1932

Abstract

With the increasing global demand for net-zero carbon emissions, actions to address climate change have gained momentum among policymakers and the public. The urgent need for a sustainable economy is underscored by the mounting waste crisis in landfills and oceans. However, the proliferation of distributed electronic devices poses a significant challenge due to the resulting electronic waste. To combat this issue, the development of sustainable and environmentally friendly materials for these devices is imperative. Cellulose, an abundant and CO-neutral substance with a long history of diverse applications, holds great potential. By integrating electrically interactive components with cellulosic materials, innovative biobased composites have been created, enabling the fabrication of bulk electroactive paper and the establishment of new, potentially more sustainable manufacturing processes for electronic devices. This review explores recent advances in bulk electroactive paper, including the fundamental interactions between its constituents, manufacturing techniques, and large-scale applications in the field of electronics. Furthermore, it addresses the importance and challenges of scaling up production of electroactive paper, highlighting the need for further research and development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-084430
2024-08-05
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080921-084430.html?itemId=/content/journals/10.1146/annurev-matsci-080921-084430&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dhir A, Koshta N, Goyal RK, Sakashita M, Almotairi M. 2021.. Behavioral reasoning theory (BRT) perspectives on E-waste recycling and management. . J. Clean. Prod. 280::124269
    [Crossref] [Google Scholar]
  2. 2.
    Tiseo I. 2024.. Outlook on global e-waste generation 2019–2030. . Statista. https://www.statista.com/statistics/1067081/generation-electronic-waste-globally-forecast
    [Google Scholar]
  3. 3.
    Stewart R. 2012.. EU legislation relating to electronic waste: the WEEE and RoHS Directives and the REACH regulations. . In Waste Electrical and Electronic Equipment (WEEE) Handbook, ed. V Goodship, A Stevels , pp. 1752. Oxford, UK:: Woodhead Publ.
    [Google Scholar]
  4. 4.
    Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, et al. 2016.. Wood-derived materials for green electronics, biological devices, and energy applications. . Chem. Rev. 116:(16):930574
    [Crossref] [Google Scholar]
  5. 5.
    Ohashi H. 2010.. Role of green electronics in low carbonated society toward 2030. . In Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC, pp. K2025. Piscataway, NJ:: IEEE
    [Google Scholar]
  6. 6.
    Irimia-Vladu M. 2014.. “ Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. . Chem. Soc. Rev. 43:(2):588610
    [Crossref] [Google Scholar]
  7. 7.
    Li W, Liu Q, Zhang Y, Ca Li, He Z, et al. 2020.. Biodegradable materials and green processing for green electronics. . Adv. Mater. 32:(33):2001591
    [Crossref] [Google Scholar]
  8. 8.
    Semenikhin NS, Kadasala NR, Moon RJ, Perry JW, Sandhage KH. 2018.. Individually dispersed gold nanoshell-bearing cellulose nanocrystals with tailorable plasmon resonance. . Langmuir 34:(15):442736
    [Crossref] [Google Scholar]
  9. 9.
    Alam KM, Kar P, Thakur UK, Kisslinger R, Mahdi N, et al. 2019.. Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites. . J. Mater. Sci. Mater. Electron. 30:(2):139099
    [Crossref] [Google Scholar]
  10. 10.
    Han L, Cui S, Yu H-Y, Song M, Zhang H, et al. 2019.. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems. . ACS Appl. Mater. Interfaces 11:(47):4464251
    [Crossref] [Google Scholar]
  11. 11.
    Heinze T. 2016.. Cellulose: structure and properties. . In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials, ed. OJ Rojas , pp. 152. Cham, Switz:.: Springer
    [Google Scholar]
  12. 12.
    Daniele MA, Knight AJ, Roberts SA, Radom K, Erickson JS. 2015.. Sweet substrate: a polysaccharide nanocomposite for conformal electronic decals. . Adv. Mater. 27:(9):16006
    [Crossref] [Google Scholar]
  13. 13.
    Weishaupt R, Siqueira G, Schubert M, Kämpf MM, Zimmermann T, et al. 2017.. A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. . Adv. Funct. Mater. 27:(4):1604291
    [Crossref] [Google Scholar]
  14. 14.
    Wang L, Zuo X, Raut A, Isseroff R, Xue Y, et al. 2019.. Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. . Sustain. Energy Fuels 3:(10):272532
    [Crossref] [Google Scholar]
  15. 15.
