Many energy-related materials rely on the uptake and release of large quantities of ions, for example, Li+ in batteries, H+ in hydrogen storage materials, and O2− in solid-oxide fuel cell and related materials. These compositional changes often result in large volumetric dilation of the material, commonly referred to as chemical expansion. This article reviews the current knowledge of chemical expansion and aspires to facilitate and promote future research in this field by providing a taxonomy for its sources, along with recent atomistic insights of its origin, aided by recent computational modeling and an overview of factors impacting chemical expansion. We discuss the implications of chemical expansion for mechanical stability and functionality in the energy applications above, as well as in other oxide-based systems. The use of chemical expansion as a new means to probe other materials properties, as well as its contribution to recently investigated electromechanical coupling, is also highlighted.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Miller-Chou BA, Koenig JL. 1.  2003. A review of polymer dissolution. Prog. Polym. Sci. 28:1223–70 [Google Scholar]
  2. Young D.2.  2008. High Temperature Oxidation and Corrosion of Metals Oxford, UK: Elsevier [Google Scholar]
  3. Ding H, Virkar AV, Liu M, Liu F. 3.  2013. Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3−δ: a first principles study. Phys. Chem. Chem. Phys. 15:489–96 [Google Scholar]
  4. Lee W, Han JW, Chen Y, Cai Z, Yildiz B. 4.  2013. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135:7909–25 [Google Scholar]
  5. Wang Y, Duncan K, Wachsman ED, Ebrahimi F. 5.  2007. The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ionics 178:53–58 [Google Scholar]
  6. Kimura Y, Kushi T, Hashimoto S, Amezawa K, Kawada T. 6.  2012. Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co1−yFeyO3−δ. J. Am. Ceram. Soc. 95:2608–13 [Google Scholar]
  7. Amezawa K, Kushi T, Sato K, Unemoto A, Hashimoto S, Kawada T. 7.  2011. Elastic moduli of Ce0.9Gd0.1O2−δ at high temperatures under controlled atmospheres. Solid State Ionics 198:32–38 [Google Scholar]
  8. Wang Y, Duncan KL, Wachsman ED, Ebrahimi F. 8.  2007. Effects of reduction treatment on fracture properties of cerium oxide. J. Am. Ceram. Soc. 90:3908–14 [Google Scholar]
  9. Kumar A, Leonard D, Jesse S, Ciucci F, Eliseev EA. 9.  et al. 2013. Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub–10 nm resolution. ACS Nano 7:3808–14 [Google Scholar]
  10. Kim Y, He J, Biegalski MD, Ambaye H, Lauter V. 10.  et al. 2012. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 11:888–94 [Google Scholar]
  11. Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW. 11.  et al. 2010. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5:749–54 [Google Scholar]
  12. Moreno R, Garcia P, Zapata J, Roqueta J, Chaigneau J, Santiso J. 12.  2013. Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved X-ray diffraction. Chem. Mater. 25:3640–47 [Google Scholar]
  13. Yang Q, Burye TE, Lunt RR, Nicholas JD. 13.  2013. In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method. Solid State Ionics 249–250:123–28 [Google Scholar]
  14. Bishop SR, Kim JJ, Thompson N, Chen D, Kuru Y. 14.  et al. 2011. Mechanical, electrical, and optical properties of (Pr,Ce)O2 solid solutions: kinetic studies. ECS Trans. 35:1137–44 [Google Scholar]
  15. Chatzichristodoulou C, Hendriksen PV, Hagen A. 15.  2010. Defect chemistry and thermomechanical properties of Ce0.8PrxTb0.2−xO2−δ. J. Electrochem. Soc. 157:B299–307 [Google Scholar]
  16. Bishop SR, Tuller HL, Kuru Y, Yildiz B. 16.  2011. Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2−δ: correlation with defect equilibrium model. J. Eur. Ceram. Soc. 31:2351–56 [Google Scholar]
  17. Beaulieu L, Eberman K, Turner R, Krause L, Dahn J. 17.  2001. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4A137–40 [Google Scholar]
  18. Krishnamurthy R, Sheldon BW. 18.  2004. Stresses due to oxygen potential gradients in non-stoichiometric oxides. Acta. Mater. 52:1807–22 [Google Scholar]
  19. Woodford WH, Carter WC, Chiang YM. 19.  2012. Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5:8014–24 [Google Scholar]
  20. Atkinson A, Ramos TMGM. 20.  2000. Chemically-induced stresses in ceramic oxygen ion–conducting membranes. Solid State Ionics 129:259–69 [Google Scholar]
