1932

Abstract

Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes () have been unfoundedly translated to huge effective population sizes ()—the size of an ideal population carrying as much neutral genetic diversity as the actual population. As scales inversely with the strength of genetic drift, constraining the magnitude of is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced and CHUG are surprising—their values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as and . As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient values by other methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-050823-104415
2025-01-16
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-050823-104415.html?itemId=/content/journals/10.1146/annurev-marine-050823-104415&mimeType=html&fmt=ahah

Literature Cited

  1. Agashe D. 2022.. Evolutionary forces that generate SNPs: the evolutionary impacts of synonymous mutations. . In Single Nucleotide Polymorphisms, ed. ZE Sauna, C Kimchi-Sarfaty , pp. 1536. Cham, Switz:.: Springer
    [Google Scholar]
  2. Akashi H, Osada N, Ohta T. 2012.. Weak selection and protein evolution. . Genetics 192::1531
    [Crossref] [Google Scholar]
  3. Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, et al. 2022.. A species-level timeline of mammal evolution integrating phylogenomic data. . Nature 602::26367
    [Crossref] [Google Scholar]
  4. Andreani NA, Hesse E, Vos M. 2017.. Prokaryote genome fluidity is dependent on effective population size. . ISME J. 11::171921
    [Crossref] [Google Scholar]
  5. Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. 2019.. A reverse ecology approach based on a biological definition of microbial populations. . Cell 178::82034.e14
    [Crossref] [Google Scholar]
  6. Ashkenazy Y, Gildor H, Losch M, Macdonald FA, Schrag DP, Tziperman E. 2013.. Dynamics of a Snowball Earth ocean. . Nature 495::9093
    [Crossref] [Google Scholar]
  7. Bakenhus I, Dlugosch L, Billerbeck S, Giebel H-A, Milke F, Simon M. 2017.. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—roseobacters are the most active component. . Front. Microbiol. 8::1771
    [Crossref] [Google Scholar]
  8. Barton NH, Charlesworth B. 1984.. Genetic revolutions, founder effects, and speciation. . Annu. Rev. Ecol. Syst. 15::13364
    [Crossref] [Google Scholar]
  9. Batut B, Knibbe C, Marais G, Daubin V. 2014.. Reductive genome evolution at both ends of the bacterial population size spectrum. . Nat. Rev. Microbiol. 12::84150
    [Crossref] [Google Scholar]
  10. Bendall ML, Stevens SLR, Chan L-K, Malfatti S, Schwientek P, et al. 2016.. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. . ISME J. 10::1589601
    [Crossref] [Google Scholar]
  11. Biller SJ, Berube PM, Lindell D, Chisholm SW. 2015.. Prochlorococcus: the structure and function of collective diversity. . Nat. Rev. Microbiol. 13::1327
    [Crossref] [Google Scholar]
  12. Billerbeck S, Wemheuer B, Voget S, Poehlein A, Giebel H-A, et al. 2016.. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. . Nat. Microbiol. 1::16063
    [Crossref] [Google Scholar]
  13. Blakeslee AMH, Haram LE, Altman I, Kennedy K, Ruiz GM, Miller AW. 2020.. Founder effects and species introductions: a host versus parasite perspective. . Evol. Appl. 13::55974
    [Crossref] [Google Scholar]
  14. Bobay L-M, Ellis BS-H, Ochman H. 2018.. ConSpeciFix: classifying prokaryotic species based on gene flow. . Bioinformatics 34::373840
    [Crossref] [Google Scholar]
  15. Bobay L-M, Ochman H. 2018.. Factors driving effective population size and pan-genome evolution in bacteria. . BMC Evol. Biol. 18::153
    [Crossref] [Google Scholar]
  16. Boscaro V, Kolisko M, Felletti M, Vannini C, Lynn DH, Keeling PJ. 2017.. Parallel genome reduction in symbionts descended from closely related free-living bacteria. . Nat. Ecol. Evol. 1::116067
    [Crossref] [Google Scholar]
  17. Brinkhoff T, Giebel H-A, Simon M. 2008.. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. . Arch. Microbiol. 189::53139
