There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dam HE, Andersen TR, Madsen MV, Mortensen TK, Pedersen MF. 1.  et al. 2015. Roll and roll-to-roll process scaling through development of a compact flexo unit for printing of back electrodes. Sol. Energy Mater. Sol. Cells 140:187–92 [Google Scholar]
  2. Zhang XQ, Liu K, Sunappan V, Shan XC. 2.  2015. Diamond micro engraving of gravure roller mould for roll-to-roll printing of fine line electronics. J. Mater. Process. Technol. 225:337–46 [Google Scholar]
  3. Sung D, Vornbrock AD, Subramanian V. 3.  2010. Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics. IEEE Trans. Compon. Packag. Technol. 33:105–14 [Google Scholar]
  4. Kang H, Kitsomboonloha R, Jang J, Subramanian V. 4.  2012. High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv. Mater. 24:3065–69 [Google Scholar]
  5. Cen JL, Kitsomboonloha R, Subramanian V. 5.  2014. Cell filling in gravure printing for printed electronics. Langmuir 30:13716–26 [Google Scholar]
  6. Raney JR, Lewis JA. 6.  2015. Printing mesoscale architectures. MRS Bull. 40:943–50 [Google Scholar]
  7. Takagi K, Honma H, Sasabe T. 7.  2003. Development of sequential build-up multilayer printed wiring boards in Japan. IEEE Electr. Insul. Mag. 19:27–56 [Google Scholar]
  8. Espalin D, Muse DW, MacDonald E, Wicker RB. 8.  2014. 3D printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72:963–78 [Google Scholar]
  9. Tian X, Li D, Lu B. 9.  2014. Additive manufacturing: controllable fabrication for integrated micro and macro structures. J. Ceram. Sci. Technol. 5:261–67 [Google Scholar]
  10. Chartier T, Dupas C, Lasgorceix M, Brie J, Champion E. 10.  et al. 2015. Additive manufacturing to produce complex 3D ceramic parts. J. Ceram. Sci. Technol. 6:95–104 [Google Scholar]
  11. Deckers J, Vleugels J, Kruthl JP. 11.  2014. Additive manufacturing of ceramics: a review. J. Ceram. Sci. Technol. 5:245–60 [Google Scholar]
  12. Huang Y, Bu N, Duan Y, Pan Y, Liu H. 12.  et al. 2013. Electrohydrodynamic direct-writing. Nanoscale 5:12007–17 [Google Scholar]
  13. Tang H-H, Yen H-C. 13.  2015. Slurry-based additive manufacturing of ceramic parts by selective laser burn-out. J. Eur. Ceram. Soc. 35:981–87 [Google Scholar]
  14. Scheithauer U, Slawik T, Schwarzer E, Richter HJ, Moritz T, Michaelis A. 14.  2015. Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing (3DTP). J. Ceram. Sci. Technol. 6:125–31 [Google Scholar]
  15. Street RA, Ng TN, Schwartz DE, Whiting GL, Lu JP. 15.  et al. 2015. From printed transistors to printed smart systems. Proc. IEEE 103:607–18 [Google Scholar]
  16. Subramanian V, Chang JB, de la Fuente Vornbrock A, Huang DC, Jagannathan L. 16.  et al. 2008. Printed electronics for low-cost electronic systems: technology status and application development Presented at Solid-State Device Res. Conf., 34th, Edinburgh, Sept. 15–19 17–24 [Google Scholar]
  17. Zocca A, Colombo P, Gomes CM, Guenster J. 17.  2015. Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98:1983–2001 [Google Scholar]
  18. Kahn BE.18.  2007. The M3D aerosol jet system, an alternative to inkjet printing for printed electronics. Org. Printed Electron. 1:14–17 [Google Scholar]
  19. Gysling HJ.19.  2014. Nanoinks in inkjet metallization—evolution of simple additive-type metal patterning. Curr. Opin. Colloid Interface Sci. 19:155–62 [Google Scholar]
  20. Sun J, Ng JH, Fuh YH, Wong YS, Loh HT, Xu Q. 20.  2009. Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsystem Technol. Micro-Nanosystems Inf. Storage Process. Syst. 15:1437–48 [Google Scholar]
  21. Huang QJ, Shen WF, Xu QS, Tan RQ, Song WJ. 21.  2014. Room-temperature sintering of conductive Ag films on paper. Mater. Lett. 123:124–27 [Google Scholar]