  21. Swaminathan N, Qu J, Sun Y. 21.  2007. An electrochemomechanical theory of defects in ionic solids. I. Theory.. Philos. Mag. 87:1705–21 [Google Scholar]
  22. Kushima A, Yildiz B. 22.  2010. Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain?. J. Mater. Chem. 20:4809–19 [Google Scholar]
  23. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E. 23.  et al. 2008. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321:676–80 [Google Scholar]
  24. Schichtel N, Korte C, Hesse D, Janek J. 24.  2009. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11:3043–48 [Google Scholar]
  25. De Souza RA, Ramadan A, Hoerner S. 25.  2012. Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: a computer simulation study. Energy Environ. Sci. 5:5445–53 [Google Scholar]
  26. Rushton MJD, Chroneos A, Skinner SJ, Kilner JA, Grimes RW. 26.  2013. Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230:37–42 [Google Scholar]
  27. Fabbri E, Pergolesi D, Traversa E. 27.  2010. Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mater. 11:054503 [Google Scholar]
  28. Burbano M, Marrocchelli D, Watson GW. 28.  2013. Strain effects on the ionic conductivity of Y-doped ceria: a simulation study. J. Electroceram. doi:10.1007/s10832-013-9868-y [Google Scholar]
  29. Kalinin SV, Spaldin NA. 29.  2013. Functional ion defects in transition metal oxides. Science 341:858–59 [Google Scholar]
  30. Jiang J, Hertz J. 30.  2014. On the variability of reported ionic conductivity in nanoscale YSZ thin films. J. Electroceram. 3237–46 [Google Scholar]
  31. Kossoy A, Frenkel AI, Wang Q, Wachtel E, Lubomirsky I. 31.  2010. Local structure and strain-induced distortion in Ce0.8Gd0.2O1.9. Adv. Mater. 22:1659–62 [Google Scholar]
  32. Tuller HL, Bishop SR. 32.  2011. Point defects in oxides: tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41:369–98 [Google Scholar]
  33. Swallow JG, Woodford W, Chen Y, Lu Q, Kim JJ. 33.  et al. 2014. Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage. J. Electroceram. 323–27 [Google Scholar]
  34. Duncan KL, Wang Y, Bishop SR, Ebrahimi F, Wachsman ED. 34.  2006. Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89:3162–66 [Google Scholar]
  35. Duncan KL, Wang Y, Bishop SR, Ebrahimi F, Wachsman ED. 35.  2007. The role of point defects in the physical properties of nonstoichiometric ceria. J. Appl. Phys. 101:044906 [Google Scholar]
  36. 36. Merriam-Webster 2013. Definition of stoichiometry http://www.merriam-webster.com/dictionary/stoichiometry [Google Scholar]
  37. Bevan DJM.37.  1955. Ordered intermediate phases in the system CeO2-Ce2O3. J. Inorg. Nucl. Chem. 1:49–59 [Google Scholar]
  38. Brauer G, Gingerich KA. 38.  1960. Über die Oxyde des Cers. V. Hochtemperatur-Röntgenuntersuchungen an ceroxyden. J. Inorg. Nucl. Chem. 16:87–99 [Google Scholar]
  39. Manes L, Parteli E, Mari CM. 39.  1981. A new statistical thermodynamic theory for substoichiometric fluorite structure compounds and its application. 2. Spinoidal points in the G-curves of substoichiometric fluorite structure compounds. Mater. Chem. 6:401–15 [Google Scholar]
  40. Kim D-J.40.  1989. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J. Am. Ceram. Soc. 72:1415–21 [Google Scholar]
  41. Hong SJ, Virkar AV. 41.  1995. Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J. Am. Ceram. Soc. 78:433–39 [Google Scholar]
  42. Marrocchelli D, Bishop SR, Kilner J. 42.  2013. Chemical expansion and its dependence on the host cation radius. J. Mater. Chem. A 1:7673–80 [Google Scholar]
  43. Marrocchelli D, Bishop SR, Tuller HL, Watson GW, Yildiz B. 43.  2012. Charge localization increases chemical expansion in cerium-based oxides. Phys. Chem. Chem. Phys. 14:12070–74 [Google Scholar]
  44. Marrocchelli D, Bishop SR, Tuller HL, Yildiz B. 44.  2012. Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia case studies. Adv. Funct. Mater. 22:1958–65 [Google Scholar]
  45. Vegard L.45.  1921. Die Konstitution der Mischkristalle und die Raumfullung der Atome. Z. Phys. 5:17–26 [Google Scholar]
  46. Mogensen M, Sammes NM, Tompsett GA. 46.  2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94 [Google Scholar]
  47. Larsen PH, Hendriksen PV, Mogensen M. 47.  1997. Dimensional stability and defect chemistry of doped lanthanum chromites. J. Therm. Anal. 49:1263–75 [Google Scholar]
