1932

Abstract

My strategy for writing this autobiography is to use examples of how working on seemingly different projects can often lead to outcomes more important than originally envisioned. Serendipity is a happy accident—specifically, the accident of discovering something useful without directly looking for it. This often occurs when two research projects converge unexpectedly. The main text contains examples of how serendipity has led me to important discoveries, including () finding surprisingly high 228Ra activities in the ocean; () developing a means of rapidly and quantitatively extracting radium from seawater; () devising a rapid, sensitive method of measuring 224Ra and 223Ra; () realizing the scale and biogeochemical importance of submarine groundwater discharge; and () conceiving a method to estimate the total flux of submarine groundwater discharge to the Atlantic Ocean. The fleshes out details of these discoveries and places them in the context of my other investigations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-050823-103645
2025-01-16
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-050823-103645.html?itemId=/content/journals/10.1146/annurev-marine-050823-103645&mimeType=html&fmt=ahah

Literature Cited

  1. Amphlett CB. 1958.. Synthetic inorganic ion exchangers and their applications in atomic energy. . In Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 28: Basic Chemistry in Nuclear Energy, pp. 1723. Geneva:: UN
    [Google Scholar]
  2. Benitez-Nelson CR, Moore WS. 2006.. Future applications of 234Th in aquatic ecosystems. . Mar. Chem. 100::16365
    [Crossref] [Google Scholar]
  3. Bhat SG, Krishnaswami S, Lal D, Rama, Moore WS. 1969.. 234Th/238U ratios in the oceans. . Earth Planet. Sci. Lett. 5::48391
    [Crossref] [Google Scholar]
  4. Bishop RE, Humphreys WF, Cukrov N, Zic V, Boxshall GA, et al. 2015.. “ Anchialine” redefined as a subterranean estuary in a crevicular or cavernous geological setting. . J. Crustac. Biol. 35::51114
    [Crossref] [Google Scholar]
  5. Bollinger MS, Moore WS. 1984.. Radium fluxes from a salt marsh. . Nature 309::44446
    [Crossref] [Google Scholar]
  6. Bollinger MS, Moore WS. 1993.. Evaluation of salt marsh hydrology using radium as a tracer. . Geochim. Cosmochim. Acta 57::220312
    [Crossref] [Google Scholar]
  7. Broecker WS, Cromwell J, Li Y-H. 1968.. Rates of vertical eddy diffusion near the ocean floor based on measurements of the distribution of excess 222Rn. . Earth Planet. Sci. Lett. 5::1015
    [Crossref] [Google Scholar]
  8. Browne E, Firestone RB. 1986.. Table of Radioactive Isotopes. New York:: Wiley & Sons
    [Google Scholar]
  9. Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M, et al. 2006.. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. . Mar. Chem. 100::21333
    [Crossref] [Google Scholar]
  10. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, et al. 2006.. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. . Sci. Total Environ. 367::498543
    [Crossref] [Google Scholar]
  11. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M. 2003.. Groundwater and pore water inputs to the coastal zone. . Biogeochemistry 66::333
    [Crossref] [Google Scholar]
  12. Burnett WC, Cowart JB, Deetae S. 1990.. Radium in the Suwannee River and estuary: spring and river input to the Gulf of Mexico. . Biogeochemistry 10::23755
    [Crossref] [Google Scholar]
  13. Burnett WC, Peterson R, Moore WS, de Oliveira J. 2008.. Radon and radium isotopes as tracers of submarine groundwater discharge—results from the Ubatuba Brazil SGD assessment intercomparison. . Estuar. Coast. Shelf Sci. 76::50111
    [Crossref] [Google Scholar]
  14. Cable JE, Burnett WC, Chanton JP, Weatherly GL. 1996.. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. . Earth Planet. Sci. Lett. 144::591604
    [Crossref] [Google Scholar]
  15. Carroll J, Falkner KK, Brown ET, Moore WS. 1993.. The role of the Ganges-Brahmaputra mixing zone in supplying barium and 226Ra to the Bay of Bengal. . Geochim. Cosmochim. Acta 57::298190
    [Crossref] [Google Scholar]
  16. Charette MA, Morris PJ, Henderson PB, Moore WS. 2015.. Radium isotope distributions during the US GEOTRACES North Atlantic cruises. . Mar. Chem. 177::18495
