1932

Abstract

Materials informatics provides the foundations for a new paradigm of materials discovery. It shifts our emphasis from one of solely searching among large volumes of data that may be generated by experiment or computation to one of targeted materials discovery via high-throughput identification of the key factors (i.e., “genes”) and via showing how these factors can be quantitatively integrated by statistical learning methods into design rules (i.e., “gene sequencing”) governing targeted materials functionality. However, a critical challenge in discovering these materials genes is the difficulty in unraveling the complexity of the data associated with numerous factors including noise, uncertainty, and the complex diversity of data that one needs to consider (i.e., Big Data). In this article, we explore one aspect of materials informatics, namely how one can efficiently explore for new knowledge in regimes of structure-property space, especially when no reasonable selection pathways based on theory or clear trends in observations exist among an almost infinite set of possibilities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-021132
2015-07-01
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-021132.html?itemId=/content/journals/10.1146/annurev-matsci-070214-021132&mimeType=html&fmt=ahah

Literature Cited

  1. Cartwright JHE, Mackay AL. 1.  2012. Beyond crystals: the dialectic of materials and information. Philos. Trans. R. Soc. A 370:2807–22 [Google Scholar]
  2. Mackay AL. 2.  1995. Generalized crystallography. J. Mol. Crystallogr. 336:293–303 [Google Scholar]
  3. Balachandran P, Broderick SR, Rajan K. 3.  2011. Identifying the “inorganic gene” for high temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467:2271–90 [Google Scholar]
  4. Rajan K. 4.  2013. Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application Oxford, UK: Elsevier [Google Scholar]
  5. Datta S, Pratihar DK, Bandyopadhyay PP. 5.  2012. Modeling of input-output relationships for a plasma spray coating process using soft computing tools. Appl. Soft Comput. 12:3356–68 [Google Scholar]
  6. Farrusseng D, Clerc F, Mirodatos C, Rakotomalala R. 6.  2009. Virtual screening of materials using neuro-genetic approach: concepts and implementation. Comput. Mater. Sci. 45:52–59 [Google Scholar]
  7. Schoolin J, Brown M, Reed PAS. 7.  1999. An example of the use of neural computing techniques in materials science—the modelling of fatigue thresholds in Ni-base superalloys. Mater. Sci. Eng. A 260:222–39 [Google Scholar]
  8. Yang X, Deng W, Zou L, Zhao H, Liu J. 8.  2013. Fatigue behaviors prediction method of welded joints based on soft computing methods. Mater. Sci. Eng. A 559:574–82 [Google Scholar]
  9. Zikapoulous PC, Eaton C, deRoos D, Deutsch T, Lapis G. 9.  2012. Understanding Big Data—Analytics for Enterprise Class Hadoop and Streaming Data New York: McGraw Hill [Google Scholar]
  10. Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B, Lam H. 10.  2011. Combinatorial materials libraries: review of state of the art. ACS Comb. Sci. 13:6579–633 [Google Scholar]
  11. Rajan K. 11.  2008. Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38:299–322 [Google Scholar]
  12. Wales DJ. 12.  2005. The energy landscape as a unifying theme in molecular science. Philos. Trans. R. Soc. A 363:357–75 [Google Scholar]
  13. Jain A, Ping Ong S, Hautier G, Chen W, Richards WD. 13.  et al. 2013. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1:011002 [Google Scholar]
  14. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. 14.  2013. The high-throughput highway to computational materials design. Nat. Mater. 12:3191–201 [Google Scholar]