  48. Chen XY, Yu JS, Adler SB. 48.  2005. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1−xSrxCoO3−δ). Chem. Mater. 17:4537–46 [Google Scholar]
  49. Singhal SC, Kendall K. 49.  2003. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications Oxford, UK/New York: Elsevier, 1st ed.. [Google Scholar]
  50. Minh NQ, Takahashi T. 50.  1995. Science and Technology of Ceramic Fuel Cells Amsterdam: Elsevier [Google Scholar]
  51. Stiller C, Thorud B, Seljebø S, Mathisen Ø, Karoliussen H, Bolland O. 51.  2005. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. J. Power Sourc. 141227–40 [Google Scholar]
  52. Demirbas A.52.  2007. Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33:1–18 [Google Scholar]
  53. Mogensen M, Lindegaard T, Hansen U, Mogensen G. 53.  1994. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J. Electrochem. Soc. 141:2122–28 [Google Scholar]
  54. Sato K, Yashiro K, Kawada T, Yugami H, Hashida T, Mizusaki J. 54.  2010. Fracture process of nonstoichiometric oxide based solid oxide fuel cell under oxidizing/reducing gradient conditions. J. Power Sourc. 195:5481–86 [Google Scholar]
  55. Bishop SR, Duncan KL, Wachsman ED. 55.  2010. Thermo-chemical expansion in strontium-doped lanthanum cobalt iron oxide. J. Am. Ceram. Soc. 93:4115–21 [Google Scholar]
  56. Frade JR.56.  2013. Challenges imposed by thermochemical expansion of solid state electrochemical materials. Solid Oxide Fuel Cells: Facts and Figures JTS Irvine, P Connor 95–119 London: Springer-Verlag [Google Scholar]
  57. Kreuer KD.57.  2003. Proton-conducting oxides. Annu. Rev. Mater. Res. 33:333–59 [Google Scholar]
  58. Hiraiwa C, Han D, Kuramitsu A, Kuwabara A, Takeuchi H. 58.  et al. 2013. Chemical expansion and change in lattice constant of Y-Doped BaZrO3 by hydration/dehydration reaction and final heat-treating temperature. J. Am. Ceram. Soc. 96:879–84 [Google Scholar]
  59. Hatae T, Matsuzaki Y, Yamashita S, Yamazaki Y. 59.  2010. Destruction modes of anode-supported SOFC caused by degrees of electrochemical oxidation in redox cycle. J. Electrochem. Soc. 157:B650–54 [Google Scholar]
  60. Yang Z, Liu J, Baskaran S, Imhoff CH, Holladay JD. 60.  2010. Enabling renewable energy and the future grid with advanced electricity storage. J. Mater. 62:14–23 [Google Scholar]
  61. Manthiram A.61.  2011. Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2:176–84 [Google Scholar]
  62. Shannon RD.62.  1976. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:751–67 [Google Scholar]
  63. Ohzuku T, Kitagawa M, Hirai T. 63.  1990. Electrochemistry of manganese dioxide in lithium nonaqueous cell. 3. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J. Electrochem. Soc. 137:769–75 [Google Scholar]
  64. Courtney I, Dahn J. 64.  1997. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144:2045–52 [Google Scholar]
  65. Ohzuku T, Iwakoshi Y, Sawai K. 65.  1993. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140:2490–98 [Google Scholar]
  66. Whittingham MS, Jacobson AJ. 66.  1982. Intercalation Chemistry New York: Academic [Google Scholar]
  67. Ebert LB.67.  1976. Intercalation compounds of graphite. Annu. Rev. Mater. Sci. 6:181–211 [Google Scholar]
  68. Ohzuku T, Ueda A, Yamamoto N. 68.  1995. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142:1431–35 [Google Scholar]
  69. Reimers JN, Dahn JR. 69.  1992. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139:2091–97 [Google Scholar]
  70. Rönnebro ECE, Majzoub EH. 70.  2013. Recent advances in metal hydrides for clean energy applications. MRS Bull. 38:452–58 [Google Scholar]
  71. Woodford WH, Chiang Y, Carter WC. 71.  2010. Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157:A1052–59 [Google Scholar]
  72. Wu H, Chan G, Choi JW, Ryu I, Yao Y. 72.  et al. 2012. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7:309–14 [Google Scholar]
  73. Meethong N, Huang HS, Speakman SA, Carter WC, Chiang Y. 73.  2007. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17:1115–23 [Google Scholar]
  74. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. 74.  2008. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7:665–71 [Google Scholar]
  75. Kooi BJ, Zoestbergen E, De Hosson JTM, Kerssemakers JWJ, Dam B, Ward RCC. 75.  2002. Mechanism of the structural phase transformations in epitaxial YHx switchable mirrors. J. Appl. Phys. 91:1901–9 [Google Scholar]
