1932

Abstract

The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.g., reduced water use and resource competition in surviving trees, soil accretion, and farmland management). However, processes that reduce salinity are often accompanied by increases in hypoxia and other changes that may amplify saltwater intrusion and vegetation shifts after a threshold is exceeded (e.g., subsidence following tree root mortality). This conceptual framework helps explain observed rates of vegetation change that are less than predicted for a static landscape while recognizing the inevitability of large-scale change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-070924-031447
2025-01-16
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-070924-031447.html?itemId=/content/journals/10.1146/annurev-marine-070924-031447&mimeType=html&fmt=ahah

Literature Cited

  1. Achenbach L, Brix H. 2014.. Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta?. Hydrobiologia 737::523
    [Crossref] [Google Scholar]
  2. Al-Attabi Z, Xu Y, Tso G, Narayan S. 2023.. The impacts of tidal wetland loss and coastal development on storm surge damages to people and property: a Hurricane Ike case-study. . Sci. Rep. 13::4620
    [Crossref] [Google Scholar]
  3. Anisfeld SC, Cooper KR, Kemp AC. 2017.. Upslope development of a tidal marsh as a function of upland land use. . Glob. Change Biol. 23::75566
    [Crossref] [Google Scholar]
  4. Anthony EJ. 2015.. Wave influence in the construction, shaping and destruction of river deltas: a review. . Mar. Geol. 361::5378
    [Crossref] [Google Scholar]
  5. Armstrong SB, Lazarus ED. 2019.. Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment. . Earth's Future 7:(2):7484
    [Crossref] [Google Scholar]
  6. Aschehoug ET, Callaway RM. 2014.. Morphological variability in tree root architecture indirectly affects coexistence among competitors in the understory. . Ecology 95:(7):173136
    [Crossref] [Google Scholar]
  7. Barlow PM, Reichard EG. 2010.. Saltwater intrusion in coastal regions of North America. . Hydrogeol. J. 18:(1):24760
    [Crossref] [Google Scholar]
  8. Bertness MD, Ewanchuk PJ. 2002.. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. . Oecologia 132:(3):392401
    [Crossref] [Google Scholar]
  9. Bhattachan A, Emanuel RE, Ardón M, Bernhardt ES, Anderson SM, et al. 2018.. Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. . Elementa 6::62
    [Google Scholar]
  10. Brinson MM, Christian RR, Blum LK. 1995.. Multiple states in the sea-level induced transition from terrestrial forest to estuary. . Estuaries 18:(4):64859
    [Crossref] [Google Scholar]
  11. Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC. 2003.. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. . J. Ecol. 91:(6):1093105
    [Crossref] [Google Scholar]
  12. Cai W, Bordoloi S, Zhu C, Gupt CB. 2023.. Influence of plasticity and porewater salinity on shrinkage and water retention characteristics of biochar-engineered clays. . Soil Sci. Soc. Am. J. 87:(6):1285303
    [Crossref] [Google Scholar]
  13. Cannon JB, Rutledge BT, Puhlick JJ, Willis JL, Brockway DG. 2023.. Tropical cyclone winds and precipitation stimulate cone production in the masting species longleaf pine (Pinus palustris). . New Phytol. 242:(1):289301
    [Crossref] [Google Scholar]
  14. Cantelon JA, Guimond JA, Robinson CE, Michael HA, Kurylyk BL. 2022.. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. . Water Resour. Res. 58:(11):e2022WR032614
    [Crossref] [Google Scholar]
  15. Chambers LG, Steinmuller HE, Breithaupt JL. 2019.. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. . Ecology 100:(7):e02720
    [Crossref] [Google Scholar]