    Ni C, Wei Y, Zhao Q, Liu B, Sun Z, et al. 2018.. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose. . Appl. Surf. Sci. 434::16375
    [Crossref] [Google Scholar]
  16. 16.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM. 2007.. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. . Angew. Chem. Int. Ed. 46:(8):131820
    [Crossref] [Google Scholar]
  17. 17.
    Liu H, Crooks RM. 2011.. Three-dimensional paper microfluidic devices assembled using the principles of origami. . J. Am. Chem. Soc. 133:(44):1756466
    [Crossref] [Google Scholar]
  18. 18.
    Kim J, Yun G-Y, Kim J-H, Lee J, Kim J-H. 2011.. Piezoelectric electro-active paper (EAPap) speaker. . J. Mech. Sci. Technol. 25:(11):276368
    [Crossref] [Google Scholar]
  19. 19.
    Isacsson P, Wang X, Fall A, Mengistie D, Calvie E, et al. 2020.. Highly conducting nanographite-filled paper fabricated via standard papermaking techniques. . ACS Appl. Mater. Interfaces 12:(43):4882835
    [Crossref] [Google Scholar]
  20. 20.
    Sandberg M, Tordera D, Granberg H, Sawatdee A, Dedic D, et al. 2016.. Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing. . Flex. Print. Electron. 1:(4):044003
    [Crossref] [Google Scholar]
  21. 21.
    Salajkova M, Valentini L, Zhou Q, Berglund LA. 2013.. Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. . Compos. Sci. Technol. 87::10310
    [Crossref] [Google Scholar]
  22. 22.
    Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, et al. 2014.. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?. J. Surg. Res. 189:(2):34047
    [Crossref] [Google Scholar]
  23. 23.
    Heli B, Morales-Narváez E, Golmohammadi H, Ajji A, Merkoçi A. 2016.. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. . Nanoscale 8:(15):798491
    [Crossref] [Google Scholar]
  24. 24.
    Henriksson M, Henriksson G, Berglund LA, Lindström T. 2007.. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. . Eur. Polym. J. 43:(8):343441
    [Crossref] [Google Scholar]
  25. 25.
    Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, et al. 2009.. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. . Biomacromolecules 10:(7):199296
    [Crossref] [Google Scholar]
  26. 26.
    Pei A, Butchosa N, Berglund LA, Zhou Q. 2013.. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. . Soft Matter. 9:(6):204755
    [Crossref] [Google Scholar]
  27. 27.
    Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L. 2011.. Colloidal stability of aqueous nanofibrillated cellulose dispersions. . Langmuir 27:(18):1133238
    [Crossref] [Google Scholar]
  28. 28.
    Belaineh D, Andreasen JW, Palisaitis J, Malti A, Håkansson K, et al. 2019.. Controlling the organization of PEDOT:PSS on cellulose structures. . ACS Appl. Polym. Mater. 1:(9):234251
    [Crossref] [Google Scholar]
  29. 29.
    Hajian A, Lindström SB, Pettersson T, Hamedi MM, Wågberg L. 2017.. Understanding the dispersive action of nanocellulose for carbon nanomaterials. . Nano Lett. 17:(3):143947
    [Crossref] [Google Scholar]
  30. 30.
    Lander S, Vagin M, Gueskine V, Erlandsson J, Boissard Y, et al. 2022.. Sulfonated cellulose membranes improve the stability of aqueous organic redox flow batteries. . Adv. Energy Sustain. Res. 3:(9):2200016
    [Crossref] [Google Scholar]
  31. 31.
    Sandberg M, Håkansson K, Granberg H. 2020.. Paper machine manufactured photocatalysts - lateral variations. . J. Environ. Chem. Eng. 8:(5):104075
    [Crossref] [Google Scholar]
  32. 32.
    Inzelt G. 2008.. Historical background. . In Conductive Polymers: A New Era in Electrochemistry, 29596. Heidelberg, Ger:.: Springer
    [Google Scholar]
  33. 33.
    Skotheim TA, Elsenbaumer RL, Reynolds JR, eds. 1997.. Handbook of Conducting Polymers. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  34. 34.
    Kelly FM, Johnston JH, Borrmann T, Richardson MJ. 2007.. Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. . Eur. J. Inorg. Chem. 2007:(35):557177
    [Crossref] [Google Scholar]
  35. 35.
    Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, de Morais LC, et al. 2018.. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. . ACS Appl. Mater. Interfaces 10:(23):2003243
    [Crossref] [Google Scholar]
  36. 36.
    Sapurina I, Kazantseva NE, Ryvkina NG, Prokeš J, Sáha P, Stejskal J. 2005.. Electromagnetic radiation shielding by composites of conducting polymers and wood. . J. Appl. Polym. Sci. 95:(4):80714
    [Crossref] [Google Scholar]
  37. 37.
    Lay M, Pèlach , Pellicer N, Tarrés JA, Bun KN, Vilaseca F. 2017.. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. . Carbohydr. Polym. 165::8695
    [Crossref] [Google Scholar]
  38. 38.
    Jain K, Mehandzhiyski AY, Zozoulenko I, Wågberg L. 2021.. PEDOT:PSS nano-particles in aqueous media: a comparative experimental and molecular dynamics study of particle size, morphology and z-potential. . J. Colloid Interface Sci. 584::5766
    [Crossref] [Google Scholar]
  39. 39.
    Montibon E, Järnström L, Lestelius M. 2009.. Characterization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) adsorption on cellulosic materials. . Cellulose 16:(5):80715
    [Crossref] [Google Scholar]
  40. 40.
    Montibon E, Lestelius M, Järnström L. 2010.. Electroconductive paper prepared by coating with blends of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) and organic solvents. . J. Appl. Polym. Sci. 117:(6):352432
    [Crossref] [Google Scholar]
  41. 41.
    Jain K, Reid MS, Larsson PA, Wågberg L. 2021.. On the interaction between PEDOT:PSS and cellulose: adsorption mechanisms and controlling factors. . Carbohydr. Polym. 260::117818
    [Crossref] [Google Scholar]
  42. 42.
    Mehandzhiyski AY, Zozoulenko I. 2019.. Computational microscopy of PEDOT:PSS/cellulose composite paper. . ACS Appl. Energy Mater. 2:(5):356877
    [Crossref] [Google Scholar]
  43. 43.
    Isacsson P, Jain K, Fall A, Chauve V, Hajian A, et al. 2022.. Production of energy-storage paper electrodes using a pilot-scale paper machine. . J. Mater. Chem. A 10::2157989
    [Crossref] [Google Scholar]
  44. 44.
    Belaineh D, Brooke R, Sani N, Say MG, Håkansson KMO, et al. 2022.. Printable carbon-based supercapacitors reinforced with cellulose and conductive polymers. . J. Energy Storage 50::104224
    [Crossref] [Google Scholar]
  45. 45.
    Brooke R, Åhlin J, Hübscher K, Hagel O, Strandberg J, et al. 2022.. Large-scale paper supercapacitors on demand. . J. Energy Storage 50::104191
    [Crossref] [Google Scholar]
  46. 46.
    Brooke R, Lay M, Jain K, Francon H, Say MG, et al. 2022.. Nanocellulose and PEDOT:PSS composites and their applications. . Polym. Rev. 63:(2):43777
    [Crossref] [Google Scholar]
  47. 47.
    Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A. 2013.. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. . Biomacromolecules 14:(4):116065
    [Crossref] [Google Scholar]
  48. 48.
    Hamedi MM, Hajian A, Fall AB, Håkansson K, Salajkova M, et al. 2014.. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. . ACS Nano 8:(3):246776
    [Crossref] [Google Scholar]
  49. 49.
    Zhu C, Liu P, Mathew AP. 2017.. Self-assembled TEMPO cellulose nanofibers: graphene oxide-based biohybrids for water purification. . ACS Appl. Mater. Interfaces 9:(24):2104858
    [Crossref] [Google Scholar]
  50. 50.
    Gorur YC, Francon HS, Sethi J, Maddalena L, Montanari C, et al. 2022.. Rapidly prepared nanocellulose hybrids as gas barrier, flame retardant, and energy storage materials. . ACS Appl. Nano Mater. 5:(7):9188200
    [Crossref] [Google Scholar]
  51. 51.
    Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. 2013.. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. . J. Mater. Chem. A 1:(15):467177
    [Crossref] [Google Scholar]
  52. 52.
    Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D. 2012.. Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. . J. Mater. Chem. 22:(7):322733
    [Crossref] [Google Scholar]
  53. 53.
    Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, et al. 2018.. Wrapping nanocellulose nets around graphene oxide sheets. . Angew. Chem. Int. Ed. 57:(28):850813
    [Crossref] [Google Scholar]
  54. 54.
    Phiri J, Gane P, Maloney TC. 2017.. General overview of graphene: production, properties and application in polymer composites. . Mater. Sci. Eng. B 215::928
    [Crossref] [Google Scholar]
  55. 55.
    Xu X, Hsieh Y-L. 2019.. Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. . Nanoscale 11:(24):1171929
    [Crossref] [Google Scholar]
  56. 56.
    Li Y, Zhu H, Shen F, Wan J, Lacey S, et al. 2015.. Nanocellulose as green dispersant for two-dimensional energy materials. . Nano Energy 13::34654
    [Crossref] [Google Scholar]
  57. 57.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, et al. 2011.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. . Adv. Mater. 23:(37):424853
    [Crossref] [Google Scholar]
  58. 58.
    Su T, Ma X, Tong J, Ji H, Qin Z, Wu Z. 2022.. Surface engineering of MXenes for energy and environmental applications. . J. Mater. Chem. A 10:(19):1026596
    [Crossref] [Google Scholar]
  59. 59.
    Cao W-T, Chen F-F, Zhu Y-J, Zhang Y-G, Jiang Y-Y, et al. 2018.. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. . ACS Nano 12:(5):458393
    [Crossref] [Google Scholar]
  60. 60.
    Tian W, VahidMohammadi A, Reid MS, Wang Z, Ouyang L, et al. 2019.. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. . Adv. Mater. 31:(41):1902977
    [Crossref] [Google Scholar]
  61. 61.
    Jiao F, Edberg J, Zhao D, Puzinas S, Khan ZU, et al. 2018.. Nanofibrillated cellulose-based electrolyte and electrode for paper-based supercapacitors. . Adv. Sustain. Syst. 2:(1):1700121
    [Crossref] [Google Scholar]
  62. 62.
    Yang H, Edberg J, Gueskine V, Vagin M, Say MG, et al. 2022.. The effect of crosslinking on ion transport in nanocellulose-based membranes. . Carbohydr. Polym. 278::118938
    [Crossref] [Google Scholar]
  63. 63.
    Yang C, Wu Q, Xie W, Zhang X, Brozena A, et al. 2021.. Copper-coordinated cellulose ion conductors for solid-state batteries. . Nature 598:(7882):59096
    [Crossref] [Google Scholar]
  64. 64.
    Yang Y, Huang Q, Payne GF, Sun R, Wang X. 2019.. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. . Nanoscale 11:(2):72532
    [Crossref] [Google Scholar]
  65. 65.
    Wang Z, Malti A, Ouyang L, Tu D, Tian W, et al. 2018.. Copper-plated paper for high-performance lithium-ion batteries. . Small 14:(48):1803313
    [Crossref] [Google Scholar]
  66. 66.
    Oskam G. 2006.. Metal oxide nanoparticles: synthesis, characterization and application. . J. Sol-Gel Sci. Technol. 37:(3):16164
    [Crossref] [Google Scholar]
  67. 67.
    Zhao S-W, Guo C-R, Hu Y-Z, Guo Y-R, Pan Q-J. 2018.. The preparation and antibacterial activity of cellulose/ZnO composite: a review. . Open Chem. 16:(1):920
    [Crossref] [Google Scholar]
  68. 68.
    Farooq A, Patoary MK, Zhang M, Mussana H, Li M, et al. 2020.. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. . Int. J. Biol. Macromol. 154::105073
    [Crossref] [Google Scholar]
  69. 69.
    Koga H, Kitaoka T, Wariishi H. 2008.. In situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production. . Chem. Commun. 2008:(43):561618
    [Crossref] [Google Scholar]
  70. 70.
    Ghule K, Ghule AV, Chen B-J, Ling Y-C. 2006.. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. . Green Chem. 8:(12):103441
    [Crossref] [Google Scholar]
  71. 71.
    Li X, Zhang L, Wang Z, Wu S, Ma J. 2021.. Cellulose controlled zinc oxide nanoparticles with adjustable morphology and their photocatalytic performances. . Carbohydr. Polym. 259::117752
    [Crossref] [Google Scholar]
  72. 72.