  76. Remhof A, Borgschulte A. 76.  2008. Thin-film metal hydrides. Chem. Phys. Chem. 9:2440–55 [Google Scholar]
  77. Notten PHL, Daams JLC, De Veirman AEM, Staals AA. 77.  1994. In situ X-ray diffraction: a useful tool to investigate hydride formation reactions. J. Alloy. Compd. 209:85–91 [Google Scholar]
  78. Notten PHL, Daams JLC, Einerhand REF. 78.  1994. On the nature of the electrochemical cycling stability of nonstoichiometric LaNi5-based hydride-forming compounds. 2. In-situ X-ray diffractometry. J. Alloy. Compd. 210:233–41 [Google Scholar]
  79. Sandrock G.79.  1999. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloy. Compd. 293:877–88 [Google Scholar]
  80. Huggins RA, Nix WD. 80.  2000. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6:57–63 [Google Scholar]
  81. Pundt A, Kirchheim R. 81.  2006. Hydrogen in metals: microstructural aspects. Annu. Rev. Mater. Res. 36:555–608 [Google Scholar]
  82. Alefeld G.82.  1969. Hydrogen in metals as a model for a lattice gas with phase transformations. Phys. Status Solid. 32:67–80 [Google Scholar]
  83. Hjorvarsson B, Andersson G, Karlsson E. 83.  1997. Metallic superlattices: quasi two-dimensional playground for hydrogen. J. Alloy. Compd. 253:51–57 [Google Scholar]
  84. Bindeman I.84.  2005. Fragmentation phenomena in populations of magmatic crystals. Am. Miner. 90:1801–15 [Google Scholar]
  85. Sato K, Omura H, Hashida T, Yashiro K, Yugami H. 85.  et al. 2006. Tracking the onset of damage mechanism in ceria-based solid oxide fuel cells under simulated operating conditions. J. Test. Eval. 34:246–50 [Google Scholar]
  86. Didier-Laurent S, Idrissi H, Roue L. 86.  2008. In-situ study of the cracking of metal hydride electrodes by acoustic emission technique. J. Power Sourc. 179:412–16 [Google Scholar]
  87. Sugiura M.87.  2003. Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catal. Surv. Asia 7:77–87 [Google Scholar]
  88. Gorte RJ.88.  2010. Ceria in catalysis: from automotive applications to the water gas shift reaction. AIChe J. 56:1126–35 [Google Scholar]
  89. Cava RJ, Batlogg B, Rabe KM, Rietman EA, Gallagher PK, Rupp LW. 89.  1988. Structural anomalies at the disappearance of superconductivity in Ba2YCu3O7−δ: evidence for charge transfer from chains to planes. Physica C 156:523–27 [Google Scholar]
  90. Farneth WE, Bordia RK, McCarron EM, Crawford MK, Flippen RB. 90.  1988. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa2Cu3Ox. Solid State Commun. 66:953–59 [Google Scholar]
  91. Kuru Y, Usman M, Cristiani G, Habermeier HU. 91.  2010. Microstructural changes in epitaxial YBa2Cu3O7−δ thin films due to creation of O vacancies. J. Cryst. Growth 312:2904–8 [Google Scholar]
  92. Martin R, Omikrine Metalssi O, Toutlemonde F. 92.  2013. Importance of considering the coupling between transfer properties, alkali leaching and expansion in the modelling of concrete beams affected by internal swelling reactions. Constr. Build. Mater. 49:23–30 [Google Scholar]
  93. Adler SB.93.  2001. Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84:2117–19 [Google Scholar]
  94. Tuller HL, Nowick AS. 94.  1979. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J. Electrochem. Soc. 126:209–17 [Google Scholar]
  95. Bishop SR, Duncan KL, Wachsman ED. 95.  2009. Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta. Mater. 57:3596–605 [Google Scholar]
  96. Wuensch BJ, Tuller HL. 96.  1994. Lattice diffusion, grain-boundary diffusion and defect structure of ZnO. J. Phys. Chem. Solids 55:975–84 [Google Scholar]
  97. Stratton TG, Tuller HL. 97.  1987. Thermodynamic and transport studies of mixed oxides: the CeO2-UO2 system. J. Chem. Soc. Faraday Trans. 83:1143–56 [Google Scholar]
  98. Choi GM, Tuller HL, Goldschmidt D. 98.  1986. Electronic-transport behavior in single-crystalline Ba0.03Sr0.97TiO3. Phys. Rev. B 34:6972–79 [Google Scholar]
  99. Choi GM, Tuller HL. 99.  1988. Defect structure and electrical properties of single-crystal Ba0.03Sr0.97TiO3. J. Am. Ceram. Soc. 71:201–5 [Google Scholar]
  100. Kuhn M, Kim JJ, Bishop SR, Tuller HL. 100.  2013. Oxygen nonstoichiometry and defect chemistry of perovskite-structured BaxSr1−xTi1−yFeyO3−y/2+δ solid solutions. Chem. Mater. 25:2970–75 [Google Scholar]