  16. Charles SP, Kominoski JS, Troxler TG, Gaiser EE, Servais S, et al. 2019.. Experimental saltwater intrusion drives rapid soil elevation and carbon loss in freshwater and brackish everglades marshes. . Estuaries Coasts 42:(7):186881
    [Crossref] [Google Scholar]
  17. Chen Y, Kirwan ML. 2022.. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. . Nat. Geosci. 15:(11):91318
    [Crossref] [Google Scholar]
  18. Chen Y, Kirwan ML. 2024.. Upland forest retreat lags behind sea-level rise in the mid-Atlantic coast. . Glob. Change Biol. 30:(1):e17081
    [Crossref] [Google Scholar]
  19. Chui TFM, Terry JP. 2012.. Modeling fresh water lens damage and recovery on atolls after storm-wave washover. . Groundwater 50:(3):41220
    [Crossref] [Google Scholar]
  20. Conner WH, Krauss KW, Doyle TW. 2007.. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. . In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States, ed. WH Conner, TW Doyle, KW Krauss , pp. 22353. Dordrecht, Neth:.: Springer
    [Google Scholar]
  21. Craft CB. 2012.. Tidal freshwater forest accretion does not keep pace with sea level rise. . Glob. Change Biol. 18:(12):361523
    [Crossref] [Google Scholar]
  22. Dale J, Cundy AB, Spencer KL, Carr SJ, Croudace IW, et al. 2019.. Sediment structure and physicochemical changes following tidal inundation at a large open coast managed realignment site. . Sci. Total Environ. 660::141932
    [Crossref] [Google Scholar]
  23. de la Reguera E, Veatch J, Gedan K, Tully KL. 2020.. The effects of saltwater intrusion on germination success of standard and alternative crops. . Environ. Exp. Bot. 180::104254
    [Crossref] [Google Scholar]
  24. Ding J, McDowell N, Fang Y, Ward N, Kirwan ML, et al. 2023.. Modeling the mechanisms of conifer mortality under seawater exposure. . New Phytol. 239:(5):167991
    [Crossref] [Google Scholar]
  25. Duberstein JA, Krauss KW, Baldwin MJ, Allen ST, Conner WH, et al. 2020.. Small gradients in salinity have large effects on stand water use in freshwater wetland forests. . For. Ecol. Manag. 473::118308
    [Crossref] [Google Scholar]
  26. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, et al. 2005.. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. . Front. Ecol. Environ. 3:(9):47986
    [Crossref] [Google Scholar]
  27. Ensign SH, Hupp CR, Noe GB, Krauss KW, Stagg CL. 2014.. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA. . Estuaries Coasts 37:(5):110719
    [Crossref] [Google Scholar]
  28. Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA, et al. 2019.. Sea level rise and the dynamics of the marsh-upland boundary. . Front. Environ. Sci. 7::25
    [Crossref] [Google Scholar]
  29. Feagin RA, Martinez ML, Mendoza-Gonzalez G, Costanza R. 2010.. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. . Ecol. Soc. 15:(4):14
    [Crossref] [Google Scholar]
  30. Ferguson ER, Lawson E, Maple WR, Mesavage C. 1968.. Managing Eastern Redcedar. New Orleans, LA:: US For. Serv.
    [Google Scholar]
  31. Field CR, Gjerdrum C, Elphick CS. 2016.. Forest resistance to sea-level rise prevents landward migration of tidal marsh. . Biol. Conserv. 201::36369
    [Crossref] [Google Scholar]
  32. Fisher AS, Podniesinski GS, Leopold DJ. 1996.. Effects of drainage ditches on vegetation patterns in abandoned agricultural peatlands in central New York. . Wetlands 16:(4):397409
    [Crossref] [Google Scholar]
  33. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. 2008.. Coastal impacts due to sea-level rise. . Annu. Rev. Earth Planet. Sci. 36::60147
    [Crossref] [Google Scholar]
  34. Fowler DN, King SL, Weindorf DC. 2014.. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment. . Wetlands 34:(6):122939
    [Crossref] [Google Scholar]
