1932

Abstract

Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles' geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-120710-100853
2012-01-15
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/4/1/annurev-marine-120710-100853.html?itemId=/content/journals/10.1146/annurev-marine-120710-100853&mimeType=html&fmt=ahah

Literature Cited

  1. Aas E. 1996. Refractive index of phytoplankton derived from its metabolite composition. J. Plankton Res. 18:2223–49 [Google Scholar]
  2. Agrawal YC, Pottsmith HC. 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168:89–114 [Google Scholar]
  3. Aksnes DL, Nejstgaard J, Soedberg E, Sornes T. 2004. Optical control of fish and zooplankton populations. Limnol. Oceanogr. 49:233–38 [Google Scholar]
  4. Alldredge A. 1998. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep-Sea Res. Part I 45:529–41 [Google Scholar]
  5. Alldredge AL. 2000. Interstitial dissolved organic carbon (DOC) concentrations within sinking marine aggregates and their potential contribution to carbon flux. Limnol. Oceanogr. 45:1245–53 [Google Scholar]
  6. Alldredge AL, Gotschalk C. 1988. In situ settling behavior of marine snow. Limnol. Oceanogr. 33:339–51 [Google Scholar]
  7. Alldredge AL, Passow U, Logan BE. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. Part I 40:1131–40 [Google Scholar]
  8. Alldredge AL, Silver MW. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20:41–82 [Google Scholar]
  9. Alvain S, Moulin C, Dandonneau Y, Loisel H. 2008. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22:GB3001 [Google Scholar]
  10. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. Part II 49:219–36 [Google Scholar]
  11. Aumont O, Bopp L. 2006. Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles 20:GB2017 [Google Scholar]
  12. Aumont O, Maier-Reimer E, Blain S, Monfray P. 2003. An ecosystem model of the global ocean including Fe, Si, P colimitations. Glob. Biogeochem. Cycles 17:GB1060 [Google Scholar]
  13. Babin M, Morel A, Fournier-Sicre V, Fell F, Stramski D. 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48:843–59 [Google Scholar]
  14. Baird ME, Oke PR, Suthers IM, Middleton JH. 2004. A plankton population model with biomechanical descriptions of biological processes in an idealised 2D ocean basin. J. Mar. Syst. 50:199–222 [Google Scholar]
  15. Baird ME, Suthers IM. 2007. A size-resolved pelagic ecosystem model. Ecol. Model. 203:185–203 [Google Scholar]
  16. Beaulieu SE, Mullin MM, Tang VT, Pyne SM, King AL, Twining BS. 1999. Using an optical plankton counter to determine the size distributions of preserved zooplankton samples. J. Plankton Res. 21:1939–56 [Google Scholar]
  17. Benfield MC, Grosjean P, Culverhouse PF, Irigoien X, Sieracki ME. et al. 2007. RAPID: research on automated plankton identification. Oceanography 20:172–87 [Google Scholar]
  18. Berelson WM. 2001. The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies. Oceanography 14:59–67 [Google Scholar]
  19. Betzer PR, Showers WJ, Laws EA, Winn CD, Ditullio GR, Kroopnick PM. 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res. Part I 31:1–11 [Google Scholar]
  20. Biddanda BA, Pomeroy LR. 1988. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. 1. Microbial succession. Mar. Ecol. Prog. Ser. 42:79–88 [Google Scholar]
  21. Boss E, Pegau W, Gardner W, Zaneveld J, Barnard A. et al. 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. J. Geophys. Res. 106:9509–16 [Google Scholar]
  22. Boss E, Slade W, Hill P. 2009a. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass. Opt. Express 17:9408–20 [Google Scholar]
  23. Boss E, Taylor L, Gilbert S, Gundersen K, Hawley N. et al. 2009b. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnol. Oceanogr. Methods 7:803–10 [Google Scholar]
