Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion–strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Chu S, Majumdar A. 1.  2012. Opportunities and challenges for a sustainable energy future. Nature 488:294–303 [Google Scholar]
  2. Zinkle SJ, Was GS. 2.  2013. Materials challenges in nuclear energy. Acta Mater. 61:735–58 [Google Scholar]
  3. Post RF, Ribe FL. 3.  1974. Fusion reactors as future energy sources. Science 186:397–407 [Google Scholar]
  4. Gordinier MR, Davis JW, Scott FR, Schultz KR. 4.  2003. Nuclear fusion power. Encyclopedia of Physical Science and Technology 10 RA Meyers 671–99 New York: Academic, 3rd ed.. [Google Scholar]
  5. Lehnert B.5.  2013. Half a century of fusion research towards ITER. Phys. Scr. 87:018201 [Google Scholar]
  6. Boozer AH.6.  2004. Physics of magnetically confined plasmas. Rev. Mod. Phys. 76:1071–141 [Google Scholar]
  7. Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R. 7.  2009. The National Ignition Facility: ushering in a new age for high energy density science. Phys. Plasmas 16:041006 [Google Scholar]
  8. Ihli T, Basu TK, Giancarli LM, Konishi S, Malang S. 8.  et al. 2008. Review of blanket designs for advanced fusion reactors. Fusion Eng. Des. 83:912–19 [Google Scholar]
  9. Giancarli LM, Abdou M, Campbell DJ, Chuyanov VA, Ahn MY. 9.  et al. 2012. Overview of the ITER TBM Program. Fusion Eng. Des. 87:395–402 [Google Scholar]
  10. Zinkle SJ, Möslang A, Muroga T, Tanigawa H. 10.  2013. Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 53:104024 [Google Scholar]
  11. Bühler L.11.  1995. The influence of small cracks in insulating coatings on the flow structure and pressure drop in MHD channel flows. Fusion Eng. Des. 27:650–58 [Google Scholar]
  12. Moreau R, Brechet Y, Maniguet L. 12.  2011. Eurofer corrosion by the flow of the eutectic alloy Pb–Li in the presence of a strong magnetic field. Fusion Eng. Des. 86:106–20 [Google Scholar]
  13. Roux N, Hollenberg G, Johnson C, Noda K, Verrall R. 13.  1995. Summary of experimental results for ceramic breeder materials. Fusion Eng. Des. 27:154–66 [Google Scholar]
  14. Bloom EE.14.  1998. The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258–263:7–17 [Google Scholar]
  15. Bloom EE, Zinkle SJ, Wiffen FW. 15.  2004. Materials to deliver the promise of fusion power—progress and challenges. J. Nucl. Mater. 329–333:12–19 [Google Scholar]
  16. Odette GR, Alinger MJ, Wirth BD. 16.  2008. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38:471–503 [Google Scholar]
  17. Zinkle SJ, Busby JT. 17.  2009. Structural materials for fission and fusion energy. Mater. Today 12:12–19 [Google Scholar]
  18. Holdren JP, Berwald DH, Budnitz RJ, Crocker JG, Delene JG. 18.  et al. 1988. Exploring the competitive potential of magnetic fusion energy—the interaction of economics with safety and environmental characteristics. Fusion Technol. 13:7–56 [Google Scholar]
  19. Holdren JP.19.  1978. Fusion energy in context: its fitness for the long term. Science 200:168–80 [Google Scholar]
  20. Bloom EE, Conn RW, Davis JW, Gold RE, Little R. 20.  et al. 1984. Low activation materials for fusion applications. J. Nucl. Mater. 122–123:17–26 [Google Scholar]
  21. Piet SJ, Cheng ET, Fetter S, Herring JS. 21.  1991. Initial integration of accident safety, waste management, recycling, effluent, and maintenance considerations for low-activation materials. Fusion Technol. 19:146–61 [Google Scholar]
  22. Cheng ET.22.  1998. Concentration limits of natural elements in low activation fusion materials. J. Nucl. Mater. 258–263:1767–72 [Google Scholar]
  23. Klueh RL.23.  2004. Reduced-activation bainitic and martensitic steels for nuclear fusion applications. Curr. Opin. Solid State Mater. Sci. 8:239–50 [Google Scholar]