  35. Gardner LR, Reeves HW. 2002.. Spatial patterns in soil water fluxes along a forest-marsh transect in the southeastern united states. . Aquat. Sci. 64:(2):14155
    [Crossref] [Google Scholar]
  36. Gedan KB, Epanchin-Niell R, Qi M. 2020.. Rapid land cover change in a submerging coastal county. . Wetlands 40:(6):171728
    [Crossref] [Google Scholar]
  37. Gedan KB, Fernández-Pascual E. 2019.. Salt marsh migration into salinized agricultural fields: a novel assembly of plant communities. . J. Veg. Sci. 30::100716
    [Crossref] [Google Scholar]
  38. Giambastiani BMS, Antonellini M, Oude Essink GHP, Stuurman RJ. 2007.. Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. . J. Hydrol. 340:(1–2):91104
    [Crossref] [Google Scholar]
  39. Guimond JA, Michael HA. 2021.. Effects of marsh migration on flooding, saltwater intrusion, and crop yield in coastal agricultural land subject to storm surge inundation. . Water Resour. Res. 57:(2):e2020WR028326
    [Crossref] [Google Scholar]
  40. Guimond JA, Yu X, Seyfferth AL, Michael HA. 2020.. Using hydrological-biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea level rise. . Water Resour. Res. 56:(2):e2019WR026302
    [Crossref] [Google Scholar]
  41. Guo L, Liu Y, Wu GL, Huang Z, Cui Z, et al. 2019.. Preferential water flow: influence of alfalfa (Medicago sativa L.) decayed root channels on soil water infiltration. . J. Hydrol. 578::124019
    [Crossref] [Google Scholar]
  42. Hall EA, Molino GD, Messerschmidt T, Kirwan ML. 2022.. Hidden levees: small-scale flood defense on rural coasts. . Anthropocene 40::100350
    [Crossref] [Google Scholar]
  43. Hall S, Stotts S, Haaf L. 2022.. Influence of climate and coastal flooding on eastern red cedar growth along a marsh-forest ecotone. . Forests 13:(6):862
    [Crossref] [Google Scholar]
  44. Harvey JW, Odum WE. 1990.. The influence of tidal marshes on upland groundwater discharge to estuaries. . Biogeochemistry 10:(3):21736
    [Crossref] [Google Scholar]
  45. Hein CJ, Kirwan ML. 2024.. Marine transgression in modern times. . Annu. Rev. Mar. Sci. 16::5579
    [Crossref] [Google Scholar]
  46. Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, et al. 2015.. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. . Ecosphere 6:(10):143
    [Crossref] [Google Scholar]
  47. Hingst MC, McQuiggan RW, Peters CN, He C, Andres AS, Michael HA. 2023.. Surface water-groundwater connections as pathways for inland salinization of coastal aquifers. . Groundwater 61:(5):62638
    [Crossref] [Google Scholar]
  48. Hopple AM, Doro KO, Bailey VL, Bond-Lamberty B, McDowell N, et al. 2023.. Attaining freshwater and estuarine-water soil saturation in an ecosystem-scale coastal flooding experiment. . Environ. Monit. Assess. 195:(3):425
    [Crossref] [Google Scholar]
  49. Hossain ML, Hossain MK, Salam MA, Rubaiyat A. 2012.. Seasonal variation of soil salinity in coastal areas of Bangladesh. . Int. J. Environ. Sci. Manag. Eng. Res. 1:(4):17278
    [Google Scholar]
  50. Kirwan ML, Gedan KB. 2019.. Sea-level driven land conversion and the formation of ghost forests. . Nat. Clim. Change 9::45057
    [Crossref] [Google Scholar]
  51. Kirwan ML, Kirwan JL, Copenheaver CA. 2007.. Dynamics of an estuarine forest and its response to rising sea level. . J. Coast. Res. 23:(2):45763
    [Crossref] [Google Scholar]
  52. Kirwan ML, Megonigal JP. 2013.. Tidal wetland stability in the face of human impacts and sea-level rise. . Nature 504::5360
    [Crossref] [Google Scholar]
  53. Kirwan ML, Megonigal JP, Noyce GL, Smith AJ. 2023.. Geomorphic and ecological constraints on the coastal carbon sink. . Nat. Rev. Earth Environ. 4::393406
    [Crossref] [Google Scholar]