    [Crossref] [Google Scholar]
  18. Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, et al. 2012.. Global biogeography of SAR11 marine bacteria. . Mol. Syst. Biol. 8::595
    [Crossref] [Google Scholar]
  19. Buchan A, Gonzalez JM, Moran MA. 2005.. Overview of the marine Roseobacter lineage. . Appl. Environ. Microbiol. 71::566577
    [Crossref] [Google Scholar]
  20. Charlesworth B. 2009.. Effective population size and patterns of molecular evolution and variation. . Nat. Rev. Genet. 10::195205
    [Crossref] [Google Scholar]
  21. Charlesworth B, Morgan MT, Charlesworth D. 1993.. The effect of deleterious mutations on neutral molecular variation. . Genetics 134::1289303
    [Crossref] [Google Scholar]
  22. Chen Q, He Z, Lan A, Shen X, Wen H, Wu C-I. 2019.. Molecular evolution in large steps—codon substitutions under positive selection. . Mol. Biol. Evol. 36::186273
    [Crossref] [Google Scholar]
  23. Chen Z, Wang X, Song Y, Zeng Q, Zhang Y, Luo H. 2022.. Prochlorococcus have low global mutation rate and small effective population size. . Nat. Ecol. Evol. 6::18394
    [Crossref] [Google Scholar]
  24. Cohan FM. 2005.. Periodic selection and ecological diversity in bacteria. . In Selective Sweep, ed. D Nurminsky , pp. 7893. Boston:: Springer
    [Google Scholar]
  25. Cohan FM. 2018.. Bacterial speciation: genetic sweeps in bacterial species. . Curr. Biol. 26::R11215
    [Crossref] [Google Scholar]
  26. Cordero OX, Polz MF. 2014.. Explaining microbial genomic diversity in light of evolutionary ecology. . Nat. Rev. Microbiol. 12::26373
    [Crossref] [Google Scholar]
  27. Dagan T, Talmor Y, Graur D. 2002.. Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive Darwinian selection. . Mol. Biol. Evol. 19::102225
    [Crossref] [Google Scholar]
  28. Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, et al. 2019.. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. . eLife 8::e46497
    [Crossref] [Google Scholar]
  29. Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. 2017.. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. . Mol. Biol. Evol. 34::93109
    [Crossref] [Google Scholar]
  30. dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z. 2012.. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. . Proc. R. Soc. B 279::3491500
    [Crossref] [Google Scholar]
  31. Durham B, Grote J, Whittaker K, Bender S, Luo H, et al. 2014.. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. . Stand. Genom. Sci. 9::63245
    [Crossref] [Google Scholar]
  32. Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, et al. 2021.. Mechanisms driving genome reduction of a novel Roseobacter lineage. . ISME J. 15::357686
    [Crossref] [Google Scholar]
  33. Feng X, Zhang H, Tang J, Luo H. 2022.. Assessing a role of genetic drift for deep-time evolutionary events. . In Environmental Microbial Evolution: Methods and Protocols, ed. H Luo , pp. 34359. New York:: Humana
    [Google Scholar]
  34. Filatov DA, Kirkpatrick M. 2024.. How does evolution work in superabundant microbes?. Trends Microbiol. https://doi.org/10.1016/j.tim.2024.01.009
    [Google Scholar]
  35. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, et al. 2013.. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. . PNAS 110::982429
    [Crossref] [Google Scholar]
  36. Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015.. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. . PNAS 112::E599099
    [Crossref] [Google Scholar]
  37. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. 2009.. The bacterial species challenge: making sense of genetic and ecological diversity. . Science 323::74146
    [Crossref] [Google Scholar]
  38. Friedman R, Drake JW, Hughes AL. 2004.. Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles. . Genetics 167::150712
    [Crossref] [Google Scholar]
  39. Gillespie JH. 2000.. Genetic drift in an infinite population. The pseudohitchhiking model. . Genetics 155::90919