  24. Tanigawa H, Shiba K, Möslang A, Stoller RE, Lindau R. 24.  et al. 2011. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket. J. Nucl. Mater. 417:9–15 [Google Scholar]
  25. Ukai S, Fujiwara M. 25.  2002. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307–311:749–57 [Google Scholar]
  26. Klueh RL, Shingledecker JP, Swindeman RW, Hoelzer DT. 26.  2005. Oxide dispersion–strengthened steels: a comparison of some commercial and experimental alloys. J. Nucl. Mater. 341:103–14 [Google Scholar]
  27. Lindau R, Möslang A, Rieth M, Klimankou M, Materna-Morris E. 27.  et al. 2005. Present development status of EUROFER and ODS for application in blanket concepts. Fusion Eng. Des. 75–79:989–96 [Google Scholar]
  28. Zinkle SJ.28.  2005. Advanced materials for fusion technology. Fusion Eng. Des. 74:31–40 [Google Scholar]
  29. Smith DL, Billone MC, Majumdar S, Mattas RF, Sze D-K. 29.  1998. Materials integration issues for high-performance fusion power systems. J. Nucl. Mater. 258–263:65–73 [Google Scholar]
  30. Zinkle SJ, Matsui H, Smith DL, Rowcliffe AF, van Osch E. 30.  et al. 1998. Research and development on vanadium alloys for fusion applications. J. Nucl. Mater. 258–263:205–14 [Google Scholar]
  31. Muroga T, Chen JM, Chernov VM, Fukumoto K, Hoelzer DT. 31.  et al. 2007. Review of advances in development of vanadium alloys and MHD insulator coatings. J. Nucl. Mater. 367–370:780–87 [Google Scholar]
  32. Snead LL, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. 32.  2011. Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417:330–39 [Google Scholar]
  33. Pitts RA, Carpentier S, Escourbiac F, Hirai T, Komarov V. 33.  et al. 2011. Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater. 415:S957–64 [Google Scholar]
  34. Wirth BD, Nordlund K, Whyte DG, Xu D. 34.  2011. Fusion materials modeling: challenges and opportunities. MRS Bull. 36:216–22 [Google Scholar]
  35. Linke J.35.  2012. High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Fusion Sci. Technol. 61:246–55 [Google Scholar]
  36. Bolt H, Barabash VR, Federici G, Linke J, Loarte A. 36.  et al. 2002. Plasma facing and high heat flux materials—needs for ITER and beyond. J. Nucl. Mater. 307–311:43–52 [Google Scholar]
  37. Neu R.37.  2011. Preparing the scientific basis for an all metal ITER. Plasma Phys. Control. Fusion 53:124040 [Google Scholar]
  38. Romanelli F.38.  2013. Overview of the JET results with the ITER-like wall. Nucl. Fusion 53:104002 [Google Scholar]
  39. Barabash V, Federici G, Linke J, Wu CH. 39.  2003. Material/plasma surface interaction issues following neutron damage. J. Nucl. Mater. 313:42–51 [Google Scholar]
  40. Nygren RE, Raffray R, Whyte D, Ulrickson MA, Baldwin M, Snead LL. 40.  2011. Making tungsten work. J. Nucl. Mater. 417:451–56 [Google Scholar]
  41. Rieth M, Dudarev SL, Gonzalez de Vicente SM, Aktaa J, Ahlgren R. 41.  et al. 2013. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432:482–500 [Google Scholar]
  42. Greenwood LR, Garner FA. 42.  1994. Transmutation of Mo, Re, W, Hf and V in various irradiation test facilities and STARFIRE. J. Nucl. Mater. 212–215:635–39 [Google Scholar]
  43. Dai Y, Odette GR, Yamamoto T. 43.  2012. The effects of helium in irradiated structural alloys. See Ref. 153 141–93
  44. Trinkaus H, Singh BN. 44.  2003. Helium accumulation in metals during irradiation—where do we stand?. J. Nucl. Mater. 323:229–42 [Google Scholar]
  45. Zinkle SJ, Möslang A. 45.  2013. Evaluation of irradiation facility options for fusion materials research and development. Fusion Eng. Des. 88:472–82 [Google Scholar]
  46. Zinkle SJ.46.  2012. Radiation-induced effects on microstructure. See Ref. 153 65–98