  54. Kirwan ML, Murray AB. 2008.. Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. . Geophys. Res. Lett. 35:(24):L24401
    [Crossref] [Google Scholar]
  55. Knott JF, Nuttle WK, Hemond HF. 1987.. Hydrologic parameters of salt marsh peat. . Hydrol. Process. 1:(2):21120
    [Crossref] [Google Scholar]
  56. Krauss KW, Duberstein JA. 2010.. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed. . Can. J. For. Res. 40:(3):52535
    [Crossref] [Google Scholar]
  57. Krauss KW, Duberstein JA, Doyle TW, Conner WH, Day RH, et al. 2009.. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. . Wetlands 29:(2):50519
    [Crossref] [Google Scholar]
  58. Krauss KW, Noe GB, Duberstein JA, Cormier N, From AS, et al. 2024.. Presence of hummock and hollow microtopography reflects shifting balances of shallow subsidence and root zone expansion along forested wetland river gradients. . Estuaries Coasts 47::175063. . 2024.. Estuaries Coasts 47::176465
    [Google Scholar]
  59. Langston AK, Coleman DJ, Jung NW, Shawler JL, Smith AJ, et al. 2021.. The effect of marsh age on ecosystem function in a rapidly transgressing marsh. . Ecosystems 25::25264
    [Crossref] [Google Scholar]
  60. Liu J, Tokunaga T. 2020.. 3D modeling of tsunami-induced seawater intrusion and aquifer recovery in Niijima Island, Japan, under the future tsunami scenario. . J. Groundw. Hydrol. 62:(2):30322
    [Crossref] [Google Scholar]
  61. Liu X, Conner WH, Song B, Jayakaran AD. 2017.. Forest composition and growth in a freshwater forested wetland community across a salinity gradient in South Carolina, USA. . For. Ecol. Manag. 389::21119
    [Crossref] [Google Scholar]
  62. Mariotti G, Hein CJ. 2022.. Lag in response of coastal barrier-island retreat to sea-level rise. . Nat. Geosci. 15:(8):63338
    [Crossref] [Google Scholar]
  63. Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. 2021.. Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America. . Front. Plant Sci. 12::606908
    [Crossref] [Google Scholar]
  64. McClure K, Kedmenecz A. 2023.. Losing your trees to the sea? Options for Maryland's coastal woodland owners. Rep. FS-2022-0645 , Univ. Md. Ext., College Park:
    [Google Scholar]
  65. McDowell NG, Ball M, Bond-Lamberty B, Kirwan ML, Krauss KW, et al. 2022.. Processes and mechanisms of coastal woody-plant mortality. . Glob. Change Biol. 28:(20):5881900
    [Crossref] [Google Scholar]
  66. Méndez-Alonzo R, López-Portillo J, Moctezuma C, Bartlett MK, Sack L. 2016.. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. . Tree Physiol. 36:(12):156272
    [Crossref] [Google Scholar]
  67. Messerschmidt TC, Langston AK, Kirwan ML. 2021.. Asymmetric root distributions reveal press-pulse responses in retreating coastal forests. . Ecology 102:(10):e03468
    [Crossref] [Google Scholar]
  68. Michael HA, Russoniello CJ, Byron LA. 2013.. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. . Water Resour. Res. 49:(4):222840
    [Crossref] [Google Scholar]
  69. Middleton BA, David JL. 2022.. Trends in vegetation and height of the topographic surface in a tidal freshwater swamp experiencing rooting zone saltwater intrusion. . Ecol. Indic. 145::109637
    [Crossref] [Google Scholar]
  70. Millard K, Redden AM, Webster T, Stewart H. 2013.. Use of GIS and high resolution LiDAR in salt marsh restoration site suitability assessments in the upper Bay of Fundy, Canada. . Wetl. Ecol. Manag. 21::24362
    [Crossref] [Google Scholar]
  71. Miller CB, Rodriguez AB, Bost MC. 2021.. Sea-level rise, localized subsidence, and increased storminess promote saltmarsh transgression across low-gradient upland areas. . Quat. Sci. Rev. 265::107000
    [Crossref] [Google Scholar]
