coral Reefs 39:(6):180515
    [Crossref] [Google Scholar]
  70. Li J, Knapp DE, Schill SR, Roelfsema C, Phinn S, et al. 2019.. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. . Remote Sens. Environ. 232::111302
    [Crossref] [Google Scholar]
  71. Li X, Bellerby R, Craft C, Widney SE. 2018.. Coastal wetland loss, consequences, and challenges for restoration. . Anthr. Coasts 1:(1):115
    [Crossref] [Google Scholar]
  72. Lindseth AV, Lobel PS. 2018.. Underwater soundscape monitoring and fish bioacoustics: a review. . Fishes 3:(3):36
    [Crossref] [Google Scholar]
  73. Lindsey NJ, Dawe TC, Ajo-Franklin JB. 2019.. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. . Science 366:(6469):11037
    [Crossref] [Google Scholar]
  74. Lindstrom E, Gunn J, Fischer A, McCurdy A, Glover L, Alverson K, et al. 2012.. A framework for ocean observing. Rep. , UN Educ. Sci. Cult. Organ., Paris:
    [Google Scholar]
  75. Lintott CJ, Schawinski K, Slosar A, Land K, Bamford S, et al. 2008.. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. . Mon. Not. R. Astron. Soc. 389:(3):117989
    [Crossref] [Google Scholar]
  76. Liu S, Li X, Gao M, Cai Y, Nian R, et al. 2019.. Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. . In OCEANS 2018 MTS/IEEE Charleston. Piscataway, NJ:: IEEE. https://doi.org/10.1109/OCEANS.2018.8604658
    [Google Scholar]
  77. Liu Y, Kerkering H, Weisberg RH. 2015.. Introduction to Coastal Ocean Observing Systems. Amsterdam:: Elsevier
    [Google Scholar]
  78. Luczkovich JJ, Mann DA, Rountree RA. 2008.. Passive acoustics as a tool in fisheries science. . Trans. Am. Fish. Soc. 137:(2):53341
    [Crossref] [Google Scholar]
  79. Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018.. The state of the world's beaches. . Sci. Rep. 8::6641
    [Crossref] [Google Scholar]
  80. Lumini A, Nanni L. 2019.. Deep learning and transfer learning features for plankton classification. . Ecol. Inform. 51::3343
    [Crossref] [Google Scholar]
  81. Lynn T, Alber M, Shalack J, Mishra DR. 2024.. Utilizing repeat UAV imagery to evaluate the spatiotemporal patterns and environmental drivers of wrack in a coastal Georgia salt marsh. . Estuaries Coasts 47:(1):189200
    [Crossref] [Google Scholar]
  82. Lyons MB, Murray NJ, Kennedy EV, Kovacs EM, Castro-Sanguino C, et al. 2024.. New global area estimates for coral reefs from high-resolution mapping. . Cell Rep. Sustain. 1:(2):100015
    [Google Scholar]
  83. Lyons MB, Roelfsema CM, Kennedy EV, Kovacs EM, Borrego-Acevedo R, et al. 2020.. Mapping the world's coral reefs using a global multiscale earth observation framework. . Remote Sens. Ecol. Conserv. 6:(4):55768
    [Crossref] [Google Scholar]
  84. Malthus TJ, Ohmsen R, van der Woerd HJ. 2020.. An evaluation of citizen science smartphone apps for inland water quality assessment. . Remote Sens. 12:(10):1578
    [Crossref] [Google Scholar]
  85. Marquez L, Fragkopoulou E, Cavanaugh KC, Houskeeper HF, Assis J. 2022.. Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery. . Sci. Rep. 12::22196
    [Crossref] [Google Scholar]
  86. McCammon S, Marcon dos Santos G, Frantz M, Welch TP, Best G, et al. 2021.. Ocean front detection and tracking using a team of heterogeneous marine vehicles. . J. Field Robot. 38:(6):85481
    [Crossref] [Google Scholar]
  87. McClain CR. 2009.. A decade of satellite ocean color observations. . Annu. Rev. Mar. Sci. 1::1942
    [Crossref] [Google Scholar]
  88. McFall BC, Young DL, Whitmeyer SJ, Buscombe D, Stever SN, Walker BM. 2023.. Sandsnap: creating a nationwide beach grain size database by engaging citizen scientists. . In Coastal Sediments 2023, ed. P Wang, E Royer, JD Rosati , pp. 90618. Singapore:: World Sci.