  24. Boyd PW, Newton PP. 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?. Deep-Sea Res. Part I 46:63–91 [Google Scholar]
  25. Boyd PW, Trull TW. 2007. Understanding the export of biogenic particles in oceanic waters: Is there consensus?. Prog. Oceanogr. 72:276–312 [Google Scholar]
  26. Bricaud A, Stramski D. 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnol. Oceanogr. 35:562–82 [Google Scholar]
  27. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89 [Google Scholar]
  28. Brun-Cottan JC. 1971. Etude de la granulométrie des particules marines, mesures effectuées avec un compteur Coulter. Cah. Océanogr. 23:193–205 [Google Scholar]
  29. Buitenhuis E, Le Quere C, Aumont O, Beaugrand G, Bunker A. et al. 2006. Biogeochemical fluxes through mesozooplankton. Glob. Biogeochem. Cycles 20:GB2003 [Google Scholar]
  30. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Aristegui J. et al. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?. Deep-Sea Res. Part II 57:1557–71 [Google Scholar]
  31. Burd AB, Jackson GA. 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1:65–90 [Google Scholar]
  32. Canadell JG, Kirschbaum MUF, Kurz WA, Sanz MJ, Schlamadinger B, Yamagata Y. 2007. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10:370–84 [Google Scholar]
  33. Carlotti F, Sciandra A. 1989. Population dynamics model of Euterpina acutifrons (Copepoda: Harpacticoida) coupling individual growth and larval development. Mar. Ecol. Prog. Ser. 56:225–42 [Google Scholar]
  34. Carlotti F, Wolf KU. 1998. A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model. Fish. Oceanogr. 7:191–204 [Google Scholar]
  35. Caron DA, Davis PG, Madin LP, Sieburth JMN. 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218:795–97 [Google Scholar]
  36. Checkley DM, Davis RE, Herman AW, Jackson GA, Beanlands B, Regier LA. 2008. Assessing plankton and other particles in situ with the SOLOPC. Limnol. Oceanogr. 53:2123–36 [Google Scholar]
  37. Ciotti AM, Bricaud A. 2006. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 4:237–53 [Google Scholar]
  38. Claustre H, Antoine D, Boehme L, Boss E, D'Ortenzio F. et al. 2010. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles. Proc. OceanObs'09: Sustain. Ocean Obs. Inf. Soc. (Vol. 1) Venice, Italy, Sept. 21–25, ESA Publ. WPP-306 [Google Scholar]
  39. Clavano WR, Boss E, Karp-Boss L. 2007. Inherent optical properties of non-spherical marine-like particles—from theory to observation. Oceanogr. Mar. Biol. 45:1–38 [Google Scholar]
  40. Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH. 2003. Polarization vision and its role in biological signaling. Integr. Comp. Biol. 43:549–58 [Google Scholar]
  41. Davis CS, Gallager SM, Solow AR. 1992. Microaggregation of oceanic plankton observed by towed video microscopy. Science 257:230–32 [Google Scholar]
  42. Davis CS, Thwaites FT, Gallager SM, Hu Q. 2005. A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography. Limnol. Oceanogr. Methods 3:59–74 [Google Scholar]
  43. Davoll PJ, Silver MW. 1986. Marine snow aggregates—life-history sequence and microbial community of abandoned larvacean houses from Monterey Bay, California. Mar. Ecol. Prog. Ser. 33:111–20 [Google Scholar]
  44. Dubelaar GBJ, Gerritzen PL. 2000. CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci. Mar. 64:255–65 [Google Scholar]
  45. Duysens LNM. 1956. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19:1–12 [Google Scholar]
  46. Fasham MJR, Duclow HW, Mckelvie SM. 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48:591–639 [Google Scholar]
  47. Fenchel T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14:317–26 [Google Scholar]