  15. Hummelshøj JS, Abild-Pedersen F, Studt F, Bligaard T, Nørskov JK. 15.  2012. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51:1272–74 [Google Scholar]
  16. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS. 16.  et al. 2011. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the World Community Grid. J. Phys. Chem. Lett. 2:2241–51 [Google Scholar]
  17. Castelli IE, Huser F, Pandey M, Li H, Thygesen KS. 17.  et al. 2015. New light harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5:14000915 [Google Scholar]
  18. Seko A, Takahashi A, Tanaka I. 18.  2014. Sparse representation for a potential energy surface. Phys. Rev. B 90:024101 [Google Scholar]
  19. Hansen K, Montavon G, Biegler F, Fazli S, Rupp M. 19.  et al. 2013. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9:3404–19 [Google Scholar]
  20. Liu ZK, Chen LQ, Rajan K. 20.  2006. Linking length scales via materials informatics. JOM 58:1142–50 [Google Scholar]
  21. Rajan K. 21.  2014. Nanoinformatics: data-driven materials design for health and environmental needs. Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management, ed. M Hull, D Bowman, pp. 173–98 Waltham, MA: Elsevier, 2nd ed.. [Google Scholar]
  22. Zadeh LA. 22.  1994. Fuzzy logic, neural networks and soft computing. Commun. ACM 37:77–84 [Google Scholar]
  23. Zadeh LA. 23.  1965. Fuzzy sets. Inf. Control 8:338–53 [Google Scholar]
  24. Zadeh LA. 24.  1994. Soft computing and fuzzy logic. IEEE Softw. 11:648–56 [Google Scholar]
  25. Das SK, Kumar A, Das B, Burnwall AP. 25.  2013. On soft computing techniques in various areas. Computer Science and Information Technology (Proc. Conf. ACER-13) R Bhattacharyya, A Kr Bhaumik 56–98 doi: 10.5121/csit.2013.3206 Krishnagar, India: ACER-13 [Google Scholar]
  26. Jang H, Topal E. 26.  2014. A review of soft computing technology applications in several mining problems. Appl. Soft Comput. 222014:638–51 [Google Scholar]
  27. Yager RR. 27.  1978. Fuzzy decision making including unequal objectives. Fuzzy Sets Syst. 1:87–95 [Google Scholar]
  28. Hipel KW. 28.  1982. Fuzzy set methodologies in multicriteria modeling. Fuzzy Information and Decision Processes MM Gupta, E Sanchez 279–88 New York: North-Holland [Google Scholar]
  29. Wilk T, Wozniak M. 29.  2012. Soft computing methods applied to combination of one-class classifiers. Neurocomputing 75:184–93 [Google Scholar]
  30. Perner P. 30.  2014. Mining sparse and big data by case based reasoning. Proc. Comput. Sci. 35:19–33 [Google Scholar]
  31. Saridikas KM, Dentsoras AJ. 31.  2008. Soft computing in engineering design—a review. Adv. Eng. Inform. 22:202–21 [Google Scholar]
  32. Verdegay JL, Yager RR, Bonissone PP. 32.  2008. On heuristics as a fundamental constituent of soft computing. Fuzzy Sets Syst. 159:846–55 [Google Scholar]
  33. Murata N, Park H. 33.  2009. Model selection and information criteria. Information Theory and Statistical Learning F Emmert-Strieb, M Dehmer 333–54 New York: Springer [Google Scholar]
  34. Oduguwa V, Roy R, Farrugia D. 34.  2007. Development of a soft computing–based framework for engineering design optimisation with quantitative and qualitative search spaces. Appl. Soft Comput. 7:166–88 [Google Scholar]
  35. MacKay DJC. 35.  2003. Information Theory, Inference and Learning Algorithms Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  36. Klir GJ, Wierman MK. 36.  1998. Uncertainty-Based Information Heidelberg, Ger: Springer [Google Scholar]
  37. Ghosh A, Jain LC. 37.  2005. Evolutionary Computation in Data Mining Berlin: Springer [Google Scholar]
  38. Inuiguichi M, Hirano S, Tsumoto S. 38.  2003. Rough Set Theory and Granular Computing Berlin: Springer [Google Scholar]