    [Google Scholar]
  89. McKenzie LJ, Nordlund LM, Jones BL, Cullen-Unsworth LC, Roelfsema C, Unsworth RKF. 2020.. The global distribution of seagrass meadows. . Environ. Res. Lett. 15:(7):074041
    [Crossref] [Google Scholar]
  90. Mcowen CJ, Weatherdon LV, Van Bochove JW, Sullivan E, Blyth S, et al. 2017.. A global map of saltmarshes. . Biodivers. Data J. 5:(1):11764
    [Crossref] [Google Scholar]
  91. Miloslavich P, Bax NJ, Simmons SE, Klein E, Appeltans W, et al. 2018.. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. . Glob. Change Biol. 24:(6):241633
    [Crossref] [Google Scholar]
  92. Miya M. 2022.. Environmental DNA metabarcoding: a novel method for biodiversity monitoring of marine fish communities. . Annu. Rev. Mar. Sci. 14::16185
    [Crossref] [Google Scholar]
  93. Mora-Soto A, Palacios M, Macaya E, Gómez I, Huovinen P, et al. 2020.. A high-resolution global map of giant kelp (Macrocystis pyrifera) forests and intertidal green algae (Ulvophyceae) with Sentinel-2 imagery. . Remote Sens. 12:(4):694
    [Crossref] [Google Scholar]
  94. Muller-Karger FE, Hestir E, Ade C, Turpie K, Roberts DA, et al. 2018.. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. . Ecol. Appl. 28:(3):74960
    [Crossref] [Google Scholar]
  95. Murfitt SL, Allan BM, Bellgrove A, Rattray A, Young MA, Ierodiaconou D. 2017.. Applications of unmanned aerial vehicles in intertidal reef monitoring. . Sci. Rep. 7::10259
    [Crossref] [Google Scholar]
  96. Murphy KP. 2012.. Machine Learning: A Probabilistic Perspective. Cambridge, MA:: MIT Press
    [Google Scholar]
  97. Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, et al. 2019.. The global distribution and trajectory of tidal flats. . Nature 565:(7738):22225
    [Crossref] [Google Scholar]
  98. Nasir N, Kansal A, Alshaltone O, Barneih F, Sameer M, et al. 2022.. Water quality classification using machine learning algorithms. . J. Water Process Eng. 48::102920
    [Crossref] [Google Scholar]
  99. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, et al. 2018.. Longer and more frequent marine heatwaves over the past century. . Nat. Commun. 9::1324
    [Crossref] [Google Scholar]
  100. Olson D, Anderson J. 2021.. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. . Agron. J. 113:(2):97192
    [Crossref] [Google Scholar]
  101. Opdal AF, Andersen T, Hessen DO, Lindemann C, Aksnes DL. 2023.. Tracking freshwater browning and coastal water darkening from boreal forests to the Arctic Ocean. . Limnol. Oceanogr. Lett. 8:(4):61119
    [Crossref] [Google Scholar]
  102. Osborn DA. 2003.. LiMPETS: long-term monitoring program and experiential training for students. . In Oceans 2003: Celebrating the Past…Teaming Toward the Future, Vol. 4, pp. 226573. Piscataway, NJ:: IEEE
    [Google Scholar]
  103. Otero P, Velasco E, Valeiras J. 2024.. Ecological informatics surveillance of coastal biodiversity through social network monitoring. . Ecol. Inform. 80::102515
    [Crossref] [Google Scholar]
  104. Palomeras N, Hurtos N, Carreras M, Ridao P. 2018.. Autonomous mapping of underwater 3-D structures: from view planning to execution. . IEEE Robot. Autom. Lett. 3:(3):196571
    [Crossref] [Google Scholar]
  105. Pelaez Quiñones JD, Sladen A, Ponte A, Lior I, Ampuero J-P, et al. 2023.. High resolution seafloor thermometry for internal wave and upwelling monitoring using distributed acoustic sensing. . Sci. Rep. 13::17459
    [Crossref] [Google Scholar]
  106. Pennings SC, Bertness MD. 2000.. Salt marsh communities. . In Marine Community Ecology, ed. MD Bertness, SD Gaines, ME Hay , pp. 289316. Sunderland, MA:: Sinauer
    [Google Scholar]
  107. Peters DPC, Havstad KM, Cushing J, Tweedie C, Fuentes O, Villanueva-Rosales N. 2014.. Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology. . Ecosphere 5:(6):115
    [Crossref] [Google Scholar]
  108. Phillips AB, Gold N, Linton N, Harris CA, Richards E, et al. 2017.. Agile design of low-cost autonomous underwater vehicles. . In OCEANS 2017—Aberdeen. Piscataway, NJ:: IEEE. https://doi.org/10.1109/OCEANSE.2017.8084772
    [Google Scholar]
  109. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J. 2008.. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). . Remote Sens. Environ. 112:(8):341325
    [Crossref] [Google Scholar]