    Samyn P, Barhoum A, Öhlund T, Dufresne A. 2018.. Review: nanoparticles and nanostructured materials in papermaking. . J. Mater. Sci. 53:(1):14684
    [Crossref] [Google Scholar]
  73. 73.
    Klungness JH, Ahmed A, Ross-Sutherland N, AbuBakr S. 2000.. Lightweight, high-opacity paper by fiber loading: filler comparison. . Nord. Pulp Paper Res. J. 15:(5):34550
    [Crossref] [Google Scholar]
  74. 74.
    Zhang H, Guo L, Shao H, Hu X. 2006.. Nano-carbon black filled Lyocell fiber as a precursor for carbon fiber. . J. Appl. Polym. Sci. 99:(1):6574
    [Crossref] [Google Scholar]
  75. 75.
    Huang B, Kang G, Ni Y. 2005.. Electrically conductive fibre composites prepared from polypyrrole-engineered pulp fibres. . Can. J. Chem. Eng. 83:(5):896903
    [Crossref] [Google Scholar]
  76. 76.
    Fall AB, Hagel F, Edberg J, Malti A, Larsson PA, Wågberg L, et al. 2022.. Spinning of stiff and conductive filaments from cellulose nanofibrils and PEDOT:PSS nanocomplexes. . ACS Appl. Polym. Mater. 4:(6):411930
    [Crossref] [Google Scholar]
  77. 77.
    Lu J, Zhang H, Jian Y, Shao H, Hu X. 2012.. Properties and structure of MWNTs/cellulose composite fibers prepared by Lyocell process. . J. Appl. Polym. Sci. 123:(2):95661
    [Crossref] [Google Scholar]
  78. 78.
    Mahmoudian S, Reza Sazegar M, Afshari N, Uzir Wahit M. 2017.. Graphene reinforced regenerated cellulose nanocomposite fibers prepared by lyocell process. . Polym. Compos. 38:(S1):E8188
    [Crossref] [Google Scholar]
  79. 79.
    Tammela P, Yamada S, Sandberg L. 2019.. Method of preparing cellulose fibres coated with redox-active polymer. Eur. Patent Appl. 19182135.4
    [Google Scholar]
  80. 80.
    Mitraka E, Vagin M, Sjöstedt A, Berggren M, Håkansson KMO, et al. 2019.. PEDOT-cellulose gas diffusion electrodes for disposable fuel cells. . Adv. Sustain. Syst. 3:(12):1900097
    [Crossref] [Google Scholar]
  81. 81.
    Wistrand I, Lingström R, Wågberg L. 2007.. Preparation of electrically conducting cellulose fibres utilizing polyelectrolyte multilayers of poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) and poly(allyl amine). . Eur. Polym. J. 43:(10):407591
    [Crossref] [Google Scholar]
  82. 82.
    Jabbour L, Chaussy D, Beneventi D, Destro M, Penazzi N, Gerbaldi C. 2012.. Use of paper-making techniques for the production of Li-ion paper-batteries. . Nord. Pulp Paper Res. J. 27:(2):47275
    [Crossref] [Google Scholar]
  83. 83.
    Koga H, Tonomura H, Nogi M, Suganuma K, Nishina Y. 2016.. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. . Green Chem. 18:(4):111724
    [Crossref] [Google Scholar]
  84. 84.
    Andres B, Dahlström C, Blomquist N, Norgren M, Olin H. 2018.. Cellulose binders for electric double-layer capacitor electrodes: the influence of cellulose quality on electrical properties. . Mater. Des. 141::34249
    [Crossref] [Google Scholar]
  85. 85.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T. 2008.. Cellulose nanopaper structures of high toughness. . Biomacromolecules 9:(6):157985
    [Crossref] [Google Scholar]
  86. 86.
    Sehaqui H, Liu A, Zhou Q, Berglund LA. 2010.. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. . Biomacromolecules 11:(9):219598
    [Crossref] [Google Scholar]
  87. 87.
    Abdel-Karim AM, Salama AH, Hassan ML. 2022.. High dielectric flexible thin films based on cellulose nanofibers and zinc sulfide nanoparticles. . Mater. Sci. Eng. B 276::115538
    [Crossref] [Google Scholar]
  88. 88.
    Khakalo A, Mäkelä T, Johansson L-S, Orelma H, Tammelin T. 2020.. High-throughput tailoring of nanocellulose films: from complex bio-based materials to defined multifunctional architectures. . ACS Appl. Bio Mater. 3:(11):742838
    [Crossref] [Google Scholar]
  89. 89.