    [Crossref] [Google Scholar]
  17. Chen JH, Edwards RL, Wasserburg GJ. 1986.. 238U, 234U and 232Th in seawater. . Earth Planet. Sci. Lett. 80::24151
    [Crossref] [Google Scholar]
  18. Cho H-M, Kim G. 2016.. Determining groundwater Ra end-member values for the estimation of the magnitude of submarine groundwater discharge using Ra isotope tracers. . Geophys. Res. Lett. 43::386571
    [Crossref] [Google Scholar]
  19. Church TM. 1996.. An underground route for the water cycle. . Nature 380::57980
    [Crossref] [Google Scholar]
  20. Crotwell AM, Moore WS. 2003.. Nutrient and radium fluxes from submarine groundwater discharge to Port Royal Sound, South Carolina. . Aquat. Geochem. 9::191208
    [Crossref] [Google Scholar]
  21. Curie P, Curie MS. 1898.. Sur une substance nouvelle radio-active, contenue dans la pechblende. . C. R. Acad. Sci. 127::17578
    [Google Scholar]
  22. Dean WE, Moore WS, Nealson KH. 1981.. Manganese cycles and the origin of manganese nodules, Oneida Lake, New York, U.S.A. . Chem. Geol. 34::5364
    [Crossref] [Google Scholar]
  23. Dulaiova H, Burnett WC, Chanton JP, Moore WS, Bokuniewicz HJ, et al. 2006.. Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers. . Cont. Shelf Res. 26::19711983
    [Crossref] [Google Scholar]
  24. Elderfield H, Boyle EA. 2008.. John Marmion Edmond. . Biogr. Mem. Fellows R. Soc. 54::13759
    [Crossref] [Google Scholar]
  25. Elsinger RJ, King PT, Moore WS. 1982.. Radium-224 in natural waters measured by γ-ray spectrometry. . Anal. Chim. Acta 144::27781
    [Crossref] [Google Scholar]
  26. Elsinger RJ, Moore WS. 1980.. 226Ra behavior in the Pee Dee River-Winyah Bay estuary. . Earth Planet. Sci. Lett. 48::23949
    [Crossref] [Google Scholar]
  27. Elsinger RJ, Moore WS. 1983.. 224Ra, 228Ra and 226Ra sources in Winyah Bay and Delaware Bay. . Earth Planet. Sci. Lett. 64::43036
    [Crossref] [Google Scholar]
  28. Gal IJ, Gal OS. 1958.. The ion exchange of uranium and some fission products on titanium and zirconium phosphates. . In Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 28: Basic Chemistry in Nuclear Energy, pp. 2430. Geneva:: UN
    [Google Scholar]
  29. GEOTRACES. 2024.. Thorium. . GEOTRACES. https://www.geotraces.org/tag/thorium
    [Google Scholar]
  30. Giffin C, Kaufman A, Broecker WS. 1963.. Delayed coincidence counter for the assay of actinon and thoron. . J. Geophys. Res. 68::174957
    [Crossref] [Google Scholar]
  31. Key RM, Stallard RF, Moore WS, Sarmiento JL. 1985.. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary. . J. Geophys. Res. 90::69957004
    [Crossref] [Google Scholar]
  32. King PT, Michel J, Moore WS. 1982.. Ground water geochemistry of 228Ra, 226Ra and 222Rn. . Geochim. Cosmochim. Acta 46::117382
    [Crossref] [Google Scholar]
  33. Koczy FF, Picciotto E, Poulaert G, Wilgain S. 1957.. Mesure des isotopes du thorium dans l'eau mer. . Geochim. Cosmochim. Acta 11::10329
    [Crossref] [Google Scholar]
  34. Kraus KA, Phillips HO. 1956.. Adsorption on inorganic materials. 1. Cation exchange properties of zirconium phosphate. . J. Am. Chem. Soc. 78::694
    [Crossref] [Google Scholar]
  35. Krest JM, Moore WS, Gardner LR, Morris J. 2000.. Marsh nutrient export supplied by groundwater discharge: evidence from Ra measurements. . Glob. Biogeochem. Cycles 14::16776
    [Crossref] [Google Scholar]
  36. Krest JM, Moore WS, Rama. 1999.. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. . Mar. Chem. 64::12952
    [Crossref] [Google Scholar]
  37. Krishnaswami S, Lal D, Somayajulu BLK, Dixon FS, Stonecipher SA, Craig H. 1972.. Silicon, radium, thorium and lead in seawater: in-situ extraction by synthetic fiber. . Earth Planet. Sci. Lett. 16::8490
    [Crossref] [Google Scholar]
  38. Krishnaswami S, Moore WS. 1973.. Accretion rates of freshwater manganese deposits. . Nat. Phys. Sci. 243::11416
    [Crossref] [Google Scholar]
  39. Kwon EY, Kim G, Primeau F, Moore WS, Cho H-M, et al. 2014.. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. . Geophys. Res. Lett. 41::843844
    [Crossref] [Google Scholar]