  47. Schilling W, Ehrhart P, Sonnenberg K. 47.  1975. Interpretation of defect reactions in irradiated metals by the one interstitial model. Fundamental Aspects of Radiation Damage in Metals I Rep. CONF-751006-P1, ed. MT Robinson, FW Young Jr 470–92 Springfield, VA: Natl. Tech. Inf. Serv. [Google Scholar]
  48. Schilling W, Sonnenberg K. 48.  1973. Recovery of irradiated and quenched metals. J. Phys. F 3:322–50 [Google Scholar]
  49. Weber WJ.49.  2000. Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res. B 166:98–106 [Google Scholar]
  50. Ullmaier H, Carsughi F. 50.  1995. Radiation damage problems in high power spallation neutron sources. Nucl. Instrum. Methods Phys. Res. B 101:406–21 [Google Scholar]
  51. Zinkle SJ.51.  2005. Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12:058101 [Google Scholar]
  52. Odette GR, Yamamoto T, Rathbun HJ, He MY, Hribernik ML, Rensman JW. 52.  2003. Cleavage fracture and irradiation embrittlement of fusion reactor alloys: mechanisms, multiscale models, toughness measurements and implications to structural integrity assessment. J. Nucl. Mater. 323:313–40 [Google Scholar]
  53. Schroeder H, Ullmaier H. 53.  1991. Helium and hydrogen effects on the embrittlement of iron- and nickel-based alloys. J. Nucl. Mater. 179–181:118–24 [Google Scholar]
  54. Garner FA, Toloczko MB, Sencer BH. 54.  2000. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276:123–42 [Google Scholar]
  55. Mansur LK.55.  1994. Theory and experimental background on dimensional changes in irradiated alloys. J. Nucl. Mater. 216:97–123 [Google Scholar]
  56. Maziasz PJ.56.  1989. Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels. J. Nucl. Mater. 169:95–115 [Google Scholar]
  57. Okamoto PR, Rehn LE. 57.  1979. Radiation-induced segregation in binary and ternary alloys. J. Nucl. Mater. 83:2–23 [Google Scholar]
  58. Mansur LK, Lee EH, Maziasz PJ, Rowcliffe AF. 58.  1986. Control of helium effects in irradiated materials based on theory and experiment. J. Nucl. Mater. 141–143:633–46 [Google Scholar]
  59. Stoller RE.59.  1990. The influence of helium on microstructural evolution: implications for DT fusion reactors. J. Nucl. Mater. 174:289–310 [Google Scholar]
  60. Wakai E, Kikuchi K, Yamamoto S, Aruga T, Ando M. 60.  et al. 2002. Swelling behavior of F82H steel irradiated by triple/dual ion beams. J. Nucl. Mater. 318:267–73 [Google Scholar]
  61. Zinkle SJ, Snead LL. 61.  1996. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics. Nucl. Instrum. Methods Phys. Res. B 116:92–101 [Google Scholar]
  62. Trachenko K.62.  2004. Understanding resistance to amorphization by radiation damage. J. Phys. Condens. Matter 16:R1491–515 [Google Scholar]
  63. 63. IAEA 2013. Operating Experience with Nuclear Power Stations in Member States in 2012 Vienna: IAEA
  64. Yamamoto S, Shikama T, Belyakov V, Farnum E, Hodgson E. 64.  et al. 2000. Impact of irradiation effects on design solutions for ITER diagnostics. J. Nucl. Mater. 283–287:60–69 [Google Scholar]
  65. Vayakis G, Hodgson ER, Voitsenya V, Walker CI. 65.  2008. Generic diagnostic issues for a burning plasma experiment. Fusion Sci. Technol. 53:699–750 [Google Scholar]
  66. Zinkle SJ, Hodgson ER. 66.  1992. Radiation-induced changes in the physical properties of ceramic materials. J. Nucl. Mater. 191–194:58–66 [Google Scholar]
  67. Itoh N, Stoneham AM. 67.  2001. Materials Modification by Electronic Excitation Cambridge, UK: Cambridge Univ. Press536
  68. Nishitani T, Ishitsuka E, Kakuta T, Sagawa H, Noda K. 68.  et al. 1998. Japanese contribution to ITER task of irradiation tests on diagnostics components. Fusion Eng. Des. 42:443–48 [Google Scholar]
  69. Snead LL, Leonard KJ, Jellison GE, Sawan M, Lehecka T. 69.  2009. Irradiation effects on dielectric mirrors for fusion power reactor application. Fusion Sci. Technol. 56:1069–77 [Google Scholar]