  101. Bishop SR, Stefanik TS, Tuller HL. 101.  2012. Defects and transport in PrxCe1−xO2−δ: composition trends. J. Mater. Res. 27:2009–16 [Google Scholar]
  102. Yuan L, Wang Z, Zhang W, Hu X, Chen J. 102.  et al. 2011. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4:269–84 [Google Scholar]
  103. Andersson A, Kalska B, Haggstrom L, Thomas J. 103.  2000. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130:41–52 [Google Scholar]
  104. Zhu C, Weichert K, Maier J. 104.  2011. Electronic conductivity and defect chemistry of heterosite FePO4. Adv. Funct. Mater. 21:1917–21 [Google Scholar]
  105. Mogensen G, Mogensen M. 105.  1993. Reduction reactions in doped ceria ceramics studied by dilatometry. Thermochim. Acta 214:47–50 [Google Scholar]
  106. Chiang HW, Blumenthal RN, Fournelle RA. 106.  1993. A high-temperature lattice-parameter and dilatometer study of the defect structure of nonstoichiometric cerium dioxide. Solid State Ionics 66:85–95 [Google Scholar]
  107. Chen X, Grande T. 107.  2013. Anisotropic chemical expansion of La1−xSrxCoO3−δ. Chem. Mater. 25:927–34 [Google Scholar]
  108. Chen X, Grande T. 108.  2013. Anisotropic and nonlinear thermal and chemical expansion of La1−xSrxFeO3−δ (x = 0.3, 0.4, 0.5) perovskite materials. Chem. Mater. 25:3296–306 [Google Scholar]
  109. Grande T, Tolchard JR, Selbach SM. 109.  2012. Anisotropic thermal and chemical expansion in Sr-substituted LaMnO3+δ: implications for chemical strain relaxation. Chem. Mater. 24:338–45 [Google Scholar]
  110. Mastin J, Einarsrud M, Grande T. 110.  2006. Structural and thermal properties of La1−xSrxCoO3−δ. Chem. Mater. 18:6047–53 [Google Scholar]
  111. Huang KQ, Tichy RS, Goodenough JB. 111.  1998. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3. I. Phase relationships and electrical properties. J. Am. Ceram. Soc. 81:2565–75 [Google Scholar]
  112. Lu XC, Zhu JH. 112.  2008. Effect of Sr and Mg doping on the property and performance of the La1−xSrxGa1−yMgyO3−δ electrolyte. J. Electrochem. Soc. 155:B494–503 [Google Scholar]
  113. Skowron A, Huang P, Petric A. 113.  1999. Structural study of La0.8Sr0.2Ga0.85Mg0.15O2.825. J. Solid State Chem. 143:202–9 [Google Scholar]
  114. Hayashi H, Suzuki M, Inaba H. 114.  2000. Thermal expansion of Sr- and Mg-doped LaGaO3. Solid State Ionics 128:131–39 [Google Scholar]
  115. Drennan J, Zelizko V, Hay D, Ciacchi FT, Rajendran S, Badwal SPS. 115.  1997. Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3−x. J. Mater. Chem. 7:79–83 [Google Scholar]
  116. Zuev A, Singheiser L, Hilpert K. 116.  2002. Defect structure and isothermal expansion of A-site and B-site substituted lanthanum chromites. Solid State Ionics 147:1–11 [Google Scholar]
  117. Zuev AY, Sereda VV, Tsvetkov DS. 117.  2012. Defect structure and defect-induced expansion of MIEC oxides: doped lanthanum cobaltites. J. Electrochem. Soc. 159:F594–99 [Google Scholar]
  118. Zuev AY, Vylkov AI, Petrov AN, Tsvetkov DS. 118.  2008. Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3−δ. Solid State Ionics 179:1876–79 [Google Scholar]
  119. Verma AS, Jindal VK. 119.  2009. Lattice constant of cubic perovskites. J. Alloy. Compd. 485:514–18 [Google Scholar]
  120. Ubic R, Subodh G. 120.  2009. The prediction of lattice constants in orthorhombic perovskites. J. Alloy. Compd. 488:374–79 [Google Scholar]
  121. Moreira RL, Dias A. 121.  2007. Comment on “Prediction of lattice constant in cubic perovskites.”. J. Phys. Chem. Solids 68:1617–22 [Google Scholar]
  122. Jiang LQ, Guo JK, Liu HB, Zhu M, Zhou X. 122.  et al. 2006. Prediction of lattice constant in cubic perovskites. J. Phys. Chem. Solids 67:1531–36 [Google Scholar]
  123. Perry NH, Thomas JE, Marrocchelli D, Bishop SR, Tuller HL. 123.  2013. Isolating the role of charge localization in chemical expansion: (La,Sr)(Ga,Ni)O3−δ case study. ECS Trans. 57:1879–84 [Google Scholar]
  124. Kharton VV, Kovalevsky AV, Avdeev M, Tsipis EV, Patrakeev MV. 124.  et al. 2007. Chemically induced expansion of La2NiO4+δ-based materials. Chem. Mater. 19:2027–33 [Google Scholar]
  125. Nakamura T, Yashiro K, Sato K, Mizusaki J. 125.  2010. Thermally-induced and chemically-induced structural changes in layered perovskite-type oxides Nd2−xSrxNiO4+δ (x = 0, 0.2, 0.4). Solid State Ionics 181:402–11 [Google Scholar]