  22. Galagan Y, Zimmermann B, Coenen EWC, Jorgensen M, Tanenbaum DM. 22.  et al. 2012. Current collecting grids for ITO-free solar cells. Adv. Energy Mater. 2:103–10 [Google Scholar]
  23. Sungchul J, Baldwin DF. 23.  2010. Advanced package prototyping using nano-particle silver printed interconnects. IEEE Trans. Compon. Packag. Technol. 33:129–34 [Google Scholar]
  24. Conrad JC, Ferreira SR, Yoshikawa J, Shepherd RF, Ahn BY, Lewis JA. 24.  2011. Designing colloidal suspensions for directed materials assembly. Curr. Opin. Colloid Interface Sci. 16:71–79 [Google Scholar]
  25. Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y. 25.  2011. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22:425601 [Google Scholar]
  26. Kamyshny A, Steinke J, Magdassi S. 26.  2011. Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4:19–36 [Google Scholar]
  27. Grouchko M, Popov I, Uvarov V, Magdassi S, Kamyshny A. 27.  2009. Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly. Langmuir 25:2501–3 [Google Scholar]
  28. Li Y, Lu D, Wong CP. 28.  2010. Electrical Conductive Adhesives with Nanotechnologies New York: Springer Science + Business Media [Google Scholar]
  29. Lindemann FA.29.  1910. The calculation of molecular natural frequencies. Phys. Z. 11:609–12 [Google Scholar]
  30. Levitas VI, Samani K. 30.  2011. Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2:284 [Google Scholar]
  31. Nanda KK.31.  2009. Size-dependent melting of nanoparticles: hundred years of thermodynamic model. Pramana 72:617–28 [Google Scholar]
  32. Little SA, Begou T, Collins RW, Marsillac S. 32.  2012. Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry. Appl. Phys. Lett. 100:051107 [Google Scholar]
  33. Kang K, Qin S, Wang C. 33.  2009. Size-dependent melting: numerical calculations of the phonon spectrum. Physica E 41:817–21 [Google Scholar]
  34. Sun J, He L, Lo YC, Xu T, Bi H. 34.  et al. 2014. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13:1007–12 [Google Scholar]
  35. Dominguez O, Champion Y, Bigot J. 35.  1998. Liquidlike sintering behavior of nanometric Fe and Cu powders: experimental approach. Metall. Mater. Trans. A 29:2941–49 [Google Scholar]
  36. Diaz AJ, Ma D, Zinn A, Quintero PO. 36.  2013. Tin nanoparticle–based solder paste for low temperature processing. J. Microelectron. Electron. Packag. 10:129–37 [Google Scholar]
  37. Luo W, Su K, Li K, Liao G, Hu N, Jia M. 37.  2012. Substrate effect on the melting temperature of gold nanoparticles. J. Chem. Phys. 136:234704 [Google Scholar]
  38. Wang K, Stark JPW. 38.  2010. Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink. Appl. Phys. A 99:763–66 [Google Scholar]
  39. Tekin E, Smith PJ, Schubert US. 39.  2008. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–13 [Google Scholar]
  40. Seifert T, Sowade E, Roscher F, Wiemer M, Gessner T, Baumann RR. 40.  2015. Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54:769–79 [Google Scholar]
  41. Navaladian S, Viswanathan B, Viswanath R, Varadarajan T. 41.  2006. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2:44–48 [Google Scholar]
  42. Park J-W, Baek S-G. 42.  2006. Thermal behavior of direct-printed lines of silver nanoparticles. Scr. Mater. 55:1139–42 [Google Scholar]
  43. Lee DJ, Oh JH. 43.  2010. Inkjet printing of conductive Ag lines and their electrical and mechanical characterization. Thin Solid Films 518:6352–56 [Google Scholar]
  44. Hu A, Guo JY, Alarifi H, Patane G, Zhou Y. 44.  et al. 2010. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97:153117 [Google Scholar]
  45. Park BK, Kim D, Jeong S, Moon J, Kim JS. 45.  2007. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515:7706–11 [Google Scholar]
  46. Kim HS, Kang JS, Park JS, Hahn HT, Jung HC, Joung JW. 46.  2009. Inkjet printed electronics for multifunctional composite structure. Compos. Sci. Technol. 69:1256–64 [Google Scholar]