  70. Brichard B, Borgermans P, Fernandez AF, Lammens K, Decreton M. 70.  2001. Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field. IEEE Trans. Nucl. Sci. 48:2069–73 [Google Scholar]
  71. Sickafus KE, Grimes RW, Valdez JA, Cleave A, Tang M. 71.  et al. 2007. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6:217–23 [Google Scholar]
  72. Stiegler JO, Bloom EE. 72.  1971. The effect of thermo-mechanical treatments on void formation in irradiated stainless steel. J. Nucl. Mater. 41:341–44 [Google Scholar]
  73. Brager HR, Garner FA, Gilbert ER, Flinn JE, Wolfer WG. 73.  1977. Stress-affected microstructural development and the creep-swelling interrelationship. See Ref. 154 727–55
  74. Zinkle SJ, Maziasz PJ, Stoller RE. 74.  1993. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 206:266–86 [Google Scholar]
  75. Bates JF, Johnston WG. 75.  1977. Effects of alloy composition on void swelling. See Ref. 154 625–44
  76. Venker H, Giesecke P, Ehrlich K. 76.  1977. The influence of fast diffusing substitutional elements on the swelling behaviour of Ni- and Cu-alloys. See Ref. 154 415–20
  77. Bloom EE, Stiegler JO. 77.  1970. A comparison of irradiation-induced swelling and void formation in two austenitic stainless steels. J. Nucl. Mater. 35:244–46 [Google Scholar]
  78. Maziasz PJ.78.  1984. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors. J. Nucl. Mater. 122–123:472–86 [Google Scholar]
  79. Klabunde CE, Coltman RR Jr. 79.  1982. Fission neutron damage rates and efficiencies in several metals. J. Nucl. Mater. 108–109:183–93 [Google Scholar]
  80. Wallner G, Anand MS, Greenwood LR, Kirk MA, Mansel W, Waschkowski W. 80.  1988. Defect production rates in metals by reactor neutron irradiation at 4.6 K. J. Nucl. Mater. 152:146–53 [Google Scholar]
  81. English CA.81.  1982. Low-dose neutron irradiation damage in FCC and BCC metals. J. Nucl. Mater. 108–109:104–23 [Google Scholar]
  82. Jenkins ML, Kirk MA, Phythian WJ. 82.  1993. Experimental studies of cascade phenomena in metals. J. Nucl. Mater. 205:16–30 [Google Scholar]
  83. Bacon DJ, Gao F, Osetsky YN. 83.  2000. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J. Nucl. Mater. 276:1–12 [Google Scholar]
  84. Dudarev SL.84.  2013. Density functional theory models for radiation damage. Annu. Rev. Mater. Res. 43:35–61 [Google Scholar]
  85. Sniegowski JJ, Wolfer WG. 85.  1984. On the physical basis for the swelling resistance of ferritic steels. Proc. Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies JW Davis, DJ Michel 579–86 New York: TMS/AIME
  86. Nakajima H, Yoshida S, Kohno Y, Matsui H. 86.  1992. Effect of solute addition on swelling of vanadium after FFTF irradiation. J. Nucl. Mater. 191–194:952–55 [Google Scholar]
  87. Abe Y, Matsui H. 87.  2007. Effects of undersized Fe atoms on the stability of interstitials near a dislocation core in V studied by molecular dynamics simulation. J. Comp. Aided Mater. Des. 14:121–27 [Google Scholar]
  88. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS. 88.  et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6:299–303 [Google Scholar]
  89. Kiran Kumar NAP, Leonard KJ, Bei H, Zhang Y, Zinkle SJ. 89.  2014. Microstructural stability and mechanical behavior of FeMnNiCr high entropy alloy under ion irradiation. J. Nucl. Mater. Submitted
  90. Sickafus KE, Minervini L, Grimes RW, Valdez JA, Ishimaru M. 90.  et al. 2000. Radiation tolerance of complex oxides. Science 289:748–51 [Google Scholar]
  91. Inoue A.91.  2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48:279–306 [Google Scholar]
  92. Primak W.92.  1958. Fast-neutron-induced changes in quartz and vitreous silica. Phys. Rev. 110:1240–54 [Google Scholar]