  126. Chatzichristodoulou C, Hauback BC, Hendriksen PV. 126.  2013. In situ X-ray and neutron diffraction of the Ruddlesden–Popper compounds (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr): structure and CO2 stability. J. Solid State Chem. 201:164–71 [Google Scholar]
  127. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B. 127.  2006. Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. USA 103:3518–21 [Google Scholar]
  128. Omar S, Wachsman ED, Nino JC. 128.  2007. Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl. Phys. Lett. 91:144106 [Google Scholar]
  129. Ralph JM, Przydatek J, Kilner J, Seguelong T. 129.  1997. Novel doping systems in ceria. Ber. Bunsen Phys. Chem. 101:1403–7 [Google Scholar]
  130. 130.  Deleted in proof
  131. Tuller HL, Nowick AS. 131.  1977. Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38:859–67 [Google Scholar]
  132. Wang B, Lewis RJ, Cormack AN. 132.  2011. Computer simulations of large-scale defect clustering and nanodomain structure in gadolinia-doped ceria. Acta Mater. 59:2035–45 [Google Scholar]
  133. Kilner JA, Waters CD. 133.  1982. The effects of dopant cation oxygen vacancy complexes on the anion transport-properties of nonstoichiometric fluorite oxides. Solid State Ionics 6:253–59 [Google Scholar]
  134. Wachsman ED.134.  2004. Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J. Eur. Ceram. Soc. 24:1281–85 [Google Scholar]
  135. Omar S, Nino JC. 135.  2013. Consistency in the chemical expansion of fluorites: a thermal revision of the doped ceria. Acta Mater. 61:5406–13 [Google Scholar]
  136. Inaba H, Tagawa H. 136.  1996. Ceria-based solid electrolytes: review. Solid State Ionics 83:1–16 [Google Scholar]
  137. Wang B, Cormack AN. 137.  2013. Strain modulation of defect structure in gadolinia-doped ceria. J. Phys. Chem. C 117:146–51 [Google Scholar]
  138. Bishop SR, Duncan KL, Wachsman ED. 138.  2009. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim. Acta 54:1436–43 [Google Scholar]
  139. Kossoy A, Wachtel E, Lubomirsky I. 139.  2013. On the Poisson ratio and XRD determination of strain in thin films of Ce0.8Gd0.2O1.9. J. Electroceram. doi:10.1007/s10832-013-9835-7 [Google Scholar]
  140. Wang S, Katsuki M, Dokiya M, Hashimoto T. 140.  2003. High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ionics 159:71–78 [Google Scholar]
  141. Bishop SR.141.  2013. Chemical expansion of solid oxide fuel cell materials: a brief overview. Acta Mech. Sin. 29:312–17 [Google Scholar]
  142. Chatzichristodoulou C, Sogaard M, Glasscock J, Kaiser A, Foghmoes SPV, Hendriksen PV. 142.  2011. Oxygen permeation in thin, dense Ce0.9Gd0.1O1.95−δ membranes. II. Experimental determination. J. Electrochem. Soc. 158:F73–83 [Google Scholar]
  143. Chatzichristodoulou C, Søgaard M, Hendriksen PV. 143.  2011. Oxygen permeation in thin, dense Ce0.9Gd0.1O1.95−δ membranes. I. Model study. J. Electrochem. Soc. 158:F61–72 [Google Scholar]
  144. Hendriksen PV, Høgsberg JR, Kjeldsen AM, Sørensen BF, Pedersen HG. 144.  2007. Failure modes of thin supported membranes. Advances in Solid Oxide Fuel Cells II: Ceramic Engineering and Science Proceedings NP Bansal, A Wereszczak, E Lara-Curzio 347–60 New York: Wiley [Google Scholar]
  145. Kaiser A, Foghmoes S, Chatzichristodoulou C, Sogaard M, Glasscock JA. 145.  et al. 2011. Evaluation of thin film ceria membranes for syngas membrane reactors: preparation, characterization and testing. J. Membr. Sci. 378:51–60 [Google Scholar]
  146. Atkinson A.146.  1997. Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–58 [Google Scholar]
  147. Terada K, Kawada T, Sato K, Iguchi F, Yashiro K. 147.  et al. 2011. Multiscale simulation of electro-chemo-mechanical coupling behavior of PEN structure under SOFC operation. ECS Trans. 35:923–33 [Google Scholar]
  148. Bishop SR, Tuller HL. 148.  2012. Development of a predictive thermo-chemical expansion and stress model in (Pr,Ce)O2−δ. ECS Trans. 41:153–59 [Google Scholar]
  149. Kawada T, Masumitsu T, Kimura Y, Watanabe S, Hashimoto S. 149.  et al. 2014. Transient shift of local oxygen potential in nonstoichiometric oxides upon application of mechanical stress. J. Electroceram. 3278–85 [Google Scholar]
  150. Kim Y, Kelly SJ, Morozovska A, Rahani EK, Strelcov E. 150.  et al. 2013. Mechanical control of electroresistive switching. Nano Lett. 13:4068–74 [Google Scholar]