    [Crossref] [Google Scholar]
  40. Giovannoni SJ. 2017.. SAR11 bacteria: the most abundant plankton in the oceans. . Annu. Rev. Mar. Sci. 9::23155
    [Crossref] [Google Scholar]
  41. Giovannoni SJ, Thrash JC, Temperton B. 2014.. Implications of streamlining theory for microbial ecology. . ISME J. 8::155365
    [Crossref] [Google Scholar]
  42. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin K, et al. 2005.. Genome streamlining in a cosmopolitan oceanic bacterium. . Science 309::124245
    [Crossref] [Google Scholar]
  43. Gogarten JP, Doolittle WF, Lawrence JG. 2002.. Prokaryotic evolution in light of gene transfer. . Mol. Biol. Evol. 19::222638
    [Crossref] [Google Scholar]
  44. Good BH, Walczak AM, Neher RA, Desai MM. 2014.. Genetic diversity in the interference selection limit. . PLOS Genet. 10::e1004222
    [Crossref] [Google Scholar]
  45. Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, et al. 2012.. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. . mBio 3::e00252-12
    [Crossref] [Google Scholar]
  46. Grzymski JJ, Dussaq AM. 2012.. The significance of nitrogen cost minimization in proteomes of marine microorganisms. . ISME J. 6::7180
    [Crossref] [Google Scholar]
  47. Gu J, Wang X, Ma X, Sun Y, Xiao X, Luo H. 2021.. Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. . ISME J. 15::186269
    [Crossref] [Google Scholar]
  48. Hagen MJ, Hamrick JL. 1996.. A hierarchical analysis of population genetic structure in Rhizobium leguminosarum bv. trifolii. . Mol. Ecol. 5::17786
    [Crossref] [Google Scholar]
  49. Hellweger FL, Huang Y, Luo H. 2018.. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. . ISME J. 12::118087
    [Crossref] [Google Scholar]
  50. Hershberg R, Petrov DA. 2010.. Evidence that mutation is universally biased towards AT in bacteria. . PLOS Genet. 6::e1001115
    [Crossref] [Google Scholar]
  51. Hill WG, Robertson A. 1966.. The effect of linkage on limits to artificial selection. . Genet. Res. 8::26994
    [Crossref] [Google Scholar]
  52. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. 1998.. A Neoproterozoic snowball Earth. . Science 281::134246
    [Crossref] [Google Scholar]
  53. Hu J, Blanchard JL. 2009.. Environmental sequence data from the Sargasso Sea reveal that the characteristics of genome reduction in Prochlorococcus are not a harbinger for an escalation in genetic drift. . Mol. Biol. Evol. 26::513
    [Crossref] [Google Scholar]
  54. Hughes AL, Friedman R. 2009.. More radical amino acid replacements in primates than in rodents: support for the evolutionary role of effective population size. . Gene 440::5056
    [Crossref] [Google Scholar]
  55. Hughes AL, Green JA, Garbayo JM, Roberts RM. 2000.. Adaptive diversification within a large family of recently duplicated, placentally expressed genes. . PNAS 97::331923
    [Crossref] [Google Scholar]
  56. Hughes AL, Ota T, Nei M. 1990.. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. . Mol. Biol. Evol. 7::51524
    [Google Scholar]
  57. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018.. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. . Nat. Commun. 9::5114
    [Crossref] [Google Scholar]
  58. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. 2006.. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. . Science 311::173740
    [Crossref] [Google Scholar]
  59. Kaiser VB, Charlesworth B. 2009.. The effects of deleterious mutations on evolution in non-recombining genomes. . Trends Genet. 25::912
    [Crossref] [Google Scholar]
  60. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, et al. 2014.. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. . Science 344::41620
    [Crossref] [Google Scholar]
  61. Kelkar YD, Phillips DS, Ochman H. 2015.. Effects of genic base composition on growth rate in G+C-rich genomes. . G3 5::124752
    [Crossref] [Google Scholar]
  62. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, et al. 2007.. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. . PLOS Genet. 3::e231