  48. Finkel ZV, Irwin AJ. 2000. Modeling size-dependent photosynthesis: light absorption and the allometric rule. J. Theor. Biol. 204:361–69 [Google Scholar]
  49. Finlay K, Beisner Barnett BE. 2007. The use of the Laser Optical Plankton Counter to measure zooplankton size, abundance, and biomass in small freshwater lakes. Limnol. Oceanogr. Methods 5:41–49 [Google Scholar]
  50. Fleming RH. 1939. The control of diatom populations by grazing. J. Cons. Int. Explor. Mer 14:210–27 [Google Scholar]
  51. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46 [Google Scholar]
  52. Gaedke U. 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol. Oceanogr. 37:1202–20 [Google Scholar]
  53. Gallienne CP, Robins DB. 1998. Trans-oceanic characterization of zooplankton community size structure using an optical plankton counter. Fish. Oceanogr. 7:147–58 [Google Scholar]
  54. Gallienne CP, Robins DB, Woodd-Walker RS. 2001. Abundance, distribution and size structure of zooplankton along a 20° west meridional transect of the northeast Atlantic Ocean in July. Deep-Sea Res. Part I 48:925–49 [Google Scholar]
  55. Gardner WD, Richardson MJ, Carlson CA, Hansell D, Mishonov AV. 2003. Determining true particulate organic carbon: bottles, pumps and methodologies. Deep-Sea Res. Part II 50:655–74 [Google Scholar]
  56. Gehlen M, Bopp L, Ernprin N, Aumont O, Heinze C, Raguencau O. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences 3:521–37 [Google Scholar]
  57. Gillooly JF. 2000. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22:241–51 [Google Scholar]
  58. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and temperature on metabolic rate. Science 293:2248–51 [Google Scholar]
  59. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH. 2002. Effects of size and temperature on developmental time. Nature 417:70–73 [Google Scholar]
  60. Glazier DS. 2005. Beyond the “3/4-power law”: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. 80:611–62 [Google Scholar]
  61. Gonzalez-Quiros R, Checkley DM. 2006. Occurrence of fragile particles inferred from optical plankton counters used in situ and to analyze net samples collected simultaneously. J. Geophys. Res. 111C05206 [Google Scholar]
  62. Gorsky G, Aldorf C, Kage M, Picheral M, Garcia Y, Favole J. 1992a. Vertical distribution of suspended aggregates determined by a new underwater video profiler Presented at Coll. Prog. Natl. Determinisme Recrut., 3rd, Nantes, France [Google Scholar]
  63. Gorsky G, Aldorf C, Kage M, Picheral M, Garcia Y, Favole J. 1992b. Vertical distribution of suspended aggregates determined by a new underwater video profiler. Ann. Inst. Océanogr. 68:275–80 [Google Scholar]
  64. Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L. et al. 2010. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32:285–303 [Google Scholar]
  65. Graham GW, Smith W. 2010. The application of holography to the analysis of size and settling velocity of suspended cohesive sediments. Limnol. Oceanogr. Methods 8:1–15 [Google Scholar]
  66. Grossart HP, Kiørboe T, Tang K, Ploug H. 2003. Bacterial colonization of particles: growth and interactions. Appl. Environ. Microbiol. 69:3500–9 [Google Scholar]
  67. Grossart HP, Simon M. 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15:127–40 [Google Scholar]
  68. Guidi L, Jackson GA, Stemmann L, Miquel J, Picheral M, Gorsky G. 2008. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-Sea Res. Part I 55:1364–74 [Google Scholar]
  69. Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H. et al. 2009. Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54:1951–63 [Google Scholar]