    Shanmugam K, Varanasi S, Garnier G, Batchelor W. 2017.. Rapid preparation of smooth nanocellulose films using spray coating. . Cellulose 24:(7):266976
    [Crossref] [Google Scholar]
  90. 90.
    Sehaqui H, Zhou Q, Ikkala O, Berglund LA. 2011.. Strong and tough cellulose nanopaper with high specific surface area and porosity. . Biomacromolecules 12:(10):363844
    [Crossref] [Google Scholar]
  91. 91.
    Varanasi S, Batchelor WJ. 2013.. Rapid preparation of cellulose nanofibre sheet. . Cellulose 20:(1):21115
    [Crossref] [Google Scholar]
  92. 92.
    Beneventi D, Zeno E, Chaussy D. 2015.. Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. . Ind. Crops Prod. 72::2005
    [Crossref] [Google Scholar]
  93. 93.
    Håkansson K, Fall A, Granberg H. 2022.. Continuous production of nanocellulose films with limited heating. Paper presented at the TAPPI International Nanotechnology Conference, Helsinki, Finland:, June 15
    [Google Scholar]
  94. 94.
    Ek M, Geleerstedt G, Henriksson G, eds. 2009.. Pulp and Paper Chemistry and Technology, Vol. 2: Pulping Chemistry and Technology. Berlin:: de Gruyter
    [Google Scholar]
  95. 95.
    Wang X, Grimoldi A, Håkansson K, Fall A, Granberg H, et al. 2019.. Anisotropic conductivity of cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. . Org. Electron. 66::25864
    [Crossref] [Google Scholar]
  96. 96.
    Yoon S, Kim JW, Kim HC, Kim J. 2020.. Effect of process orientation on the mechanical behavior and piezoelectricity of electroactive paper. . Materials 13:(1):204
    [Crossref] [Google Scholar]
  97. 97.
    Hubbe MA, Gill RA. 2016.. Fillers for papermaking: a review of their properties, usage practices, and their mechanistic role. . BioResources 11:(1):2886963
    [Crossref] [Google Scholar]
  98. 98.
    Stone JE, Scallan AM. 2018.. Influence of drying on the pore structures of the cell wall. . In Consolidation of the Paper Web, Transactions of the Third Fundamental Research Symposium, Cambridge, 1965, ed. F Bolam , pp. 14566. Manchester, UK:: Fund. Res. Symp.
    [Google Scholar]
  99. 99.
    Beneventi D, Alila S, Boufi S, Chaussy D, Nortier P. 2006.. Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence. . Cellulose 13:(6):72534
    [Crossref] [Google Scholar]
  100. 100.
    Qian X, Jinghuan C, An X. 2010.. Polypyrrole-coated conductive paper prepared by vapour-phase deposition method. . Appita J. 63::1027
    [Google Scholar]
  101. 101.
    Yun TG, Kim D, Kim S-M, Kim I-D, Hyun S, Han SM. 2018.. Mulberry paper-based supercapacitor exhibiting high mechanical and chemical toughness for large-scale energy storage applications. . Adv. Energy Mater. 8:(21):1800064
    [Crossref] [Google Scholar]
  102. 102.
    Montibon E, Lestelius M, Järnström L. 2012.. Conductivity of paper containing poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) and multiwall carbon nanotubes. . J. Appl. Polym. Sci. 125:(S1):E3440
    [Crossref] [Google Scholar]
  103. 103.
    Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, et al. 2015.. An organic mixed ion–electron conductor for power electronics. . Adv. Sci. 3:(2):1500305
    [Crossref] [Google Scholar]
  104. 104.
    Lee Y, Zhang H, Yu H-Y, Tam KC. 2022.. Electroconductive cellulose nanocrystals—synthesis, properties and applications: a review. . Carbohydr. Polym. 289::119419
    [Crossref] [Google Scholar]
  105. 105.
    Chen L, Abdalkarim SYH, Yu H, Chen X, Tang D, et al. 2022.. Nanocellulose-based functional materials for advanced energy and sensor applications. . Nano Res. 15:(8):743252
    [Crossref] [Google Scholar]
  106. 106.
