1932

Abstract

One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely behave as a single evolutionary unit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040623-090847
2025-01-16
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-040623-090847.html?itemId=/content/journals/10.1146/annurev-marine-040623-090847&mimeType=html&fmt=ahah

Literature Cited

  1. Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, et al. 2021.. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. . Commun. Biol. 4::117
    [Crossref] [Google Scholar]
  2. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, et al. 2004.. Fine-scale phylogenetic architecture of a complex bacterial community. . Nature 430:(6999):55154
    [Crossref] [Google Scholar]
  3. Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. 2011.. Genomic island variability facilitates Prochlorococcus-virus coexistence. . Nature 474:(7353):6048
    [Crossref] [Google Scholar]
  4. Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, et al. 2017.. Diel cycling and long-term persistence of viruses in the ocean's euphotic zone. . PNAS 114:(43):1144651
    [Crossref] [Google Scholar]
  5. Baumann L, Baumann P, Mandel M, Allen RD. 1972.. Taxonomy of aerobic marine eubacteria. . J. Bacteriol. 110:(1):40229
    [Crossref] [Google Scholar]
  6. Bellas CM, Hackl T, Plakolb M-S, Koslová A, Fischer MG, Sommaruga R. 2023.. Large-scale invasion of unicellular eukaryotic genomes by integrating DNA viruses. . PNAS 120:(16):e2300465120
    [Crossref] [Google Scholar]
  7. Bellas CM, Schroeder DC, Edwards A, Barker G, Anesio AM. 2020.. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. . Nat. Commun. 11::4403
    [Crossref] [Google Scholar]
  8. Breitbart M, Rohwer F. 2005.. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol. 13:(6):27884
    [Crossref] [Google Scholar]
  9. Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GDD. 2014.. Running with the Red Queen: the role of biotic conflicts in evolution. . Proc. R. Soc. B 281:(1797):20141382
    [Crossref] [Google Scholar]
  10. Caro-Quintero A, Konstantinidis KT. 2012.. Bacterial species may exist, metagenomics reveal. . Environ. Microbiol. 14:(2):34755
    [Crossref] [Google Scholar]
  11. Castelle CJ, Banfield JF. 2018.. Major new microbial groups expand diversity and alter our understanding of the tree of life. . Cell 172:(6):118197
    [Crossref] [Google Scholar]
  12. Cohan FM. 2016.. Bacterial speciation: genetic sweeps in bacterial species. . Curr. Biol. 26:(3):R11215
    [Crossref] [Google Scholar]
  13. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, et al. 2006.. Genomic islands and the ecology and evolution of Prochlorococcus. . Science 311:(5768):176870
    [Crossref] [Google Scholar]
  14. Cordero OX, Polz MF. 2014.. Explaining microbial genomic diversity in light of evolutionary ecology. . Nat. Rev. Microbiol. 12:(4):26373
    [Crossref] [Google Scholar]
  15. Dittmar T, Lennartz ST, Buck-Wiese H, Hansell DA, Santinelli C, et al. 2021.. Enigmatic persistence of dissolved organic matter in the ocean. . Nat. Rev. Earth Environ. 2:(8):57083
    [Crossref] [Google Scholar]
  16. Duponchel S, Fischer MG. 2019.. Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses. . PLOS Pathog. 15:(3):e1007592
    [Crossref] [Google Scholar]
  17. Fischer MG, Hackl T. 2016.. Host genome integration and giant virus-induced reactivation of the virophage mavirus. . Nature 540:(7632):28891
    [Crossref] [Google Scholar]
  18. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. 2011.. Statistical structure of host-phage interactions. . PNAS 108:(28):E28897
    [Crossref] [Google Scholar]
  19. Flores CO, Valverde S, Weitz JS. 2013.. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. . ISME J. 7:(3):52032
    [Crossref] [Google Scholar]
  20. Fraser JS, Maxwell KL, Davidson AR. 2007.. Immunoglobulin-like domains on bacteriophage: weapons of modest damage?. Curr. Opin. Microbiol. 10:(4):38287
    [Crossref] [Google Scholar]
  21. Gaborieau B, Vaysset H, Tesson F, Charachon I, Dib N, et al. 2023.. Predicting phage-bacteria interactions at the strain level from genomes. . bioRxiv 2023.11.22.567924. https://doi.org/10.1101/2023.11.22.567924
  22. Gandon S, Buckling A, Decaestecker E, Day T. 2008.. Host-parasite coevolution and patterns of adaptation across time and space. . J. Evol. Biol. 21:(6):186166
    [Crossref] [Google Scholar]
  23. Garcia-Doval C, van Raaij MJ. 2013.. Bacteriophage receptor recognition and nucleic acid transfer. . In Structure and Physics of Viruses: An Integrated Textbook, ed. MG Mateu , pp. 489518. Dordrecht, Neth:.: Springer
    [Google Scholar]
  24. Gebbie G, Huybers P. 2012.. The mean age of ocean waters inferred from radiocarbon observations: sensitivity to surface sources and accounting for mixing histories. . J. Phys. Oceanogr. 42:(2):291305