  70. Hansen JLS, Kiørboe T, Alldredge AL. 1996. Marine snow derived from abandoned larvacean houses: Sinking rates, particle content and mechanisms of aggregate formation. Mar. Ecol. Prog. Ser. 141:205–15 [Google Scholar]
  71. Hansen PJ, Bjornsen PK, Hansen BW. 1997. Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42:687–704 [Google Scholar]
  72. Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M. 2000. ICES Zooplankton Methodology Manual San Diego: Academic684 [Google Scholar]
  73. Herman AW. 1992. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep-Sea Res. Part I 39:395–415 [Google Scholar]
  74. Herman AW, Beanlands B, Phillips EF. 2004. The next generation of Optical Plankton Counter: the Laser-OPC. J. Plankton Res. 26:1135–45 [Google Scholar]
  75. Herman AW, Harvey M. 2006. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. Oceans 111:C05S05 [Google Scholar]
  76. Hill PS, Boss E, Newgard JP, Law BA, Milligan TG. 2011. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer. J. Geophys. Res. Oceans 116:C02023 [Google Scholar]
  77. Hofmann EE, Ambler JW. 1988. Plankton dynamics on the outer southeastern U.S. Continental Shelf. Part II: a time-dependent biological model. J. Mar. Res. 46:883–917 [Google Scholar]
  78. Huntley ME, Zhou M, Nordhausen W. 1995. Mesoscale distribution of zooplankton in the California Current in late spring, observed by optical plankton counter. J. Mar. Res. 53:647–74 [Google Scholar]
  79. Iversen MH, Nowald N, Ploug H, Jackson GA, Fischer G. 2010. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: degradation processes and ballasting effects. Deep-Sea Res. Part I 57:771–84 [Google Scholar]
  80. Iversen MH, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7:2613–24 [Google Scholar]
  81. Jackson GA. 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Res. Part I 37:1197–211 [Google Scholar]
  82. Jackson GA. 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particulate flux. Limnol. Oceanogr. 38:1328–31 [Google Scholar]
  83. Jackson GA. 1995. Comparing observed changes in particle size spectra with those predicted using coagulation theory. Deep-Sea Res. Part II 42:159–84 [Google Scholar]
  84. Jackson GA. 2001. Effect of coagulation on a model planktonic food web. Deep-Sea Res. Part I 48:95–123 [Google Scholar]
  85. Jackson GA. 2005. Coagulation theory and models of oceanic plankton aggregation. Flocculation in Natural and Engineered Environmental Systems I Droppo, G Leppard, S Liss, T Milligan 271–92 Boca Raton, FL: CRC [Google Scholar]
  86. Jackson GA, Burd AB. 1998. Aggregation in the marine environment. Environ. Sci. Technol. 32:2805–14 [Google Scholar]
  87. Jackson GA, Checkley DM. 2011. Particle size distributions in the upper 100-m water column and their implications for animal feeding in the plankton. Deep-Sea Res. Part I 58:283–97 [Google Scholar]
  88. Jackson GA, Kiørboe T. 2004. Zooplankton use of chemodetection to find and eat particles. Mar. Ecol. Prog. Ser. 269:153–62 [Google Scholar]
  89. Jackson GA, Logan BE, Alldredge AL, Dam HG. 1995. Combining particle-size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques. Deep-Sea Res. Part II 42:139–57 [Google Scholar]
  90. Jackson GA, Maffione R, Costello DK, Alldredge AL, Logan BE, Dam HG. 1997. Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. Part I 44:1739–67 [Google Scholar]
  91. Jennings S, De Oliveira JAA, Warr KJ. 2007. Measurement of body size and abundance in tests of macroecological and food web theory. J. Anim. Ecol. 76:72–82 [Google Scholar]
  92. Jennings S, Warr KJ. 2003. Smaller predator-prey body size ratios in longer food chains. Proc. R. Soc. Lond. Ser. B 270:1413–17 [Google Scholar]