  47. Jeong S, Woo K, Kim D, Lim S, Kim JS. 47.  et al. 2008. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 18:679–86 [Google Scholar]
  48. Magdassi S, Grouchko M, Kamyshny A. 48.  2010. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials 3:4626–38 [Google Scholar]
  49. Woo K, Kim Y, Lee B, Kim J, Moon J. 49.  2011. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. ACS Appl. Mater. Interfaces 3:2377–82 [Google Scholar]
  50. Deng D, Jin Y, Cheng Y, Qi T, Xiao F. 50.  2013. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl. Mater. Interfaces 5:3839–46 [Google Scholar]
  51. Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanpera K. 51.  et al. 2008. Electrical sintering of nanoparticle structures. Nanotechnology 19:175201 [Google Scholar]
  52. Perelaer J, de Gans B-J, Schubert US. 52.  2006. Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18:2101–4 [Google Scholar]
  53. van Dam DB, Le Clerc C. 53.  2004. Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16:3403–14 [Google Scholar]
  54. Stringer J, Derby B. 54.  2009. Limits to feature size and resolution in ink jet printing. J. Eur. Ceram. Soc. 29:913–18 [Google Scholar]
  55. Dou R, Wang T, Guo Y, Derby B, Franks G. 55.  2011. Ink-jet printing of zirconia: coffee staining and line stability. J. Am. Ceram. Soc. 94:3787–92 [Google Scholar]
  56. Park J, Moon J. 56.  2006. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22:3506–13 [Google Scholar]
  57. Kim D, Jeong S, Park BK, Moon J. 57.  2006. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 89:264101 [Google Scholar]
  58. de Gans BJ, Schubert US. 58.  2004. Inkjet printing of well-defined polymer dots and arrays. Langmuir 20:7789–93 [Google Scholar]
  59. Lin JL, Kao ZK, Liao YC. 59.  2013. Preserving precision of inkjet-printed features with solvents of different volatilities. Langmuir 29:11330–36 [Google Scholar]
  60. Zhang ZL, Zhu WY. 60.  2015. Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics. J. Alloys Compd. 649:687–93 [Google Scholar]
  61. Joo S, Baldwin DF. 61.  2010. Advanced package prototyping using nano-particle silver printed interconnects. IEEE Trans. Electron. Packag. Manuf. 33:129–34 [Google Scholar]
  62. Martin JE, Odinek J, Wilcoxon JP, Anderson RA, Provencio P. 62.  2003. Sintering of alkanethiol-capped gold and platinum nanoclusters. J. Phys. Chem. B 107:430–34 [Google Scholar]
  63. Theodorakos I, Zacharatos F, Geremia R, Karnakis D, Zergioti I.63.  2015. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336:157–62 [Google Scholar]
  64. Park T, Kim D. 64.  2015. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates. Thin Solid Films 578:76–82 [Google Scholar]
  65. Paquet C, James R, Kell AJ, Mozenson O, Ferrigno J. 65.  et al. 2014. Photosintering and electrical performance of CuO nanoparticle inks. Org. Electron. 15:1836–42 [Google Scholar]
  66. Park SH, Kim HS. 66.  2014. Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films 550:575–81 [Google Scholar]
  67. Tetzner K, Schroder KA, Bock K. 67.  2014. Photonic curing of sol-gel derived HfO2 dielectrics for organic field-effect transistors. Ceram. Int. 40:15753–61 [Google Scholar]
  68. Norita S, Kumaki D, Kobayashi Y, Sato T, Fukuda K, Tokito S. 68.  2015. Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors. Org. Electron. 25:131–34 [Google Scholar]
  69. Takahashi K, Namiki K, Fujimura T, Jeon EB, Kim HS. 69.  2015. Instant electrode fabrication on carbon-fiber-reinforced plastic structures using metal nano-ink via flash light sintering for smart sensing. Composites B 76:167–73 [Google Scholar]
  70. Sugioka K, Cheng Y. 70.  2014. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1:041303 [Google Scholar]