  151. Nakamura T, Yashiro K, Sato K, Mizusaki J. 151.  2010. Structural analysis of La2−xSrxNiO4+δ by high temperature X-ray diffraction. Solid State Ionics 181:292–99 [Google Scholar]
  152. Bishop SR, Marrocchelli D, Fang W, Amezawa K, Yashiro K, Watson GW. 152.  2013. Reducing the chemical expansion coefficient in ceria by addition of zirconia. Energy Environ. Sci. 6:1142–46 [Google Scholar]
  153. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM. 153.  2006. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chem. Mater. 18:2187–93 [Google Scholar]
  154. Li Y, Maxey ER, Richardson JW Jr, Ma B, Lee TH, Song S. 154.  2007. Oxygen non-stoichiometry and thermal-chemical expansion of Ce0.8Y0.2O1.9−δ electrolytes by neutron diffraction. J. Am. Ceram. Soc. 90:1208–14 [Google Scholar]
  155. Magraso A, Hervoches CH, Ahmed I, Hull S, Nordstrom J. 155.  et al. 2013. In situ high temperature powder neutron diffraction study of undoped and Ca-doped La28−xW4+xO54+3x/2 (x = 0.85). J. Mater. Chem. 1:3774–82 [Google Scholar]
  156. Hull S, Norberg ST, Ahmed I, Eriksson SG, Marrocchelli D, Madden PA. 156.  2009. Oxygen vacancy ordering within anion-deficient ceria. J. Solid State Chem. 182:2815–21 [Google Scholar]
  157. Valentin O, Millot F, Blond É, Richet N, Julian A. 157.  et al. 2011. Chemical expansion of La0.8Sr0.2Fe0.7Ga0.3O3−δ. Solid State Ionics 193:23–31 [Google Scholar]
  158. Mba JMA, Croguennec L, Basir NI, Barker J, Masquelier C. 158.  2012. Lithium insertion or extraction from/into Tavorite-type LiVPO4F: an in situ X-ray diffraction study. J. Electrochem. Soc. 159:A1171–75 [Google Scholar]
  159. Schober T, Friedrich J, Triefenbach D, Tietz F. 159.  1997. Dilatometry of the high-temperature proton conductor Ba3Ca1.18Nb1.82O9−δ. Solid State Ionics 100:173–81 [Google Scholar]
  160. Kharton VV, Yaremchenko AA, Patrakeev MV, Naumovich EN, Marques FMB. 160.  2003. Thermal and chemical induced expansion of La0.3Sr0.7(Fe,Ga)O3−δ ceramics. J. Eur. Ceram. Soc. 23:1417–26 [Google Scholar]
  161. Winter M, Wrodnigg G, Besenhard J, Biberacher W, Novak P. 161.  2000. Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes. J. Electrochem. Soc. 147:2427–31 [Google Scholar]
  162. Golovnya AV, Pokrovskii VY. 162.  2003. Interferometric setup for measurements of expansion of whisker-like samples. Rev. Sci. Instrum. 74:4418–22 [Google Scholar]
  163. Kompan TA, Korenev AS, Pukhov NF, Gurov IP, Dudina TF, Margaryants NB. 163.  2011. The speckle interferometry method for determining the thermal expansion of nanomaterials. Meas. Tech. 54:434–41 [Google Scholar]
  164. Phillips LC, Kelly RG, Wagner JW, Moran PJ. 164.  1986. An investigation of the volume change associated with discharge of lithium iodine batteries via holographic interferometric techniques. J. Electrochem. Soc. 1331–5 [Google Scholar]
  165. Briers JD.165.  1993. Holographic, speckle and moiré techniques in optical metrology. Prog. Quant. Electron. 17:167–233 [Google Scholar]
  166. Pan B, Xie H, Hua T, Asundi A. 166.  2009. Measurement of coefficient of thermal expansion of films using digital image correlation method. Polym. Test. 28:75–83 [Google Scholar]
  167. Malzbender J.167.  2010. Curvature and stresses for bi-layer functional ceramic materials. J. Eur. Ceram. Soc. 30:3407–13 [Google Scholar]
  168. Floro JA, Chason E, Lee SR. 168.  1996. Real time measurement of epilayer strain using a simplified wafer curvature technique. MRS Proc. 405:381–86 [Google Scholar]
  169. Bhatia S, Sheldon BW. 169.  2008. Compositional stresses in polycrystalline titania films. J. Am. Ceram. Soc. 91:3986–93 [Google Scholar]
  170. Bullard JW III, Smith RL. 170.  2003. Structural evolution of the MoO3(010) surface during lithium intercalation. Solid State Ionics 160:335–49 [Google Scholar]
  171. Affoune A, Yamada A, Umeda M. 171.  2005. Conductivity and surface morphology of Nafion membrane in water and alcohol environments. J. Power Sourc. 148:9–17 [Google Scholar]
  172. Smela E, Gadegaard N. 172.  2001. Volume change in polypyrrole studied by atomic force microscopy. J. Phys. Chem. B 105:9395–405 [Google Scholar]
  173. Arruda TM, Heon M, Presser V, Hillesheim PC, Dai S. 173.  et al. 2013. In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ. Sci. 6:225–31 [Google Scholar]