  93. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H. et al. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22:216–25 [Google Scholar]
  94. Jonasz M, Fournier G. 2007. Light Scattering by Particles in Water: Theoretical and Experimental Foundations Amsterdam: Elsevier Sci704 [Google Scholar]
  95. Karp-Boss L, Boss E, Jumars PA. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Annu. Rev. 34:71–107 [Google Scholar]
  96. Kiørboe T. 2000. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol. Oceanogr. 45:479–84 [Google Scholar]
  97. Kiørboe T. 2001. Formation and fate of marine snow: small-scale processes with large-scale implications. Sci. Mar. 65:57–71 [Google Scholar]
  98. Kiørboe T. 2003. Marine snow microbial communities: scaling of abundances with aggregate size. Aquat. Microb. Ecol. 33:67–75 [Google Scholar]
  99. Kiørboe T. 2008. A Mechanistic Approach to Plankton Ecology Princeton, NJ: Princeton Univ. Press [Google Scholar]
  100. Kiørboe T, Grossart HP, Ploug H, Tang K. 2002. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68:3996–4006 [Google Scholar]
  101. Kiørboe T, Grossart HP, Ploug H, Tang K, Auer B. 2004. Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria. Aquat. Microb. Ecol. 35:141–52 [Google Scholar]
  102. Kiørboe T, Jackson GA. 2001. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46:1309–18 [Google Scholar]
  103. Kiørboe T, MacKenzie B. 1995. Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size. J. Plankton Res. 17:2319–31 [Google Scholar]
  104. Kiørboe T, Ploug H, Thygesen UH. 2001. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. Prog. Ser. 211:1–13 [Google Scholar]
  105. Kiørboe T, Thygesen UH. 2001. Fluid motion and solute distribution around sinking aggregates. II. Implications for remote detection by colonizing zooplankters. Mar. Ecol. Prog. Ser. 211:15–25 [Google Scholar]
  106. Kiørboe T, Titelman J. 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J. Plankton Res. 20:1615–36 [Google Scholar]
  107. Kiørboe T, Visser AW. 1999. Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser. 179:81–95 [Google Scholar]
  108. Kostadinov TS, Siegel DA, Maritorena S. 2009. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Oceans 114:C09015 [Google Scholar]
  109. Kostadinov TS, Siegel DA, Maritorena S. 2010. Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences 7:3239–57 [Google Scholar]
  110. Kriest I, Evans GT. 1999. Representing phytoplankton aggregates in biogeochemical models. Deep-Sea Res. Part I 46:1841–59 [Google Scholar]
  111. Kriest I, Evans GT. 2000. A vertically resolved model for phytoplankton aggregation. Proc. Indian Acad. Sci. Earth Planet. Sci. 109:453–69 [Google Scholar]
  112. Lampitt RS. 1992. The contribution of deep-sea macroplankton to organic remineralization: results from sediment trap and zooplankton studies over the Madeira Abyssal Plain. Deep-Sea Res. Part I 39:221–33 [Google Scholar]
  113. Lampitt RS, Wishner KF, Turley CM, Angel MV. 1993. Marine snow studies in the northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116:689–702 [Google Scholar]
  114. Latimer P. 1985. Experimental tests of a theoretical method for predicting light-scattering by aggregates. Appl. Opt. 24:3231–39 [Google Scholar]
  115. Legendre L, Michaud J. 1998. Flux of biogenic carbon in oceans: size-dependent regulation by pelagic food webs. Mar. Ecol. Prog. Ser. 164:1–11 [Google Scholar]
  116. Le Quere C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O. et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11:2016–40 [Google Scholar]
  117. Loisel H, Nicolas JM, Sciandra A, Stramski D, Poteau A. 2006. Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. J. Geophys. Res. Oceans 111:C09O24 [Google Scholar]