  71. Yung KC, Gu X, Lee CP, Choy HS. 71.  2010. Ink-jet printing and camera flash sintering of silver tracks on different substrates. J. Mater. Process. Technol. 210:2268–72 [Google Scholar]
  72. Han WS, Hong JM, Kim HS, Song YW. 72.  2011. Multi-pulsed white light sintering of printed Cu nanoinks. Nanotechnology 22:395705 [Google Scholar]
  73. Hwang HJ, Chung WH, Kim HS. 73.  2012. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Nanotechnology 23:485205 [Google Scholar]
  74. Schroder KA.74.  2011. Mechanisms of Photonic Curing™: processing high temperature films on low temperature substrates. Nanotechnology 2:220–23 [Google Scholar]
  75. Chung WH, Hwang HJ, Lee SH, Kim HS. 75.  2013. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology 24:035202 [Google Scholar]
  76. Buchter B, Seidel F, Fritzsche R, Lehmann D, Bulz D. 76.  et al. 2015. Polycrystalline silicon foils by flash lamp annealing of spray-coated silicon nanoparticle dispersions. J. Mater. Sci. 50:6050–59 [Google Scholar]
  77. Sampath S.77.  2013. Opportunities for thermal spray in functional materials, electronics, and sensors. Adv. Mater. Process. 171:69–70 [Google Scholar]
  78. Davis JR.78.  2004. Handbook of Thermal Spray Technology Materials Park, OH: ASM Int. [Google Scholar]
  79. Braguier M, Bejat J, Verna RTM, Aubin G, Naturel C. 79.  1973. Improvements of plasma spraying process for hybrid micro-electronics Presented at Conf. Hybrid Microelectron., Univ. Kent, Canterbury, UK, Sept 25–27 [Google Scholar]
  80. Fairbairn TE. 80.  1971. Spray process for creating electrical circuits US Patent 3,607,381 [Google Scholar]
  81. Smyth RT, Dittrich FJ, Weir JD. 81.  1978. Thermal spraying—a new approach to thick film circuit manufacture Presented at Conf. Adv. Surf. Coat. Technol., London, Feb. 13–15 [Google Scholar]
  82. Gorecka-Drzazga A, Golonka I, Pawlowski L, Fauchais P. 82.  1984. Applications of the plasma spraying process to the production of metal ceramics substrates for hybrid micro-electronics. Rev. Int. Hautes Temp. Refract. 21:153–65 [Google Scholar]
  83. Sampath S.83.  2009. Thermal spray applications in electronics and sensors: past, present, and future. J. Therm. Spray Technol. 19:921–49 [Google Scholar]
  84. Gutleber J, Brogan J, Gambino RJ, Sampath S, Longtin J, Zhu DM. 84.  2006. Embedded temperature and heat flux sensors for advanced health monitoring of turbine engine components. IEEE Aerosp. Conf. Proc. 1–9:4046–54 [Google Scholar]
  85. Longtin J, Sampath S, Tankiewicz S, Gambino RJ, Greenlaw RJ. 85.  2004. Sensors for harsh environments by direct-write thermal spray. IEEE Sens. J. 4:118–21 [Google Scholar]
  86. Ahn K, Wessels BW, Sampath S. 86.  2005. Spinel humidity sensors prepared by thermal spray direct writing. Sens. Actuators B 107:342–46 [Google Scholar]
  87. Liang S, Gambino RJ, Sampath S, Raja MM. 87.  2006. The magnetic properties of plasma-sprayed thick-film manganese zinc ferrite (MZF) and nickel iron alloy (Permalloy) composites. J. Appl. Phys. 99:08M915 [Google Scholar]
  88. Sarobol P, Hall AC, Miller SS, Knight ME, LePage WS. 88.  et al. 2013. Feasibility of Preparing Patterned Molybdenum Coatings on Bismuth Telluride Thermoelectric Modules Albuquerque, NM: Sandia Natl. Lab. [Google Scholar]
  89. Akedo J.89.  2008. Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray Technol. 17:181–98 [Google Scholar]
  90. Imanaka Y, Hayashi N, Takenouchi M, Akedo J. 90.  2006. Technology for embedding capacitors on printed wiring board using aerosol deposition Presented at International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, 2nd (CICMT2006), Denver, April 24–27 [Google Scholar]
  91. Imanaka Y, Hayashi N, Takenouchi M, Akedo J. 91.  2007. Aerosol deposition for post-LTCC. J. Eur. Ceram. Soc. 27:2789–95 [Google Scholar]