    [Crossref] [Google Scholar]
  63. Kimura M. 1968.. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. . Genet. Res. 11::24770
    [Crossref] [Google Scholar]
  64. Kiørboe T. 2008.. Random walk and diffusion. . In A Mechanistic Approach to Plankton Ecology, pp. 1034. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  65. Kirchberger PC, Schmidt ML, Ochman H. 2020.. The ingenuity of bacterial genomes. . Annu. Rev. Microbiol. 74::81534
    [Crossref] [Google Scholar]
  66. Kirchman DL. 2016.. Growth rates of microbes in the oceans. . Annu. Rev. Mar. Sci. 8::285309
    [Crossref] [Google Scholar]
  67. Kryazhimskiy S, Plotkin JB. 2008.. The population genetics of dN/dS. . PLOS Genetics 4::e1000304
    [Crossref] [Google Scholar]
  68. Lassalle F, Périan S, Bataillon T, Nesme X, Duret L, Daubin V. 2015.. GC-content evolution in bacterial genomes: the biased gene conversion hypothesis expands. . PLOS Genet. 11::e1004941
    [Crossref] [Google Scholar]
  69. Lee H, Popodi E, Tang H, Foster PL. 2012.. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. . PNAS 109::E277483
    [Google Scholar]
  70. Li H, Stephan W. 2006.. Inferring the demographic history and rate of adaptive substitution in Drosophila. . PLOS Genet. 2::e166
    [Crossref] [Google Scholar]
  71. Long AM, Hou S, Ignacio-Espinoza JC, Fuhrman JA. 2021.. Benchmarking microbial growth rate predictions from metagenomes. . ISME J. 15::18395
    [Crossref] [Google Scholar]
  72. Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, et al. 2018.. Evolutionary determinants of genome-wide nucleotide composition. . Nat. Ecol. Evol. 2::23740
    [Crossref] [Google Scholar]
  73. Luo H. 2015a.. Evolutionary origin of a streamlined marine bacterioplankton lineage. . ISME J. 9::142333
    [Crossref] [Google Scholar]
  74. Luo H. 2015b.. The use of evolutionary approaches to understand single cell genomes. . Front. Microbiol. 6::191
    [Google Scholar]
  75. Luo H, Friedman R, Tang J, Hughes AL. 2011.. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. . Mol. Biol. Evol. 28::275160
    [Crossref] [Google Scholar]
  76. Luo H, Huang Y, Stepanauskas R, Tang J. 2017.. Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes. . Nat. Microbiol. 2::17091
    [Crossref] [Google Scholar]
  77. Luo H, Hughes AL. 2012.. dN/dS does not show positive selection drives separation of polar-tropical SAR11 populations. . Mol. Syst. Biol. 8::625
    [Crossref] [Google Scholar]
  78. Luo H, Swan BK, Stepanauskas R, Hughes AL, Moran MA. 2014a.. Comparing effective population sizes of dominant marine alphaproteobacteria lineages. . Environ. Microbiol. Rep. 6::16772
    [Crossref] [Google Scholar]
  79. Luo H, Swan BK, Stepanauskas R, Hughes AL, Moran MA. 2014b.. Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters. . ISME J. 8::142839
    [Crossref] [Google Scholar]
  80. Luo H, Thompson LR, Stingl U, Hughes AL. 2015.. Selection maintains low genomic GC content in marine SAR11 lineages. . Mol. Biol. Evol. 32::273848
    [Crossref] [Google Scholar]
  81. Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, et al. 2016.. Genetic drift, selection and the evolution of the mutation rate. . Nat. Rev. Genet. 17::70414
    [Crossref] [Google Scholar]
  82. Lynch M, Conery JS. 2003.. The origins of genome complexity. . Science 302::14014
    [Crossref] [Google Scholar]
  83. Mayr E. 1942.. Systematics and the Origin of Species. New York:: Columbia Univ. Press
    [Google Scholar]
  84. McVean GAT, Charlesworth B. 2000.. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. . Genetics 155::92944
    [Crossref] [Google Scholar]
  85. Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, et al. 2004.. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. . Nature 432::91013
    [Crossref] [Google Scholar]
  86. Moran NA. 1996.. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. . PNAS 93::287378
    [Crossref] [Google Scholar]