  93. Weber WJ, Ewing RC, Angell CA, Arnold GW, Cormack AN. 93.  et al. 1997. Radiation effects in glasses used for immobilization of high level waste and plutonium disposition. J. Mater. Res. 12:1946–75 [Google Scholar]
  94. Nakagawa M, Mansel W, Boning K, Rosner P, Vogl G. 94.  1979. Spontaneous recombination volumes of Frenkel defects in neutron-irradiated non-FCC metals. Phys. Rev. B 19:742–48 [Google Scholar]
  95. Birtcher RC, Blewitt TH. 95.  1981. Damage saturation effects on volume and resistivity changes induced by fission-fragment irradiation of copper. J. Nucl. Mater. 98:63–70 [Google Scholar]
  96. Birtcher RC, Blewitt TH. 96.  1988. Cascade damage in nickel—production, saturation and recovery. J. Nucl. Mater. 152:204–11 [Google Scholar]
  97. Trinkaus H.97.  1997. Ion beam induced amorphization of crystalline solids: mechanisms and modeling. Mater. Sci. Forum 248–249:3–12 [Google Scholar]
  98. Keilholtz GW, Lee JE Jr, Moore RE. 98.  1966. Irradiation damage to sintered beryllium oxide as a function of fast-neutron dose and flux at 110, 650, and 1100°C. Nucl. Sci. Eng. 26:329–38 [Google Scholar]
  99. Wilks RS.99.  1968. Neutron-induced damage in BeO, Al2O3 and MgO—a review. J. Nucl. Mater. 26:137–73 [Google Scholar]
  100. Katoh Y, Snead LL. 100.  2009. Operating temperature window for SiC ceramics and composites for fusion energy applications. Fusion Sci. Technol. 56:1045–52 [Google Scholar]
  101. Keilholtz GW, Moore RE, Robertson HE. 101.  1973. Fast-neutron damage to polycrystalline alumina at temperatures from 60 to 1230°C. Nucl. Technol. 17:234–46 [Google Scholar]
  102. Katoh Y, Nozawa T, Snead LL, Ozawa K, Tanigawa H. 102.  2011. Stability of SiC and its composites at high neutron fluence. J. Nucl. Mater. 417:400–5 [Google Scholar]
  103. Snead LL, Zinkle SJ, Hay JC, Osborne MC. 103.  1998. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res. B 141:123–32 [Google Scholar]
  104. Latham CD, Heggie MI, Alatalo M, Oberg S, Briddon PR. 104.  2013. The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite. J. Phys. Condens. Matter 25:135403 [Google Scholar]
  105. Snead LL, Katoh Y, Connery S. 105.  2007. Swelling of SiC at intermediate and high irradiation temperatures. J. Nucl. Mater. 367–370:677–84 [Google Scholar]
  106. Brailsford AD, Bullough R. 106.  1972. The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44:121–35 [Google Scholar]
  107. Johnson RA, Lam NQ. 107.  1976. Solute segregation in metals under irradiation. Phys. Rev. B 13:4364–75 [Google Scholar]
  108. Adda Y.108.  1972. Report on the CEA program of investigations of radiation-induced cavities in metals: presentation of some results. Radiation-Induced Voids in Metals JW Corbett, LC Ianniello 31–81 Springfield, VA: Natl. Tech. Inf. Serv. [Google Scholar]
  109. Brager HR.109.  1975. The effects of cold working and pre-irradiation heat treatment on void formation in neutron-irradiated type 316 stainless steel. J. Nucl. Mater. 57:103–18 [Google Scholar]
  110. Williams TM, Titchmarsh JM, Arkell DR. 110.  1982. Void-swelling and precipitation in a neutron-irradiated, niobium-stabilised austenitic stainless steel. J. Nucl. Mater. 107:222–44 [Google Scholar]
  111. Lee EH, Mansur LK. 111.  1992. Relationships between phase stability and void swelling in Fe-Cr-Ni alloys during irradiation. Metall. Trans. A 23:1977–86 [Google Scholar]
  112. McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK. 112.  2009. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J. Nucl. Mater. 392:353–59 [Google Scholar]
  113. Möslang A, Adelhelm C, Heidinger R. 113.  2008. Innovative materials for energy technology. Int. J. Mater. Res. 99:1045–54 [Google Scholar]