    [Crossref] [Google Scholar]
  25. Gonzaga A, Martin-Cuadrado A-B, López-Pérez M, Megumi Mizuno C, García-Heredia I, et al. 2012.. Polyclonality of concurrent natural populations of Alteromonas macleodii. . Genome Biol. Evol. 4:(12):136074
    [Crossref] [Google Scholar]
  26. Hackl T, Duponchel S, Barenhoff K, Weinmann A, Fischer MG. 2021.. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. . eLife 10::e72674
    [Crossref] [Google Scholar]
  27. Hardin G. 1960.. The competitive exclusion principle. . Science 131:(3409):129297
    [Crossref] [Google Scholar]
  28. Hartl DL, Dykhuizen DE. 1984.. The population genetics of Escherichia coli. . Annu. Rev. Genet. 18::3168
    [Crossref] [Google Scholar]
  29. Hochhauser D, Millman A, Sorek R. 2023.. The defense island repertoire of the Escherichia coli pan-genome. . PLOS Genet. 19:(4):e1010694
    [Crossref] [Google Scholar]
  30. Huang W, de Araujo Campos PR, Moraes de Oliveira V, Fagundes Ferrreira F. 2016.. A resource-based game theoretical approach for the paradox of the plankton. . PeerJ 4::e2329
    [Crossref] [Google Scholar]
  31. Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. 2020.. Long-term stability and Red Queen-like strain dynamics in marine viruses. . Nat. Microbiol. 5:(2):26571
    [Crossref] [Google Scholar]
  32. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK, et al. 2015.. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. . Antonie van Leeuwenhoek 107::11932
    [Crossref] [Google Scholar]
  33. Ivars-Martinez E, Martin-Cuadrado A-B, D'Auria G, Mira A, Ferriera S, et al. 2008.. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. . ISME J. 2:(12):1194212
    [Crossref] [Google Scholar]
  34. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, et al. 2008.. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. . PNAS 105:(7):25049
    [Crossref] [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. 2005.. Genomic insights that advance the species definition for prokaryotes. . PNAS 102:(7):256772
    [Crossref] [Google Scholar]
  36. Koonin EV, Makarova KS, Wolf YI. 2017.. Evolutionary genomics of defense systems in archaea and bacteria. . Annu. Rev. Microbiol. 71::23361
    [Crossref] [Google Scholar]
  37. Koonin EV, Makarova KS, Wolf YI. 2021.. Evolution of microbial genomics: conceptual shifts over a quarter century. . Trends Microbiol. 29:(7):58292
    [Crossref] [Google Scholar]
  38. Kupczok A, Neve H, Huang KD, Hoeppner MP, Heller KJ, et al. 2018.. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. . Mol. Biol. Evol. 35:(5):114759
    [Crossref] [Google Scholar]
  39. Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, et al. 2018.. Coccolithovirus facilitation of carbon export in the North Atlantic. . Nat. Microbiol. 3:(5):53747
    [Crossref] [Google Scholar]
  40. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, et al. 2006.. Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. . BMC Genom. 7::171
    [Crossref] [Google Scholar]
  41. Leggett HC, Buckling A, Long GH, Boots M. 2013.. Generalism and the evolution of parasite virulence. . Trends Ecol. Evol. 28:(10):59296
    [Crossref] [Google Scholar]
  42. Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, et al. 2023.. A draft human pangenome reference. . Nature 617:(7960):31224
    [Crossref] [Google Scholar]
  43. Lively CM. 2010.. A review of Red Queen models for the persistence of obligate sexual reproduction. . J. Hered. 101: (Suppl. 1):S1320
    [Crossref] [Google Scholar]
  44. López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F. 2005.. Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. . Environ. Microbiol. 7:(5):64959
    [Crossref] [Google Scholar]
  45. López-Pérez M, Gonzaga A, Martin-Cuadrado A-B, Onyshchenko O, Ghavidel A, et al. 2012.. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. . Sci. Rep. 2::696
    [Crossref] [Google Scholar]
  46. López-Pérez M, Gonzaga A, Rodriguez-Valera F. 2013.. Genomic diversity of “deep ecotype” Alteromonas macleodii isolates: evidence for Pan-Mediterranean clonal frames. . Genome Biol. Evol. 5:(6):122032
    [Crossref] [Google Scholar]
  47. López-Pérez M, Martin-Cuadrado A-B, Rodriguez-Valera F. 2014.. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. . Front. Genet. 5::147
    [Google Scholar]
  48. López-Pérez M, Rodriguez-Valera F. 2016.. Pangenome evolution in the marine bacterium Alteromonas. . Genome Biol. Evol. 8::155670
    [Crossref] [Google Scholar]
  49. Marston MF, Martiny JBH. 2016.. Genomic diversification of marine cyanophages into stable ecotypes. . Environ. Microbiol. 18:(11):424053
    [Crossref] [Google Scholar]
  50. Mayr E. 1997.. The objects of selection. . PNAS 94:(6):209194