    Wang Z, Lee Y-H, Kim S-W, Seo J-Y, Lee S-Y, Nyholm L. 2021.. Why cellulose-based electrochemical energy storage devices?. Adv. Mater. 33:(28):2000892
    [Crossref] [Google Scholar]
  107. 107.
    Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, et al. 2016.. Electrically activated paper actuators. . Adv. Funct. Mater. 26:(15):244653
    [Crossref] [Google Scholar]
  108. 108.
    Kim J, Yun S, Mahadeva SK, Yun K, Yang SY, Maniruzzaman M. 2010.. Paper actuators made with cellulose and hybrid materials. . Sensors 10:(3):147385
    [Crossref] [Google Scholar]
  109. 109.
    Jaehwan K, Jung-Yup K, SoonJa C, eds. 2000.. Electroactive papers: possibility as actuators. . Proc. SPIE 3987::2039
    [Crossref] [Google Scholar]
  110. 110.
    Mahadeva SK, Kim J. 2009.. Effect of polyelectrolyte nanocoating on the performance and durability of cellulose electro-active paper actuator. . J. Nanosci. Nanotechnol. 9:(10):575763
    [Crossref] [Google Scholar]
  111. 111.
    Abas Z, Kim HS, Kim J, Kim J-H. 2014.. Cellulose electro-active paper: from discovery to technology applications. . Front. Mater. 1::17
    [Crossref] [Google Scholar]
  112. 112.
    Kim J, Seo YB. 2002.. Electro-active paper actuators. . Smart Mater. Struct. 11:(3):355
    [Crossref] [Google Scholar]
  113. 113.
    Kim J-H, Yun S, Kim J-H, Kim J. 2009.. Fabrication of piezoelectric cellulose paper and audio application. . J. Bionic Eng. 6:(1):1821
    [Crossref] [Google Scholar]
  114. 114.
    Jiao F, Edberg J, Zhao D, Puzinas S, Khan ZU, et al. 2018.. Nanofibrillated cellulose-based electrolyte and electrode for paper-based supercapacitors. . Adv. Sustain. Syst. 2:(1):1700121
    [Crossref] [Google Scholar]
  115. 115.
    Say MG, Brooke R, Edberg J, Grimoldi A, Belaineh D, et al. 2020.. Spray-coated paper supercapacitors. . NPJ Flex. Electron. 4:(1):14
    [Crossref] [Google Scholar]
  116. 116.
    Wang Y, Lai W, Jiang Z, Yang C. 2017.. All-printed paper based surface mountable supercapacitors. . IEEE Trans. Dielectr. Electr. Insul. 24:(2):67681
    [Crossref] [Google Scholar]
  117. 117.
    Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. 2014.. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. . Adv. Mater. 26:(28):485562
    [Crossref] [Google Scholar]
  118. 118.
    Wu X, Zhang M, Song T, Mou H, Xiang Z, Qi H. 2020.. Highly durable and flexible paper electrode with a dual fiber matrix structure for high-performance supercapacitors. . ACS Appl. Mater. Interfaces 12:(11):13096106
    [Crossref] [Google Scholar]
  119. 119.
    Bi J, Wu H, Wang L, Pang X, Li Y, et al. 2021.. A mass production paper-making method to prepare superior flexible electrodes and asymmetric supercapacitors with high volumetric capacitance. . Electrochim. Acta 367::137409
    [Crossref] [Google Scholar]
  120. 120.
    Huang Q, Yang Y, Chen R, Wang X. 2021.. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers. . EcoMat 3:(1):e12076
    [Crossref] [Google Scholar]
  121. 121.
    Chen J, Xie J, Jia CQ, Song C, Hu J, Li H. 2022.. Economical preparation of high-performance activated carbon fiber papers as self-supporting supercapacitor electrodes. . Chem. Eng. J. 450::137938
    [Crossref] [Google Scholar]
  122. 122.
    Yarar Kaplan B, Işıkel Şanlı L, Alkan Gürsel S. 2017.. Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells. . J. Mater. Sci. 52:(9):496876
    [Crossref] [Google Scholar]
  123. 123.
    Lee KM, Lai CW, Ngai KS, Juan JC. 2016.. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. . Water Res. 88::42848
    [Crossref] [Google Scholar]
  124. 124.
    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC. 2015.. Review of zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. . Nano-Micro Lett. 7::21942
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-084430
Loading
/content/journals/10.1146/annurev-matsci-080921-084430
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error