  110. Pieretti N, Danovaro R. 2020.. Acoustic indexes for marine biodiversity trends and ecosystem health: acoustic indexes in marine environments. . Philos. Trans. R. Soc. B 375:(1814):20190447
    [Crossref] [Google Scholar]
  111. Pinton D, Canestrelli A, Fantuzzi L. 2020a.. A UAV-based dye-tracking technique to measure surface velocities over tidal channels and salt marshes. . J. Mar. Sci. Eng. 8:(5):364
    [Crossref] [Google Scholar]
  112. Pinton D, Canestrelli A, Wilkinson B, Ifju P, Ortega A. 2020b.. A new algorithm for estimating ground elevation and vegetation characteristics in coastal salt marshes from high-resolution UAV-based LiDAR point clouds. . Earth Surf. Process. Landf. 45:(14):3687701
    [Crossref] [Google Scholar]
  113. Reid EC, DeCarlo TM, Cohen AL, Wong GTF, Lentz SJ, et al. 2019.. Internal waves influence the thermal and nutrient environment on a shallow coral reef. . Limnol. Oceanogr. 64:(5):194965
    [Crossref] [Google Scholar]
  114. Rérolle VMC, Achterberg EP, Ribas-Ribas M, Kitidis V, Brown I, et al. 2018.. High resolution pH measurements using a lab-on-chip sensor in surface waters of northwest European shelf seas. . Sensors 18:(8):2622
    [Crossref] [Google Scholar]
  115. Roarty H, Cook T, Hazard L, Harlan J, Cosoli S, et al. 2019.. The global high frequency radar network. . Front. Mar. Sci. 6::164
    [Crossref] [Google Scholar]
  116. Robinson KL, Luo JY, Sponaugle S, Guigand C, Cowen RK. 2017.. A tale of two crowds: public engagement in plankton classification. . Front. Mar. Sci. 4::82
    [Google Scholar]
  117. Roquet BF, Boehme L, Block B, Charrassin J, Costa D, et al. 2017.. Ocean observations using tagged animals. . Oceanography 30:(2):139
    [Crossref] [Google Scholar]
  118. Rosa TL, Piecho-Santos AM, Vettor R, Soares CG. 2021.. Review and prospects for autonomous observing systems in vessels of opportunity. . J. Mar. Sci. Eng. 9:(4):366
    [Crossref] [Google Scholar]
  119. Rosenthal IS, Byrnes JEK, Cavanaugh KC, Bell TW, Harder B, et al. 2018.. Floating forests: quantitative validation of citizen science data generated from consensus classifications. . arXiv:1801.08522 [physics.soc-ph]
  120. Rosenthal IS, Simon MN, Trouille L, Byrnes JEK. 2024.. A citizen science approach to teaching climate change in introductory-level undergraduate general science courses. . J. Geosci. Educ. 72:(3):23344
    [Crossref] [Google Scholar]
  121. Rossiter T, Furey T, McCarthy T, Stengel DB. 2020.. Application of multiplatform, multispectral remote sensors for mapping intertidal macroalgae: a comparative approach. . Aquat. Conserv. Mar. Freshw. Ecosyst. 30:(8):1595612
    [Crossref] [Google Scholar]
  122. Saccomanno VR, Bell T, Pawlak C, Stanley CK, Cavanaugh KC, et al. 2023.. Using unoccupied aerial vehicles to map and monitor changes in emergent kelp canopy after an ecological regime shift. . Remote Sens. Ecol. Conserv. 9:(1):6275
    [Crossref] [Google Scholar]
  123. Schofield O, Arnone RA, Bissett WP, Dickey TD, Davis CO, et al. 2004.. Watercolors in the coastal zone: What can we see?. Oceanography 17:(2):2431
    [Crossref] [Google Scholar]
  124. Schofield O, Creed L, Graver J, Haldeman C, Kerfoot J, et al. 2014.. Slocum Gliders: robust and ready. . J. Field Robot. 24:(6):47385
    [Crossref] [Google Scholar]
  125. Scholin C, Everlove C, Harris A, Alvarado N, Birch J, et al. 2009.. Remote detection of marine microbes, small invertebrates, harmful algae, and biotoxins using the Environmental Sample Processor (ESP). . Oceanography 22:(2):15867
    [Crossref] [Google Scholar]
  126. Shields J, Pizarro O, Williams SB. 2020.. Towards adaptive benthic habitat mapping. . In 2020 IEEE International Conference on Robotics and Automation, pp. 926370. Piscataway, NJ:: IEEE
    [Google Scholar]
  127. Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya E, et al. 2019.. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. . Nat. Geosci. 12:(1):4045
    [Crossref] [Google Scholar]
  128. Sinnett G, Davis KA, Lucas AJ, Giddings SN, Reid E, et al. 2020.. Distributed temperature sensing for oceanographic applications. . J. Atmos. Ocean. Technol. 37:(11):198797
    [Crossref] [Google Scholar]
  129. Smale DA. 2020.. Impacts of ocean warming on kelp forest ecosystems. . New Phytol. 225:(4):144754
    [Crossref] [Google Scholar]