  118. Lutz M, Dunbar R, Caldeira K. 2002. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem. Cycles 16:1037 [Google Scholar]
  119. Martin ES, Harris RP, Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res. Part I 53:1560–72 [Google Scholar]
  120. Martin JH, Knauer GA, Karl DM, Broenkow WW. 1987. VERTEX: carbon cycling in the Northeast Pacific. Deep-Sea Res. Part I 34:267–85 [Google Scholar]
  121. Maury O, Faugeras B, Shin YJ, Poggiale JC, Ben Ari T, Marsac F. 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog. Oceanogr. 74:479–99 [Google Scholar]
  122. McCave IN. 1983. Particulate size spectra, behavior, and origin of nepheloid layers over the Nova Scotian continental rise. J. Geophys. Res. 88:7647–66 [Google Scholar]
  123. McCave IN. 1984. Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res. Part I 31:329–52 [Google Scholar]
  124. McDonnell AMP, Buesseler KO. 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55:2085–96 [Google Scholar]
  125. Mikkelsen OA, Hill PS, Milligan TG. 2006. Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J. Sea Res. 55:87–102 [Google Scholar]
  126. Milligan TG. 1996. In situ particle (floc) size measurements with the Benthos 373 plankton silhouette camera. J. Sea Res. 36:93–100 [Google Scholar]
  127. Moore AM, Arango HG, Di Lorenzo E, Cornuelle BD, Miller AJ, Neilson DJ. 2004. A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Model. 7:227–58 [Google Scholar]
  128. Morel A, Bricaud A. 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28:1375–93 [Google Scholar]
  129. Moutin T, Van Wambeke F, Prieur L. 2011. The Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosci. Discuss. 8:8091–160 [Google Scholar]
  130. Olson RJ, Sosik HM. 2007. A submersible imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 5:195–203 [Google Scholar]
  131. Picheral M, Guidi L, Stemmann L, Karl DM, Iddaoud G, Gorsky G. 2010. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8:462–73 [Google Scholar]
  132. Platt T, Denman K. 1978. The structure of pelagic marine ecosystems. J. Cons. Int. Explor. Mer. 173:60–65 [Google Scholar]
  133. Ploug H. 2001. Small-scale oxygen fluxes and remineralization in sinking aggregates. Limnol. Oceanogr. 46:1624–31 [Google Scholar]
  134. Ploug H, Grossart HP. 2000. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45:1467–75 [Google Scholar]
  135. Ploug H, Iversen MH, Fischer G. 2008a. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53:1878–86 [Google Scholar]
  136. Ploug H, Iversen MH, Koski M, Buitenhuis ET. 2008b. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53:469–76 [Google Scholar]
  137. Pomeroy LR, Deibel D. 1980. Aggregation of organic matter by pelagic tunicates. Limnol. Oceanogr. 25:643–52 [Google Scholar]
  138. Ratmeyer V, Wefer G. 1996. A high resolution camera system (ParCa) for imaging particles in the ocean: system design and results from profiles and a three-month deployment. J. Mar. Res. 54:589–603 [Google Scholar]
  139. Riebessel U, Wolf-Gladrow DA. 1992. The relationship between physical aggregation of phytoplankton and vertical flux: a numerical model. Deep-Sea Res. Part I 39:1085–102 [Google Scholar]
  140. Riley GA, Bumpus DF. 1946. Phytoplankton-zooplankton relationships on Georges Bank. J. Mar. Res. 6:33–47 [Google Scholar]
  141. Riley GA, Stommel H, Bumpus F. 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Oceanogr. Coll. 12:1–169 [Google Scholar]
  142. Sarmiento JL, Le Quere C. 1996. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346–50 [Google Scholar]
  143. Schmitt FG, Seuront L. 2001. Multifractal random walk in copepod behavior. Phys. A 301:375–96 [Google Scholar]