  39. Zhang R, Rajan K. 39.  2014. Statistically based assessment of formation enthalpy for intermetallic compounds. Chem. Phys. Lett. 12:177–81 [Google Scholar]
  40. Bucholz EW, Kong CS, Marchman KR, Sawyer WG, Phillpot SR. 40.  et al. 2012. Data-driven model for estimation of friction coefficient via informatics methods. Tribol. Lett. 47:2211–21 [Google Scholar]
  41. Kong CS, Rajan K. 41.  2012. Rational design of binary halide scintillators via data mining. Nucl. Inst. Methods Phys. Res. A 680:145–54 [Google Scholar]
  42. Broderick SR, Rajan K. 42.  2011. Classification of oxide compounds through data mining density of states spectra. J. Am. Ceram. Soc. 94:92974–80 [Google Scholar]
  43. Broderick S, Rajan K. 43.  2011. Data mining Ti–Al semi-empirical parameters for developing reduced order models. Physica B 406:112055–60 [Google Scholar]
  44. Haste T, Tibshirani R, Friedman J. 44.  2009. The Elements of Statistical Learning, Data Mining, Inference and Prediction Berlin: Springer, 2nd ed.. [Google Scholar]
  45. Kong CS, Luo W, Arapan S, Villars P, Iwata S. 45.  et al. 2012. Information theoretic approach for the discovery of design rules for crystal chemistry. J. Chem. Inf. Model. 52:1812–20 [Google Scholar]
  46. Kong CS, Villars P, Iwata S, Rajan K. 46.  2012. Mapping the ‘materials gene’ for binary intermetallic compounds—a visualization schema for crystallographic databases. J. Comput. Sci. Discov. 5:015004 [Google Scholar]
  47. Kong CS, Broderick SR, Jones TE, Loyola C, Eberhart ME, Rajan K. 47.  2015. Mining for elastic constants of intermetallics from the charge density landscape. Physica B 458:1–7 [Google Scholar]
  48. Agarwal A, Pettersson F, Singh A, Kong CS, Saxén H. 48.  et al. 2009. Identification and optimization of AB2 phases using principal component analysis, evolutionary neural nets, and multiobjective genetic algorithms. Mater. Manuf. Process. 24:3274–81 [Google Scholar]
  49. Pettersson F, Suh C, Saxen H, Rajan K, Chakraborti N. 49.  2009. Analyzing sparse data for nitride spinels using data mining, neural networks and multiobjective genetic algorithms. Mater. Manuf. Process. 24:2–9 [Google Scholar]
  50. Andriotis AN, Mpourmpakis G, Broderick S, Rajan K, Datta S. 50.  et al. 2014. Discovering surface structure–chemistry relationships in catalysts via statistical learning methods. J. Chem. Phys. 140:094705 [Google Scholar]
  51. Ganguly S, Kong CS, Broderick SR, Rajan K. 51.  2013. Informatics based uncertainty quantification in the design of inorganic scintillators. Mater. Manuf. Process. 28:726–32 doi: 10.1080/10426914.2012.736660 [Google Scholar]
  52. Jackson AG, Leclair SR, Ohmer MC, Ziarko W, Al-Kamhwi H. 52.  1996. Rough sets applied to material data. Acta Metall. Mater. 44:4475–84 [Google Scholar]
  53. Jackson AG, Pawlak Z, LeClair SR. 53.  1998. Rough sets applied to the discovery of materials knowledge. J. Alloys Compd. 279:14–21 [Google Scholar]
  54. Pawlak Z. 54.  1997. Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99:48–57 [Google Scholar]
  55. Pawlak Z, Skowron A. 55.  2007. Rudiments of rough sets. Inf. Sci. 177:3–27 [Google Scholar]
  56. Walczak B, Massart DL. 56.  1999. Rough sets theory. Chemom. Intell. Lab. Syst. 47:1–16 [Google Scholar]
  57. Dey P, Bible J, Datta S, Broderick S, Jasinkski J. 57.  2014. Informatics-aided band gap engineering for solar materials. Comput. Mater. Sci. 83:185–95 [Google Scholar]
  58. Broderick S, Rajan K. 58.  2015. Informatics derived materials databases for multifunctional properties. Sci. Technol. Adv. Mater. 16:013501 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-021132
Loading
/content/journals/10.1146/annurev-matsci-070214-021132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error