  87. Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, et al. 2002.. SAR11 clade dominates ocean surface bacterioplankton communities. . Nature 420::80610
    [Crossref] [Google Scholar]
  88. Nei M. 1987.. Molecular Evolutionary Genetics. New York:: Columbia Univ. Press
    [Google Scholar]
  89. Nei M. 2005.. Selectionism and neutralism in molecular evolution. . Mol. Biol. Evol. 22::231842
    [Crossref] [Google Scholar]
  90. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, et al. 2010.. Genome characteristics of a generalist marine bacterial lineage. . ISME J. 4::78498
    [Crossref] [Google Scholar]
  91. Noell SE, Barrell GE, Suffridge C, Morré J, Gable KP, et al. 2021.. SAR11 cells rely on enzyme multifunctionality to metabolize a range of polyamine compounds. . mBio 12::e01091-21
    [Crossref] [Google Scholar]
  92. Noell SE, Giovannoni SJ. 2019.. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. . Environ. Microbiol. 21::255975
    [Crossref] [Google Scholar]
  93. Ohta T. 1973.. Slightly deleterious mutant substitutions in evolution. . Nature 246::9698
    [Crossref] [Google Scholar]
  94. Ohta T. 1992.. The nearly neutral theory of molecular evolution. . Annu. Rev. Ecol. Syst. 23::26386
    [Crossref] [Google Scholar]
  95. Ozaki K, Thompson KJ, Simister RL, Crowe SA, Reinhard CT. 2019.. Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere. . Nat. Commun. 10::3026
    [Crossref] [Google Scholar]
  96. Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, et al. 2019.. Charting the complexity of the marine microbiome through single-cell genomics. . Cell 179::162335.e11
    [Crossref] [Google Scholar]
  97. Partensky F, Garczarek L. 2010.. Prochlorococcus: advantages and limits of minimalism. . Annu. Rev. Mar. Sci. 2::30531
    [Crossref] [Google Scholar]
  98. Perfeito L, Fernandes L, Mota C, Gordo I. 2007.. Adaptive mutations in bacteria: high rate and small effects. . Science 317::81315
    [Crossref] [Google Scholar]
  99. Perreau J, Moran NA. 2022.. Genetic innovations in animal–microbe symbioses. . Nat. Rev. Genet. 23::2339
    [Crossref] [Google Scholar]
  100. Price MN, Arkin AP. 2015.. Weakly deleterious mutations and low rates of recombination limit the impact of natural selection on bacterial genomes. . mBio 6::e01302-15
    [Crossref] [Google Scholar]
  101. Raghavan R, Kelkar YD, Ochman H. 2012.. A selective force favoring increased G+C content in bacterial genes. . PNAS 109::145047
    [Crossref] [Google Scholar]
  102. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. 2008.. The genomic and epidemiological dynamics of human influenza A virus. . Nature 453::61519
    [Crossref] [Google Scholar]
  103. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. 2002.. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. . Nature 418::63033
    [Crossref] [Google Scholar]
  104. Rocha EPC. 2018.. Neutral theory, microbial practice: challenges in bacterial population genetics. . Mol. Biol. Evol. 35::133847
    [Crossref] [Google Scholar]
  105. Rocha EPC, Feil EJ. 2010.. Mutational patterns cannot explain genome composition: Are there any neutral sites in the genomes of bacteria?. PLOS Genet. 6::e1001104
    [Crossref] [Google Scholar]
  106. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L, Thingstad TF, et al. 2009.. Explaining microbial population genomics through phage predation. . Nat. Rev. Microbiol. 7::82836
    [Crossref] [Google Scholar]
  107. Sela I, Wolf YI, Koonin EV. 2016.. Theory of prokaryotic genome evolution. . PNAS 113::11399407
    [Crossref] [Google Scholar]
  108. Selje N, Simon M, Brinkhoff T. 2004.. A newly discovered Roseobacter cluster in temperate and polar oceans. . Nature 427::44548
    [Crossref] [Google Scholar]
  109. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, et al. 2012.. Population genomics of early events in the ecological differentiation of bacteria. . Science 336::4851
    [Crossref] [Google Scholar]