  144. Schmitt FG, Seuront L, Hwang JS, Souissi S, Tseng LC. 2006. Scaling of swimming sequences in copepod behavior: data analysis and simulation. Phys. A 364:287–96 [Google Scholar]
  145. Sheldon RW, Sutcliff Wh, Prakash A. 1972. Size distribution of particles in ocean. Limnol. Oceanogr. 17:327–40 [Google Scholar]
  146. Shifrin K. 1988. Physical Optics of Ocean Water New York: AIP285 [Google Scholar]
  147. Sieracki CS, Sieracki ME, Yentsch CS. 1998. An imaging-in-flow system for automated analysis of marine microplankton. Mar. Ecol. Prog. Ser. 168:285–96 [Google Scholar]
  148. Silver MW, Coale SL, Pilskaln CH, Steinberg DR. 1998. Giant aggregates: importance as microbial centers and agents of material flux in the mesopelagic zone. Limnol. Oceanogr. 43:498–507 [Google Scholar]
  149. Silver MW, Gowing MM. 1991. The “particle” flux: origins and biological components. Prog. Oceanogr. 26:75–113 [Google Scholar]
  150. Silver MW, Gowing MM, Brownlee DC, Corliss JO. 1984. Ciliated protozoa associated with oceanic sinking detritus. Nature 309:246–48 [Google Scholar]
  151. Silver MW, Shanks AL, Trent JD. 1978. Marine snow—microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201:371–73 [Google Scholar]
  152. Simon M, Grossart HP, Schweitzer B, Ploug H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28:175–211 [Google Scholar]
  153. Slade W, Boss E, Russo C. 2011. Effects of particle aggregation and disaggregation on their inherent optical properties. Opt. Express 19:7945–59 [Google Scholar]
  154. Smith DC, Simon M, Alldredge AL, Azam F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–42 [Google Scholar]
  155. Smith KL Jr, Ruhl HA, Bett BJ, Billett DSM, Lampitt RS, Kaufmann RS. 2009. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Natl. Acad. Sci. USA 106:19211–18 [Google Scholar]
  156. Sornes TA, Aksnes DL. 2004. Predation efficiency in visual and tactile zooplanktivores. Limnol. Oceanogr. 49:69–75 [Google Scholar]
  157. Sornes TA, Aksnes DL. 2006. Concurrent temporal patterns in light absorbance and fish abundance. Mar. Ecol. Prog. Ser. 325:181–86 [Google Scholar]
  158. Sornes TA, Hosia A, Bamstedt U, Aksnes DL. 2008. Swimming and feeding in Periphylla periphylla (Scyphozoa, Coronatae). Mar. Biol. 153:653–59 [Google Scholar]
  159. Sosik HM, Olson RJ, Neubert MG, Solow AR. 2003. Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnol. Oceanogr. 48:1756–65 [Google Scholar]
  160. Sprules WG, Jin EH, Herman AW, Stockwell JD. 1998. Calibration of an optical plankton counter for use in freshwater. Limnol. Oceanogr. 43:726–33 [Google Scholar]
  161. Sprules WG, Munawar M. 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. Aquat. Sci. 43:1789–94 [Google Scholar]
  162. Stemmann L, Eloire D, Sciandra A, Jackson GA, Guidi L. et al. 2008a. Volume distribution for particles between 3.5 to 2000 μm in the upper 200 m region of the South Pacific Gyre. Biogeosciences 5:299–310 [Google Scholar]
  163. Stemmann L, Gorsky G, Marty JC, Picheral M, Miquel JC. 2002. Four-year study of large-particle vertical distribution (0–1000 m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux. Deep-Sea Res. Part II 49:2143–62 [Google Scholar]
  164. Stemmann L, Jackson GA, Gorsky G. 2004a. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—part II: application to a three year survey in the NW Mediterranean Sea. Deep-Sea Res. Part I 51:885–908 [Google Scholar]
  165. Stemmann L, Jackson GA, Ianson D. 2004b. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—part I: model formulation. Deep-Sea Res. Part I 51:865–84 [Google Scholar]
  166. Stemmann L, Picheral M, Gorsky G. 2000. Diel variation in the vertical distribution of particulate matter (>0.15 mm) in the NW Mediterranean Sea investigated with the Underwater Video Profiler. Deep-Sea Res. Part I 47:505–31 [Google Scholar]