  114. Henry J, Averty X, Alamo A. 114.  2011. Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325°C up to 78 dpa. J. Nucl. Mater. 417:99–103 [Google Scholar]
  115. Maziasz PJ.115.  1980. Helium trapping and Ti-rich MC particles in neutron-irradiated type 316 + Ti stainless steels. Scr. Metall. 14:1251–56 [Google Scholar]
  116. Kesternich W.116.  1985. A possible solution of the problem of helium embrittlement. J. Nucl. Mater. 127:153–60 [Google Scholar]
  117. Schroeder H.117.  1988. High temperature helium embrittlement in austenitic stainless steels—correlations between microstructure and mechanical properties. J. Nucl. Mater. 155–157:1032–37 [Google Scholar]
  118. Packan NH, Farrell K. 118.  1979. Simulation of first wall damage: effects of the method of gas implantation. J. Nucl. Mater. 85–86:677–81 [Google Scholar]
  119. Lee EH, Packan NH. 119.  1989. Swelling suppression in phosphorus-modified Fe-Cr-Ni alloys during neutron irradiation. Int. Symp. Eff. Radiat. Mater., 14th. NH Packan, RE Stoller, AS Kumar 133–46 Philadelphia: Am. Soc. Test. Mater. [Google Scholar]
  120. Tanaka MP, Hamada S, Hishinuma A, Maziasz PJ. 120.  1988. Microstructural development of austenitic stainless steels irradiated in HFIR. J. Nucl. Mater. 155:801–5 [Google Scholar]
  121. Maziasz PJ.121.  1993. Void swelling resistance of phosphorus-modified austenitic stainless steels during HFIR irradiation at 300–500°C to 57 dpa. J. Nucl. Mater. 200:90–107 [Google Scholar]
  122. Kim I-S, Hunn JD, Hashimoto N, Larson DL, Maziasz PJ. 122.  et al. 2000. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection. J. Nucl. Mater. 280:264–74 [Google Scholar]
  123. Odette GR, Hoelzer DT. 123.  2010. Irradiation-tolerant nanostructured ferritic alloys: transforming helium from a liability to an asset. JOM 62:84–92 [Google Scholar]
  124. Lam NQ, Rothman SJ, Sizmann R. 124.  1974. Steady-state point-defect diffusion profiles in solids during irradiation. Radiat. Effects 23:53–59 [Google Scholar]
  125. Singh BN, Foreman. 125.  1974. Calculated grain size-dependent vacancy supersaturation and its effect on void formation. Philos. Mag. 29:847–57 [Google Scholar]
  126. Bullough R, Hayns MR, Wood MH. 126.  1980. Sink strengths for thin film surfaces and grain boundaries. J. Nucl. Mater. 90:44–59 [Google Scholar]
  127. Zinkle SJ.127.  1994. Microstructure of ion irradiated ceramic insulators. Nucl. Instrum. Meth. Phys. Res. B 91:234–46 [Google Scholar]
  128. Demkowicz MJ, Bellon P, Wirth BD. 128.  2010. Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull. 35:992–98 [Google Scholar]
  129. Lee EH, Mansur LK. 129.  1990. Unified theoretical analysis of experimental swelling data for irradiated austenitic and ferritic martensitic alloys. Metall. Trans. A 21:1021–35 [Google Scholar]
  130. Mansur LK, Lee EH. 130.  1991. Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys. J. Nucl. Mater. 179–181:105–10 [Google Scholar]
  131. Edwards DJ, Garner FA, Bruemmer SM, Efsing P. 131.  2009. Nano-cavities observed in a 316SS PWR flux thimble tube irradiated to 33 and 70 dpa. J. Nucl. Mater. 384:249–55 [Google Scholar]
  132. Odette GR, Miao P, Edwards DJ, Yamamoto T, Kurtz RJ, Tanigawa H. 132.  2011. Helium transport, fate and management in nanostructured ferritic alloys: in situ helium implanter studies. J. Nucl. Mater. 417:1001–4 [Google Scholar]
  133. Ghoniem NM, Walgraef D, Zinkle SJ. 133.  2001. Theory and experiment of nanostructure self-organization in irradiated materials. J. Comp. Aided Mater. Des. 8:1–38 [Google Scholar]
  134. Toloczko MB, Garner FA, Maloy SA. 134.  2012. Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40–110 dpa at 400–750 degrees C in FFTF. J. Nucl. Mater. 428:170–75 [Google Scholar]