  72. Molino GD, Carr JA, Ganju NK, Kirwan ML. 2022.. Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. . Limnol. Oceanogr. Lett. 7:(4):32131
    [Crossref] [Google Scholar]
  73. Mollema P, Antonellini M, Gabbianelli G, Laghi M, Marconi V, Minchio A. 2012.. Climate and water budget change of a Mediterranean coastal watershed, Ravenna, Italy. . Environ. Earth Sci. 65::25776
    [Crossref] [Google Scholar]
  74. Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, et al. 2014.. Wave attenuation over coastal salt marshes under storm surge conditions. . Nat. Geosci. 7::72731
    [Crossref] [Google Scholar]
  75. Mondal P, Walter M, Miller J, Epanchin-Niell R, Gedan K, et al. 2023.. The spread and cost of saltwater intrusion in the US Mid-Atlantic. . Nat. Sustain. 6::135262
    [Crossref] [Google Scholar]
  76. Munns R, Tester M. 2008.. Mechanisms of salinity tolerance. . Annu. Rev. Plant Biol. 59::65181
    [Crossref] [Google Scholar]
  77. Murray NJ, Worthington TA, Bunting P, Duce S, Hagger V, et al. 2022.. High-resolution mapping of losses and gains of Earth's tidal wetlands. . Science 376:(6594):74449
    [Crossref] [Google Scholar]
  78. Noe GB, Bourg NA, Krauss KW, Duberstein JA, Hupp CR. 2021.. Watershed and estuarine controls both influence plant community and tree growth changes in tidal freshwater forested wetlands along two U.S. mid-Atlantic rivers. . Forests 12:(9):1182
    [Crossref] [Google Scholar]
  79. Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. 2013.. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. . Biogeochemistry 114:(1–3):22544
    [Crossref] [Google Scholar]
  80. Nordio G, Fagherazzi S. 2022.. Salinity increases with water table elevation at the boundary between salt marsh and forest. . J. Hydrol. 608::127576
    [Crossref] [Google Scholar]
  81. Nordio G, Gedan K, Fagherazzi S. 2024.. Storm surges and sea level rise cluster hydrological variables across a coastal forest bordering a salt marsh. . Water Resour. Res. 60:(2):e2022WR033931
    [Crossref] [Google Scholar]
  82. O'Donnell KL, Bernhardt ES, Yang X, Emanuel RE, Ardón M, et al. 2024.. Saltwater intrusion and sea level rise threatens U.S. rural coastal landscapes and communities. . Anthropocene 45::100427
    [Crossref] [Google Scholar]
  83. Osland MJ, Chivoiu B, Enwright NM, Thorne KM, Guntenspergen GR, et al. 2022.. Migration and transformation of coastal wetlands in response to rising seas. . Sci. Adv. 8:(26):eabo5174
    [Crossref] [Google Scholar]
  84. Pezeshki SR, Delaune RD, Patrick WH. 1990.. Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the U.S. Gulf Coast. . For. Ecol. Manag. 33–34::287301
    [Crossref] [Google Scholar]
  85. Post VEA, Houben GJ, van Engelen J. 2018.. What is the Ghijben-Herzberg principle and who formulated it?. Hydrogeol. J. 26:(6):18017
    [Crossref] [Google Scholar]
  86. Poulter B, Christensen NL, Qian SS. 2008.. Tolerance of Pinus taeda and Pinus serotina to low salinity and flooding: implications for equilibrium vegetation dynamics. . J. Veg. Sci. 19:(1):1522
    [Crossref] [Google Scholar]
  87. Poulter B, Qian SS, Christensen NL. 2009.. Determinants of coastal treeline and the role of abiotic and biotic interactions. . Plant Ecol. 202::5566
    [Crossref] [Google Scholar]
  88. Powell EB, Laurent KAS, Dubayah R. 2022.. Lidar-imagery fusion reveals rapid coastal forest loss in Delaware Bay consistent with marsh migration. . Remote Sens. 14:(18):4577
    [Crossref] [Google Scholar]
  89. Pratley J, Kirkegaard J. 2019.. From conservation to automation in the search for sustainability. . In Australian Agriculture in 2020: From Conservation to Automation, ed. J Pratley, J Kirkegaard , pp. 41935. Wagga Wagga:: Aust. Soc. Agron.