    [Crossref] [Google Scholar]
  51. McParland EL, Wittmers F, Bolaños LM, Carlson CA, Curry R, et al. 2024.. Seasonal exometabolites are regulated by essential microbial metabolisms in the oligotrophic ocean. . bioRxiv 2024.03.05.583599. https://doi.org/10.1101/2024.03.05.583599
  52. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005.. The microbial pan-genome. . Curr. Opin. Genet. Dev. 15:(6):58994
    [Crossref] [Google Scholar]
  53. Mizuno CM, Ghai R, Rodriguez-Valera F. 2014.. Evidence for metaviromic islands in marine phages. . Front. Microbiol. 5::27
    [Crossref] [Google Scholar]
  54. Moniruzzaman M, Aylward FO. 2023.. Endogenous DNA viruses take center stage in eukaryotic genome evolution. . PNAS 120:(21):e2305212120
    [Crossref] [Google Scholar]
  55. Morris JJ, Lenski RE, Zinser ER. 2012.. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. . mBio 3:(2):e00036-12
    [Crossref] [Google Scholar]
  56. Pherribo GJ, Taga ME. 2023.. Bacteriophage-mediated lysis supports robust growth of amino acid auxotrophs. . ISME J. 17:(10):178588
    [Crossref] [Google Scholar]
  57. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, et al. 2013.. Pan genome of the phytoplankton Emiliania underpins its global distribution. . Nature 499:(7457):20913
    [Crossref] [Google Scholar]
  58. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, et al. 2010.. Viral and microbial community dynamics in four aquatic environments. . ISME J. 4:(6):73951
    [Crossref] [Google Scholar]
  59. Rodriguez-Valera F, Martin-Cuadrado A-B, López-Pérez M. 2016.. Flexible genomic islands as drivers of genome evolution. . Curr. Opin. Microbiol. 31::15460
    [Crossref] [Google Scholar]
  60. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L, Thingstad TF, et al. 2009.. Explaining microbial population genomics through phage predation. . Nat. Rev. Microbiol. 7:(11):82836
    [Crossref] [Google Scholar]
  61. Rodriguez-Valera F, Mizuno CM, Ghai R. 2014.. Tales from a thousand and one phages. . Bacteriophage 4:(1):e28265
    [Crossref] [Google Scholar]
  62. Rodriguez-Valera F, Ussery DW. 2012.. Is the pan-genome also a pan-selectome?. F1000Research 1::16
    [Crossref] [Google Scholar]
  63. Roitman S, Rozenberg A, Lavy T, Brussaard CPD, Kleifeld O, Béjà O. 2023.. Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga. . Nat. Microbiol. 8:(2):33246
    [Crossref] [Google Scholar]
  64. Rosconi F, Rudmann E, Li J, Surujon D, Anthony J, et al. 2022.. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. . Nat. Microbiol. 7:(10):158092
    [Crossref] [Google Scholar]
  65. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, et al. 2007.. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. . PLOS Biol. 5:(3):e77
    [Crossref] [Google Scholar]
  66. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, et al. 2020.. Giant virus diversity and host interactions through global metagenomics. . Nature 578:(7795):43236
    [Crossref] [Google Scholar]
  67. Schwartz DA, Lindell D. 2017.. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. . ISME J. 11:(8):183651
    [Crossref] [Google Scholar]
  68. Sintes E, del Giorgio PA. 2014.. Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs. . Front. Microbiol. 5::453
    [Crossref] [Google Scholar]
  69. Smedile F, Messina E, La Cono V, Tsoy O, Monticelli LS, et al. 2013.. Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. . Environ. Microbiol. 15:(1):16782
    [Crossref] [Google Scholar]
  70. Suttle CA. 2007.. Marine viruses—major players in the global ecosystem. . Nat. Rev. Microbiol. 5:(10):80112
    [Crossref] [Google Scholar]
  71. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. 2005.. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome. .” PNAS 102:(39):1395055
    [Crossref] [Google Scholar]
  72. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, et al. 2004.. Community structure and metabolism through reconstruction of microbial genomes from the environment. . Nature 428:(6978):3743
    [Crossref] [Google Scholar]
  73. Welch RA, Burland V, Plunkett G, Redford P, Roesch P, et al. 2002.. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. . PNAS 99:(26):1702024
    [Crossref] [Google Scholar]
  74. Wilhelm SW, Suttle CA. 1999.. Viruses and nutrient cycles in the sea. . Bioscience 49:(10):78188
    [Crossref] [Google Scholar]
  75. Zark M, Christoffers J, Dittmar T. 2017.. Molecular properties of deep-sea dissolved organic matter are predictable by the central limit theorem: evidence from tandem FT-ICR-MS. . Mar. Chem. 191::915
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040623-090847
Loading
/content/journals/10.1146/annurev-marine-040623-090847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error