  130. Smith MM, Thomson J, Baker MG, Abbott RE, Davis J. 2023.. Observations of ocean surface wave attenuation in sea ice using seafloor cables. . Geophys. Res. Lett. 50:(20):e2023GL105243
    [Crossref] [Google Scholar]
  131. Srinivasan M, Tsontos V. 2023.. Satellite altimetry for ocean and coastal applications: a review. . Remote Sens. 15:(16):3939
    [Crossref] [Google Scholar]
  132. Stoeckle MY, Das Mishu M, Charlop-Powers Z. 2020.. Improved environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. . Front. Mar. Sci. 7::226
    [Crossref] [Google Scholar]
  133. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S. 2009.. eBird: a citizen-based bird observation network in the biological sciences. . Biol. Conserv. 142:(10):228292
    [Crossref] [Google Scholar]
  134. Thomas J, Hazard L, Jensen RE, Otero M, Terrill E, et al. 2015.. How high-resolution wave observations and HF radar-derived surface currents are critical to decision-making for maritime operations. . In Coastal Ocean Observing Systems, ed. Y Liu, H Kerkering, RH Weisberg , pp. 15978. Amsterdam:: Elsevier
    [Google Scholar]
  135. Thompson DR, Hochberg EJ, Asner GP, Green RO, Knapp DE, et al. 2017.. Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures. . Remote Sens. Environ. 200::1830
    [Crossref] [Google Scholar]
  136. Varadharajan C, Appling AP, Arora B, Christianson DS, Hendrix VC, et al. 2022.. Can machine learning accelerate process understanding and decision-relevant predictions of river water quality?. Hydrol. Process. 36:(4):e14565
    [Crossref] [Google Scholar]
  137. Veettil BK. 2022.. Current status of mangrove vegetation in Batticaloa Lagoon, Sri Lanka, using high-resolution satellite imagery. . J. Coast. Conserv. 26:(6):74
    [Crossref] [Google Scholar]
  138. Vos K, Splinter KD, Harley MD, Simmons JA, Turner IL. 2019.. CoastSat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. . Environ. Model. Softw. 122::104528
    [Crossref] [Google Scholar]
  139. Wang M, Hu C, Barnes BB, Mitchum G, Lapointe B, Montoya JP. 2019.. The great Atlantic Sargassum belt. . Science 365:(6448):8387
    [Crossref] [Google Scholar]
  140. Wang ZA, Moustahfid H, Mueller AV, Michel APM, Mowlem M, et al. 2019.. Advancing observation of ocean biogeochemistry, biology, and ecosystems with cost-effective in situ sensing technologies. . Front. Mar. Sci. 6::519
    [Crossref] [Google Scholar]
  141. Watson AJ, Schuster U, Shutler JD, Holding T, Ashton IGC, et al. 2020.. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. . Nat. Commun. 11::4422
    [Crossref] [Google Scholar]
  142. Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF. 2019.. Status and trends for the world's kelp forests. . In World Seas: An Environmental Evaluation, Vol. 3: Ecological Issues and Environmental Impacts, ed. C Sheppard , pp. 5778. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  143. Willard J, Jia X, Xu S, Steinbach M, Kumar V. 2022.. Integrating scientific knowledge with machine learning for engineering and environmental systems. . ACM Comput. Surv. 55:(4):66
    [Google Scholar]
  144. Williams EF, Ugalde A, Martins HF, Becerril CE, Callies J, et al. 2023.. Fiber-optic observations of internal waves and tides. . J. Geophys. Res. Ocean. 128:(9):113
    [Crossref] [Google Scholar]
  145. Wüest RO, Zimmermann NE, Zurell D, Alexander JM, Fritz SA, et al. 2020.. Macroecology in the age of big data—where to go from here?. J. Biogeogr. 47:(1):112
    [Crossref] [Google Scholar]
  146. Wyngaard J, Barbieri L, Thomer A, Adams J, Sullivan D, et al. 2019.. Emergent challenges for science sUAS data management: fairness through community engagement and best practices development. . Remote Sens. 11:(15):1797
    [Crossref] [Google Scholar]
  147. Yang B, Patsavas MC, Byrne RH, Ma J. 2014.. Seawater pH measurements in the field: a DIY photometer with 0.01 unit pH accuracy. . Mar. Chem. 160::7581
    [Crossref] [Google Scholar]
  148. Zhu JJ, Yang M, Ren ZJ. 2023.. Machine learning in environmental research: common pitfalls and best practices. . Environ. Sci. Technol. 57:(46):1767189
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040523-020221
Loading
/content/journals/10.1146/annurev-marine-040523-020221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error