    [Google Scholar]
  90. Rabbani MG, Rahman AA, Shoef IJ, Khan ZM. 2015.. Climate change and food security in vulnerable coastal zones of Bangladesh. . In Food Security and Risk Reduction in Bangladesh, ed. U Habiba, AWR Hassan, MA Abedin, R Shaw , pp. 17385. Tokyo:: Springer
    [Google Scholar]
  91. Riddell KM, Webster GR, Hermans JC. 1988.. Effects of deep ripping on chemical and physical properties of a solonetzic soil in East-Central Alberta. . Soil Tillage Res. 12:(1):112
    [Crossref] [Google Scholar]
  92. Rooth JE, Stevenson JC, Cornwell JC. 2003.. Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. . Estuaries 26:(2B):47583
    [Crossref] [Google Scholar]
  93. Saintilan N, Horton B, Törnqvist TE, Ashe EL, Khan NS, et al. 2023.. Widespread retreat of coastal habitat is likely at warming levels above 1.5°C. . Nature 621:(7977):11219
    [Crossref] [Google Scholar]
  94. Santoro VA, Carol E, Kandus P. 2023.. Vegetation changes in coastal wetlands of the outer estuary of the Río de la Plata as a result of anthropic-induced hydrological modification. . Sci. Total Environ. 866::161325
    [Crossref] [Google Scholar]
  95. Schieder NW, Kirwan ML. 2019.. Sea-level driven acceleration in coastal forest retreat. . Geology 47:(12):115155
    [Crossref] [Google Scholar]
  96. Schlesinger WH, Jasechko S. 2014.. Transpiration in the global water cycle. . Agric. For. Meteorol. 189–90::11517
    [Crossref] [Google Scholar]
  97. Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, et al. 2018.. Future response of global coastal wetlands to sea-level rise. . Nature 561:(7722):23134
    [Crossref] [Google Scholar]
  98. Schultz RP. 1997.. Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.). Agric. Handb. 713, US Dep. Agric., Washington, DC:
    [Google Scholar]
  99. Shaw P, Jobe J, Gedan KB. 2022.. Environmental limits on the spread of invasive Phragmites australis into upland forests with marine transgression. . Estuaries Coasts 45:(2):53950
    [Crossref] [Google Scholar]
  100. Shen C, Fan Y, Zou Y, Lu C, Kong J, et al. 2023.. Characterization of hypersaline zones in salt marshes. . Environ. Res. Lett. 18:(4):044028
    [Crossref] [Google Scholar]
  101. Sheng YP, Paramygin VA, Rivera-Nieves AA, Zou R, Fernald S, et al. 2022.. Coastal marshes provide valuable protection for coastal communities from storm-induced wave, flood, and structural loss in a changing climate. . Sci. Rep. 12::3051
    [Crossref] [Google Scholar]
  102. Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018.. Mangrove mortality in a changing climate: an overview. . Estuar. Coast. Shelf Sci. 215::24149
    [Crossref] [Google Scholar]
  103. Smith AJ, Kirwan ML. 2021.. Sea level-driven marsh migration results in rapid net loss of carbon. . Geophys. Res. Lett. 48:(13):e2021GL092420
    [Crossref] [Google Scholar]
  104. Smith AJ, Valentine K, Small JM, Khan A, Gedan K, et al. 2024.. Litter decomposition in retreating coastal forests. . Estuaries Coasts 47::113949
    [Crossref] [Google Scholar]
  105. Smith JAM. 2013.. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. . PLOS ONE 8:(5):e65091
    [Crossref] [Google Scholar]
  106. Smith JAM, Hafner SF, Niles LJ. 2017.. The impact of past management practices on tidal marsh resilience to sea level rise in the Delaware Estuary. . Ocean Coast. Manag. 149::3341
    [Crossref] [Google Scholar]
  107. Sward R, Philbrick A, Morreale J, Baird CJ, Gedan K. 2023.. Shrub expansion in maritime forest responding to sea level rise. . Front. For. Glob. Change 6::1167880
    [Crossref] [Google Scholar]
  108. Taillie PJ, Moorman CE, Poulter B, Ardón M, Emanuel RE. 2019.. Decadal-scale vegetation change driven by salinity at leading edge of rising sea level. . Ecosystems 22:(8):191830
    [Crossref] [Google Scholar]
  109. Tate AS, Battaglia LL. 2013.. Community disassembly and reassembly following experimental storm surge and wrack application. . J. Veg. Sci. 24:(1):4657
    [Crossref] [Google Scholar]
  110. Taylor L, Curson D, Verutes GM, Wilsey C. 2020.. Mapping sea level rise impacts to identify climate change adaptation opportunities in the Chesapeake and Delaware Bays, USA. . Wetl. Ecol. Manag. 28:(3):52741
    [Crossref] [Google Scholar]
  111. Thomas BL, Doyle T, Krauss K. 2015.. Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients. . Wetlands 35:(4):83139
    [Crossref] [Google Scholar]