  110. Shapiro BJ, Leducq J-B, Mallet J. 2016.. What is speciation?. PLOS Genet. 12::e1005860
    [Crossref] [Google Scholar]
  111. Smith DP, Thrash JC, Nicora CD, Lipton MS, Burnum-Johnson KE, et al. 2013.. Proteomic and transcriptomic analyses of “Candidatus Pelagibacter ubique” describe the first PII-independent response to nitrogen limitation in a free-living Alphaproteobacterium. . mBio 4::e00133-12
    [Google Scholar]
  112. Stewart FJ. 2013.. Where the genes flow. . Nat. Geosci. 6::68890
    [Crossref] [Google Scholar]
  113. Strauss C, Long H, Patterson CE, Te R, Lynch M. 2017.. Genome-wide mutation rate response to pH change in the coral reef pathogen Vibrio shilonii AK1. . mBio 8::e01021-17
    [Crossref] [Google Scholar]
  114. Sun Y, Powell KE, Sung W, Lynch M, Moran MA, Luo H. 2017.. Spontaneous mutations of a model heterotrophic marine bacterium. . ISME J. 11::171318
    [Crossref] [Google Scholar]
  115. Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012.. Drift-barrier hypothesis and mutation-rate evolution. . PNAS 109::1848892
    [Crossref] [Google Scholar]
  116. Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, et al. 2013.. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. . PNAS 110::1146368
    [Crossref] [Google Scholar]
  117. Voget S, Wemheuer B, Brinkhoff T, Vollmers J, Dietrich S, et al. 2015.. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. . ISME J. 9::37184
    [Crossref] [Google Scholar]
  118. Wang X, Xie M, Ho KEYK, Sun Y, Chu X, et al. 2024.. A neutral process of genome reduction in marine bacterioplankton. . bioRxiv 2024.02.04.578831. https://doi.org/10.1101/2024.02.04.578831
  119. Weber CC, Nabholz B, Romiguier J, Ellegren H. 2014.. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. . Genome Biol. 15::542
    [Crossref] [Google Scholar]
  120. Weber CC, Whelan S. 2019.. Physicochemical amino acid properties better describe substitution rates in large populations. . Mol. Biol. Evol. 36::67990
    [Crossref] [Google Scholar]
  121. Wernegreen JJ. 2011.. Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. . PLOS ONE 6::e28905
    [Crossref] [Google Scholar]
  122. Xia X, Xie Z. 2002.. Protein structure, neighbor effect, and a new index of amino acid dissimilarities. . Mol. Biol. Evol. 19::5867
    [Crossref] [Google Scholar]
  123. Xue C-X, Zhang H, Lin H-Y, Sun Y, Luo D, et al. 2020.. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. . Environ. Microbiol. 22::323447
    [Crossref] [Google Scholar]
  124. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, et al. 2014.. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat. Rev. Microbiol. 12::63545
    [Crossref] [Google Scholar]
  125. Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, et al. 2013.. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. . Genome Biol. 14::R130
    [Crossref] [Google Scholar]
  126. Zhang H, Hellweger FL, Luo H. 2024.. Genome reduction occurred in early Prochlorococcus with an unusually low effective population size. . ISME J. 18::wrad035
    [Crossref] [Google Scholar]
  127. Zhang H, Sun Y, Zeng Q, Crowe SA, Luo H. 2021.. Snowball Earth, population bottleneck and Prochlorococcus evolution. . Proc. R. Soc. B 288::20211956
    [Crossref] [Google Scholar]
  128. Zhang H, Wang S, Liao T, Crowe SA, Luo H. 2023.. Emergence of Prochlorococcus in the Tonian oceans and the initiation of Neoproterozoic oxygenation. . bioRxiv 2023.09.06.556545. https://doi.org/10.1101/2023.09.06.556545
  129. Zhang J, Zhang Y, Rosenberg HF. 2002.. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. . Nat. Genet. 30::41115
    [Crossref] [Google Scholar]
  130. Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. 2016.. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. . Appl. Environ. Microbiol. 82::210011
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-050823-104415
Loading
/content/journals/10.1146/annurev-marine-050823-104415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error