  40. Lal D, Arnold JR, Somayajulu BLK. 1964.. A method for the extraction of trace elements from sea water. . Geochim. Cosmochim. Acta 28::111117
    [Crossref] [Google Scholar]
  41. Levy DM, Moore WS. 1985.. 224Ra in continental shelf waters. . Earth Planet. Sci. Lett. 73::22630
    [Crossref] [Google Scholar]
  42. Li Y-H, Mathieu G, Biscaye P, Simpson HJ. 1977.. The flux of 226Ra from estuarine and continental shelf sediments. . Earth Planet. Sci. Lett. 37::23741
    [Crossref] [Google Scholar]
  43. Michel J, Moore WS, King PT. 1981.. γ-Ray spectrometry for determination of Ra-228 and Ra-226 in natural-waters. . Anal. Chem. 53::188589
    [Crossref] [Google Scholar]
  44. Moore WS. 1967.. Amazon and Mississippi River concentrations of uranium thorium and radium isotopes. . Earth Planet. Sci. Lett. 2::23134
    [Crossref] [Google Scholar]
  45. Moore WS. 1969a.. Measurement of Ra228 and Th228 in sea water. . J. Geophys. Res. 74::694704
    [Crossref] [Google Scholar]
  46. Moore WS. 1969b.. Oceanic concentrations of 228Radium. . Earth Planet. Sci. Lett. 6::43746
    [Crossref] [Google Scholar]
  47. Moore WS. 1976.. Sampling 228Ra in the deep ocean. . Deep-Sea Res. Oceanogr. Abstr. 23::64751
    [Crossref] [Google Scholar]
  48. Moore WS. 1981a.. Iron-manganese banding in Oneida Lake ferromanganese nodules. . Nature 292::23335
    [Crossref] [Google Scholar]
  49. Moore WS. 1981b.. Radium isotopes in the Chesapeake Bay. . Estuar. Coast. Shelf Sci. 12::71323
    [Crossref] [Google Scholar]
  50. Moore WS. 1996.. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. . Nature 380::61214
    [Crossref] [Google Scholar]
  51. Moore WS. 1999.. The subterranean estuary: a reaction zone of ground water and sea water. . Mar. Chem. 65::11125
    [Crossref] [Google Scholar]
  52. Moore WS. 2000a.. Ages of continental shelf waters determined from Ra-223 and Ra-224. . J. Geophys. Res. Oceans 105::2211722
    [Crossref] [Google Scholar]
  53. Moore WS. 2000b.. Determining coastal mixing rates using radium isotopes. . Cont. Shelf Res. 20::19932007
    [Crossref] [Google Scholar]
  54. Moore WS. 2003.. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. . Biogeochemistry 66::7593
    [Crossref] [Google Scholar]
  55. Moore WS. 2006.. Radium isotopes as tracers of submarine groundwater discharge in Sicily. . Cont. Shelf Res. 26::85261
    [Crossref] [Google Scholar]
  56. Moore WS. 2010.. The effect of submarine groundwater discharge on the ocean. . Annu. Rev. Mar. Sci. 2::5988
    [Crossref] [Google Scholar]
  57. Moore WS, Arnold R. 1996.. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. . J. Geophys. Res. Oceans 101::132129
    [Crossref] [Google Scholar]
  58. Moore WS, Astwood H, Lindstrom C. 1995.. Radium isotopes in coastal waters on the Amazon shelf. . Geochim. Cosmochim. Acta 59::428598
    [Crossref] [Google Scholar]
  59. Moore WS, Benitez-Nelson CR, Schutte C, Moody A, Shiller A, et al. 2024.. SGD-OD: investigating the potential oxygen demand of submarine groundwater discharge in coastal systems. . Sci. Rep. 14::9249
    [Crossref] [Google Scholar]
  60. Moore WS, de Oliveira J. 2008.. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes. . Estuar. Coast. Shelf Sci. 76::51221
    [Crossref] [Google Scholar]
  61. Moore WS, Dean WE, Krishnaswami S, Borole DV. 1980.. Growth rates of manganese nodules in Oneida Lake, New York. . Earth Planet. Sci. Lett. 46::191200
    [Crossref] [Google Scholar]
  62. Moore WS, Key RM, Sarmiento JL. 1985.. Techniques for precise mapping of 226Ra and 228Ra in the ocean. . J. Geophys. Res. Oceans 90::698394
    [Crossref] [Google Scholar]
  63. Moore WS, Kjerfve B, Todd JF. 1998.. Identification of rain-freshened plumes in the coastal ocean using Ra isotopes and Si. . J. Geophys. Res. Oceans 103::770917
    [Crossref] [Google Scholar]
  64. Moore WS, Krest J. 2004.. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. . Mar. Chem. 86::10519
    [Crossref] [Google Scholar]
  65. Moore WS, Krest J, Taylor G, Roggenstein E, Joye S, Lee R. 2002.. Thermal evidence of water exchange through a coastal aquifer: implications for nutrient fluxes. . Geophys. Res. Lett. 29::4914
    [Google Scholar]
  66. Moore WS, Reid DF. 1973.. Extraction of radium from natural-waters using manganese-impregnated acrylic fibers. . J. Geophys. Res. 78::888086