  167. Stemmann L, Robert K, Hosia A, Picheral M, Paterson H. et al. 2008b. Global zoogeography of fragile macrozooplankton in the upper 100–1000 m inferred from the underwater video profiler. ICES J. Mar. Sci. 65:433–42 [Google Scholar]
  168. Stramski D, Boss E, Bogucki D, Voss KJ. 2004. The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr. 61:27–56 [Google Scholar]
  169. Suess E. 1980. Particulate organic-carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288:260–63 [Google Scholar]
  170. Syvitski JPM. 1991. Principles, Methods and Applications of Particle Size Analysis New York: Cambridge Univ. Press368 [Google Scholar]
  171. Trent JD, Shanks AL, Silver MW. 1978. In situ and laboratory measurments on macroscopic aggregates in Monterey Bay, California. Limnol. Oceonogr. 23:626–35 [Google Scholar]
  172. Turley CM, Mackie PJ. 1994. Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Mar. Ecol. Prog. Ser. 115:191–203 [Google Scholar]
  173. Twardowski MS, Boss E, Macdonald JB, Pegau WS, Barnard AH, Zaneveld JRV. 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res. Oceans 106:14129–42 [Google Scholar]
  174. Van de Hulst H. 1981. Light Scattering by Small Particles New York: Dover470 [Google Scholar]
  175. Vanderploeg HA, Roman MR. 2006. Introduction to special section on analysis of zooplankton distributions using the Optical Plankton Counter. J. Geophys. Res. Oceans 111:C05S01 [Google Scholar]
  176. Vidondo B, Prairie YT, Blanco JM, Duarte CM. 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnol. Oceanogr. 42:184–92 [Google Scholar]
  177. Visser AW, Kiørboe T. 2006. Plankton motility patterns and encounter rates. Oecologia 148:538–46 [Google Scholar]
  178. Visser AW, Saito H, Saiz E, Kiørboe T. 2001. Observations of copepod feeding and vertical distribution under natural turbulent conditions in the North Sea. Mar. Biol. 138:1011–19 [Google Scholar]
  179. Volk T, Hoffert MI. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker 99–110 Washington, DC: Am. Geophys. Union627 [Google Scholar]
  180. Volz F. 1954. Die Optik und Meterologie der atmosphärischen Trübung. Ber. Deutch. Wetterdienstes 2:3–47 [Google Scholar]
  181. Von Bertalanffy L. 1957. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32:218–31 [Google Scholar]
  182. West GB, Savage VM, Gillooly J, Enquist BJ, Woodruff WH, Brown JH. 2003. Why does metabolic rate scale with body size?. Nature 421:713 [Google Scholar]
  183. Woodward G, Ebenman B, Ernmerson M, Montoya JM, Olesen JM. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20:402–9 [Google Scholar]
  184. Wyatt P, Jackson C. 1989. Discrimination of phytoplankton via light-scattering properties. Limnol. Oceanog. 34:96–112 [Google Scholar]
  185. Xu R. 2000. Particle Characterization: Light Scattering Methods New York: Springer420 [Google Scholar]
  186. Yentsch C, Yentsch SC. 2008. Cell analysis in biological oceanography and its evolutionary implications. J. Plankton Res. 30:107–17 [Google Scholar]
  187. Zhang X, Twardowski M, Lewis M. 2011. Retrieving compostion and sizes of oceanic particle subpopulations from the volume scattering function. Appl. Opt. 50:1240–59 [Google Scholar]
  188. Zhou M. 2006. What determines the slope of a plankton biomass spectrum?. J. Plankton Res. 28:437–48 [Google Scholar]
  189. Zhou M, Huntley ME. 1997. Population dynamics theory of plankton based on biomass spectra. Mar. Ecol. Prog. Ser. 159:61–73 [Google Scholar]
/content/journals/10.1146/annurev-marine-120710-100853
Loading
/content/journals/10.1146/annurev-marine-120710-100853
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error