  174. Animitsa I, Nieman A, Titova S, Kochetova N, Isaeva E. 174.  et al. 2003. Phase relations during water incorporation in the oxygen and proton conductor Sr6Ta2O11. Solid State Ionics 156:95–102 [Google Scholar]
  175. Liu L, Lee T, Qiu L, Yang Y, Jacobson A. 175.  1996. A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, SrCo0.8Fe0.2O3−δ. Mater. Res. Bull. 31:29–35 [Google Scholar]
  176. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H. 176.  1989. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J. Solid State Chem. 80:102–11 [Google Scholar]
  177. Mizusaki J, Yoshihiro M, Yamauchi S, Fueki K. 177.  1985. Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−δ. J. Solid State Chem. 58:257–66 [Google Scholar]
  178. Chatzichristodoulou C, Hendriksen PV. 178.  2010. Oxygen nonstoichiometry and defect chemistry modeling of Ce0.8Pr0.2O2−δ. J. Electrochem. Soc. 157:B481–89 [Google Scholar]
  179. Tsvetkov DS, Sereda VV, Zuev AY. 179.  2010. Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo2O6−δ. Solid State Ionics 180:1620–25 [Google Scholar]
  180. Lankhorst MHR, Bouwmeester HJM. 180.  1997. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen coulometric titration. 2. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3−δ. J. Electrochem. Soc. 144:1268–73 [Google Scholar]
  181. Patrakeev MV, Leonidov IA, Kozhevnikov VL. 181.  2011. Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides. J. Solid State Electrochem. 15:931–54 [Google Scholar]
  182. Birke P, Weppner W. 182.  1997. Electrochemical analysis of thin film electrolytes and electrodes for application in rechargeable all solid state lithium microbatteries. Electrochim. Acta 42:3375–84 [Google Scholar]
  183. Chen D, Bishop SR, Tuller HL. 183.  2012. Non-stoichiometry in oxide thin films: a chemical capacitance study of the praseodymium-cerium oxide system. Adv. Funct. Mater. 23:2168–74 [Google Scholar]
  184. Chueh WC, Haile SM. 184.  2009. Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Phys. Chem. Chem. Phys. 11:8144–48 [Google Scholar]
  185. Jamnik J, Maier J. 185.  2001. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3:1668–78 [Google Scholar]
  186. Baumann FS, Fleig J, Habermeier HU, Maier J. 186.  2006. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ionics 177:1071–81 [Google Scholar]
  187. Waser R, Bieger T, Maier J. 187.  1990. Determination of acceptor concentrations and energy-levels in oxides using an optoelectrochemical technique. Solid State Commun. 76:1077–81 [Google Scholar]
  188. Sasaki K, Maier J. 188.  2000. Re-analysis of defect equilibria and transport parameters in Y2O3-stabilized ZrO2 using EPR and optical relaxation. Solid State Ionics 134:303–21 [Google Scholar]
  189. Kim JJ, Bishop SR, Thompson N, Chen D, Tuller HL. 189.  2014. Investigation of nonstoichiometry in oxide thin films by simultaneous in situ optical absorption and chemical capacitance measurements: Pr doped ceria—case study. Chem. Mater. 261374–79 [Google Scholar]
  190. Liu XH, Huang JY. 190.  2011. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4:3844–60 [Google Scholar]
  191. Wang C, Li X, Wang Z, Xu W, Liu J. 191.  et al. 2012. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12:1624–32 [Google Scholar]
  192. Chatzichristodoulou C, Schönbeck C, Hagen A, Hendriksen PV. 192.  2013. Defect chemistry, thermomechanical and transport properties of (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr). Solid State Ionics 232:68–79 [Google Scholar]
  193. Armstrong TR, Stevenson JW, Pederson LR, Raney PE. 193.  1996. Dimensional instability of doped lanthanum chromite. J. Electrochem. Soc. 143:2919–25 [Google Scholar]
  194. Hendriksen PV, Hoegh J, Hansen JR, Larsen PH, Solvang M. 194.  et al. 2008. Electrical conductivity and dimensional stability of co-doped lanthanum chromites. Proc. Electrochem. Soc. 25:349–67 [Google Scholar]
  195. Miyoshi S, Hong J, Yashiro K, Kaimai A, Nigara Y. 195.  et al. 2003. Lattice expansion upon reduction of perovskite-type LaMnO3 with oxygen-deficit nonstoichiometry. Solid State Ionics 161:209–17 [Google Scholar]
  196. Bishop SR, Marrocchelli D, Chatzichristodoulou C.196.  2014. Defining chemical expansion: the choice of units for the stoichiometric expansion coefficient. Phys. Chem. Chem. Phys. In press; doi:10.1039/C4CP01096E [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error