  92. Akedo J, Ogiso H. 92.  2006. Room temperature impact consolidation (RTIC) of ceramic fine powder on aerosol deposition Presented at CICMT2006, Denver, April 24–27 [Google Scholar]
  93. Kagotani T, Kobayashi R, Sugimoto S, Inomata K, Okayama K, Akedo J. 93.  2005. Magnetic properties and microwave characteristics of Ni-Zn-Cu ferrite film fabricated by aerosol deposition method. J. Magn. Magn. Mater. 290:1442–45 [Google Scholar]
  94. Akedo J.94.  2006. Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J. Am. Ceram. Soc. 89:1834–39 [Google Scholar]
  95. Akedo J.95.  2004. Aerosol deposition method for fabrication of nano crystal ceramic layer—novel ceramics coating with collision of fine powder at room temperature. Mater. Sci. Forum 449:443–48 [Google Scholar]
  96. Kawakami Y, Yoshikawa H, Komagata K, Akedo J. 96.  2005. Powder preparation for 0.5 Pb(Ni1/3Nb2/3)O3–0.15 PbZrO3–0.35PbTiO3 thick films by the aerosol deposition method. J. Cryst. Growth 275:E1295–300 [Google Scholar]
  97. Akedo J, Lebedev M. 97.  2000. Piezoelectric properties and poling effect of Pb(Zr, Ti)O3 thick films prepared for microactuators by aerosol deposition. Appl. Phys. Lett. 77:1710–12 [Google Scholar]
  98. Exner J, Fuierer P, Moos R. 98.  2015. Aerosol codeposition of ceramics: mixtures of Bi2O3-TiO2 and Bi2O3-V2O5. J. Am. Ceram. Soc. 98:717–23 [Google Scholar]
  99. Sugimoto S, Maki T, Kagotani T, Akedo J, Inomata K. 99.  2005. Effect of applied field during aerosol deposition on the anisotropy of Sm-Fe-N thick films. J. Magn. Magn. Mater. 290:1202–5 [Google Scholar]
  100. Yamaguchi T, Shin KH, Lim PB, Uchida H, Inoue M. 100.  2007. PLZT films prepared by aerosol deposition and their birefringence evaluation. IEEJ Trans. Electr. Electron. Eng. 2:458–62 [Google Scholar]
  101. Johnson SD, Glaser ER, Cheng SF, Kub FJ, Eddy CR. 101.  2014. Characterization of as-deposited and sintered yttrium iron garnet thick films formed by aerosol deposition. Appl. Phys. Expr. 7:035501 [Google Scholar]
  102. Chun DM, Ahn SH. 102.  2011. Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta Mater. 59:2693–703 [Google Scholar]
  103. Park H, Kwon J, Lee I, Lee C. 103.  2015. Shock-induced plasticity and fragmentation phenomena during alumina deposition in the vacuum kinetic spraying process. Scr. Mater. 100:44–47 [Google Scholar]
  104. Imanaka Y, Amada H, Kumasaka F, Takahashi N, Yamasaki T. 104.  et al. 2013. Nanoparticulated dense and stress-free ceramic thick film for material integration. Adv. Eng. Mater. 15:1129–35 [Google Scholar]
  105. Akedo J, Lebedev M. 105.  2002. Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Jpn. J. Appl. Phys. 41:6980–84 [Google Scholar]
  106. Sarobol P, Chandross M, Carroll JD, Mook WM, Bufford DC. 106.  et al. 2016. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations. J. Therm. Spray Technol. 2582–83 [Google Scholar]
  107. Schubert M, Exner J, Moos R. 107.  2014. Influence of carrier gas composition on the stress of Al2O3 coatings prepared by the aerosol deposition method. Materials 7:5633–42 [Google Scholar]
  108. Inoue M, Mitzoguchi M, Lim PB, Uchida H, Shin KH. 108.  2006. Preparation of thick magnetic garnet films with aerosol deposition method and their magnetic properties Presented at CICMT2006, Denver, April 24–27 [Google Scholar]
  109. Furuta T, Hatta S, Kigoshi Y, Hoshina T, Takeda H, Tsurumi T. 109.  2011. Dielectric properties of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Key Eng. Mater. 485:183–86 [Google Scholar]
  110. Eastman T, Cook A. 110.  2014. Direct write electronics—thick films on LTCC. Int. Symp. Microelectron. 1:893–97 [Google Scholar]
  111. Jaffe B, Cook WR, Jaffe HL. 111.  1971. Piezoelectric Ceramics London: Academic [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error