  135. Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR. 135.  2013. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434:311–21 [Google Scholar]
  136. Olson GB.136.  1997. Computational design of hierarchically structured materials. Science 277:1237–42 [Google Scholar]
  137. Andersson JO, Helander T, Hoglund LH, Shi PF, Sundman B. 137.  2002. THERMO-CALC & DICTRA, computational tools for materials science. CALPHAD 26:273–312 [Google Scholar]
  138. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. 138.  2013. The high-throughput highway to computational materials design. Nat. Mater. 12:191–201 [Google Scholar]
  139. Zinkle SJ, Ghoniem NM. 139.  2011. Prospects for accelerated development of high performance structural materials. J. Nucl. Mater. 417:2–8 [Google Scholar]
  140. Tan L, Yang Y, Busby JT. 140.  2013. Effects of alloying elements and thermomechanical treatment on 9Cr reduced activation ferritic–martensitic (RAFM) steels. J. Nucl. Mater. 442:Suppl.13–17 [Google Scholar]
  141. Zinkle SJ.141.  2013. Challenges in developing materials for fusion technology—past, present, and future. Fusion Sci. Technol. 64:65–75 [Google Scholar]
  142. Barani AA, Li F, Romano P, Ponge D, Raabe D. 142.  2007. Design of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A 463:138–46 [Google Scholar]
  143. Klueh RL, Hashimoto N, Maziasz PJ. 143.  2007. New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment. J. Nucl. Mater. 367–370:48–53 [Google Scholar]
  144. Kruth J-P, Leu MC, Nakagawa T. 144.  1998. Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47:525–40 [Google Scholar]
  145. Lipson H.145.  2012. Frontiers in additive manufacturing: the shape of things to come. Bridge 42:5–12 [Google Scholar]
  146. Wilson KL, Baskes MI. 146.  1978. Deuterium trapping in irradiated 316 stainless steel. J. Nucl. Mater. 76–77:291–97 [Google Scholar]
  147. Garner FA, Simonen EP, Oliver BM, Greenwood LR, Grossbeck ML. 147.  et al. 2006. Retention of hydrogen in fcc metals irradiated at temperatures leading to high densities of bubbles or voids. J. Nucl. Mater. 356:122–35 [Google Scholar]
  148. Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G. 148.  et al. 2009. Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater.390–3911–9
  149. Alimov VK, Hatano Y, Tyburska-Puschel B, Sugiyama K, Takagi I. 149.  et al. 2013. Deuterium retention in tungsten damaged with W ions to various damage levels. J. Nucl. Mater. 441:280–85 [Google Scholar]
  150. Hayward E, Deo C. 150.  2012. Synergistic effects in hydrogen-helium bubbles. J. Phys. Condens. Matter 24:265402 [Google Scholar]
  151. Juslin N, Wirth BD. 151.  2013. Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten. J. Nucl. Mater. 438:Suppl.1221–23 [Google Scholar]
  152. Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S. 152.  et al. 2008. Tritium inventory in ITER plasma-facing materials and tritium removal procedures. Plasma Phys. Control. Fusion 50:103001 [Google Scholar]
  153. Konings RJM. 153.  2012. Comprehensive Nuclear Materials 1 Amsterdam: Elsevier
  154. Bleiberg ML, Bennett JW. 154.  1977. Radiation Effects in Breeder Reactor Structural Materials New York: TMS/AIME
  155. Pakarinen J, Tahtinen S, Singh BN. 155.  2013. A comparative TEM study of in-reactor and post-irradiation tensile tested copper. J. Nucl. Mater. 442:Suppl.821–25 [Google Scholar]
  156. Edwards DJ, Singh BN, Bilde-Sorensen JB. 156.  2005. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy. J. Nucl. Mater. 342:164–78 [Google Scholar]
  157. Karditsas PJ. 157.  2009. Design issues and implications for structural integrity of fusion power plant components. Fusion Eng. Des. 84:2104–8 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error