    [Crossref] [Google Scholar]
  67. Moore WS, Sackett WM. 1964.. Uranium and thorium series inequilibrium in sea water. . J. Geophys. Res. 69::54015405
    [Crossref] [Google Scholar]
  68. Moore WS, Sarmiento JL, Key RM. 1986.. Tracing the Amazon component of surface Atlantic water using 228Ra, salinity and silica. . J. Geophys. Res. 91::257480
    [Crossref] [Google Scholar]
  69. Moore WS, Sarmiento JL, Key RM. 2008.. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. . Nat. Geosci. 1::30911
    [Crossref] [Google Scholar]
  70. Moore WS, Shaw TJ. 1998.. Chemical signals from submarine fluid advection onto the continental shelf. . J. Geophys. Res. 103::2154352
    [Crossref] [Google Scholar]
  71. Moore WS, Vincent J, Pickney JL, Wilson AM. 2022.. Predicted episode of submarine groundwater onto the South Carolina, USA, continental shelf and its effect on dissolved oxygen. . Geophys. Res. Lett. 49::e2022GL100438
    [Crossref] [Google Scholar]
  72. Morgane L, van Beek P, Scholten J, Moore WS, Souhaut M, et al. 2022.. Use of 223Ra and 224Ra as chronometers to estimate the residence time of Amazon waters on the Brazilian continental shelf. . Limnol. Oceanogr. 67::75367
    [Crossref] [Google Scholar]
  73. Piggot CS, Urry WD. 1941.. Radioactivity of ocean sediments: III. Radioactive relations in ocean water and bottom sediments. . Am. J. Sci. 239::8191
    [Crossref] [Google Scholar]
  74. Povinec PP, Aggarwal PK, Aureli A, Burnett WC, Kontar EA, et al. 2006.. Characterisation of submarine groundwater discharge offshore south-eastern Sicily. . J. Environ. Radioact. 89::81101
    [Crossref] [Google Scholar]
  75. Povinec PP, Burnett WC, Beck A, Bokuniewicz H, Charette M, et al. 2012.. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. . J. Environ. Radioact. 104::2445
    [Crossref] [Google Scholar]
  76. Rama, Moore WS. 1984.. Mechanism of transport of U-Th series radioisotopes from solids into ground water. . Geochim. Cosmochim. Acta 48::395399
    [Crossref] [Google Scholar]
  77. Rama, Moore WS. 1990a.. Micro-crystallinity in radioactive minerals. . Nucl. Geophys. 4::47578
    [Google Scholar]
  78. Rama, Moore WS. 1990b.. Submicronic porosity in common minerals and emanation of radon. . Nucl. Geophys. 4::46773
    [Google Scholar]
  79. Rama, Moore WS. 1996.. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. . Geochim. Cosmochim. Acta 60::464552
    [Crossref] [Google Scholar]
  80. Rama, Todd JF, Butts JL, Moore WS. 1987.. A new method for the rapid measurement of 224Ra in natural waters. . Mar. Chem. 22::4354
    [Crossref] [Google Scholar]
  81. Rona E, Gilpatrick LO, Jeffrey LM. 1956.. Uranium determination in sea water. . Eos Trans. AGU 37::697701
    [Crossref] [Google Scholar]
  82. Sackett WM. 1960.. Protactinium-231 content of ocean water and sediments. . Science 132::176162
    [Crossref] [Google Scholar]
  83. Sackett WM, Potraz HA, Goldberg ED. 1958.. Thorium content of ocean water. . Science 128::2045
    [Crossref] [Google Scholar]
  84. Sarmiento JL, Thiele G, Key RM, Moore WS. 1990.. Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre. . J. Geophys. Res. 95::1830315
    [Crossref] [Google Scholar]
  85. Shaw TJ, Moore WS, Kloepfer J, Sochaski MA. 1998.. The flux of barium to the coastal waters of the southeastern USA: the importance of submarine groundwater discharge. . Geochim. Cosmochim. Acta 62::304754
    [Crossref] [Google Scholar]
  86. Somayajulu BLK, Goldberg ED. 1966.. Thorium and uranium isotopes in seawater and sediments. . Earth Planet. Sci. Lett. 1::1026
    [Crossref] [Google Scholar]
  87. Taniguchi M, Turner JV, Smith AJ. 2003.. Evaluations of groundwater discharge rates from subsurface temperature in Cockburn Sound, Western Australia. . Biogeochemistry 66::11124
    [Crossref] [Google Scholar]
  88. Veeh HH, Moore WS, Smith SV. 1995.. The behaviour of uranium and radium in an inverse estuary. . Cont. Shelf Res. 15::156983
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-050823-103645
Loading
/content/journals/10.1146/annurev-marine-050823-103645
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error