  112. Tully KL, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, et al. 2019a.. The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. . BioScience 69:(5):36878
    [Crossref] [Google Scholar]
  113. Tully KL, Weissman D, Wyner WJ, Miller J, Jordan T. 2019b.. Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. . Biogeochemistry 142:(3):33956
    [Crossref] [Google Scholar]
  114. Ury EA, Anderson SM, Peet RK, Bernhardt ES, Wright JP. 2020.. Succession, regression and loss: Does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina's coastal plain?. Ann. Bot. 125:(2):25563
    [Google Scholar]
  115. Van Dolah ER, Miller Hesed CD, Paolisso MJ. 2020.. Marsh migration, climate change, and coastal resilience: human dimensions considerations for a fair path forward. . Wetlands 40:(6):175164
    [Crossref] [Google Scholar]
  116. Van Putte N, Temmerman S, Verreydt G, Seuntjens P, Maris T, et al. 2020.. Groundwater dynamics in a restored tidal marsh are limited by historical soil compaction. . Estuar. Coast. Shelf Sci. 244::106101
    [Crossref] [Google Scholar]
  117. Walters DC, Carr JA, Hockaday A, Jones JA, McFarland E, et al. 2021.. Experimental tree mortality does not induce marsh transgression in a Chesapeake Bay low-lying coastal forest. . Front. Mar. Sci. 8::782643
    [Crossref] [Google Scholar]
  118. Wang W, McDowell NG, Pennington S, Grossiord C, Leff RT, et al. 2020.. Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. . Agric. For. Meteorol. 295::108163
    [Crossref] [Google Scholar]
  119. Ward ND, Megonigal JP, Bond-Lamberty B, Bailey VL, Butman D, et al. 2020.. Representing the function and sensitivity of coastal interfaces in Earth system models. . Nat. Commun. 11::2458
    [Crossref] [Google Scholar]
  120. Warnell K, Olander L, Currin C. 2022.. Sea level rise drives carbon and habitat loss in the U.S. mid-Atlantic coastal zone. . PLOS Clim. 1:(6):e0000044
    [Crossref] [Google Scholar]
  121. Weissman D, Ouyang T, Tully KL. 2021.. Saltwater intrusion affects nitrogen, phosphorus and iron transformations under oxic and anoxic conditions: an incubation experiment. . Biogeochemistry 154:(3):45169
    [Crossref] [Google Scholar]
  122. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, et al. 2013.. Seawater intrusion processes, investigation and management: recent advances and future challenges. . Adv. Water Resour. 51::326
    [Crossref] [Google Scholar]
  123. Whitcraft CR, Levin LA. 2007.. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading. . Ecology 88:(4):90417
    [Crossref] [Google Scholar]
  124. White EE, Ury EA, Bernhardt ES, Yang X. 2021.. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. . Ecosystems 25::81227
    [Crossref] [Google Scholar]
  125. Williams K, Ewel KC, Stumpf RP, Putz FE, Workman TW, et al. 1999.. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. . Ecology 80:(6):204563
    [Crossref] [Google Scholar]
  126. Williams K, MacDonald M, McPherson K. 2007.. Ecology of the coastal edge of hydric hammocks on the Gulf Coast of Florida. . In Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States, ed. WH Conner, TW Doyle, KW Krauss , pp. 25589. Dordrecht, Neth:.: Springer
    [Google Scholar]
  127. Wolters M, Garbutt A, Bakker JP. 2005.. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. . Biol. Conserv. 123:(2):24968
    [Crossref] [Google Scholar]
  128. Xu X, Xin P, Yu X. 2024.. Interactions of macropores with tides, evaporation and rainfall and their effects on pore-water salinity in salt marshes. . J. Hydrol. 630::130740
    [Crossref] [Google Scholar]
  129. Young DR, Erickson DL, Semones SW. 1994.. Salinity and the small-scale distribution of three barrier island shrubs. . Can. J. Bot. 72:(9):136572
    [Crossref] [Google Scholar]
  130. Yu X, Xin P, Hong L. 2021.. Effect of evaporation on soil salinization caused by ocean surge inundation. . J. Hydrol. 597::126200
    [Crossref] [Google Scholar]
  131. Yu X, Yang J, Graf T, Koneshloo M, O'Neal MA, Michael HA. 2016.. Impact of topography on groundwater salinization due to ocean surge inundation. . Water Resour. Res. 52:(8):5794812
    [Crossref] [Google Scholar]
  132. Zhang H, Li X, Wang W, Pivovaroff AL, Li W, et al. 2021.. Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. . Plant Physiol. 187:(2):87385
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-070924-031447
Loading
/content/journals/10.1146/annurev-marine-070924-031447
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error