1932

Abstract

Recent advances in the field of diffusion in multiprincipal element systems are critically reviewed, with an emphasis on experimental as well as theoretical approaches to determining atomic mobilities (tracer diffusion coefficients) in chemically complex multicomponent systems. The newly elaborated and augmented pseudobinary and pseudoternary methods provide a rigorous framework to access tracer, intrinsic, and interdiffusion coefficients in alloys with an arbitrary number of components. Utilization of the novel tracer-interdiffusion couple method allows for a high-throughput determination of composition-dependent tracer diffusion coefficients. A combination of these approaches provides a unique experimental toolbox to access diffusivities of elements that do not have suitable tracers. The pair-exchange diffusion model, which gives a consistent definition of diffusion matrices without specifying a reference element, is highlighted. Density-functional theory–informed calculations of basic diffusion properties—asrequired for the generation of extensive mobility databases for technological applications—are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-092213
2022-07-01
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-092213.html?itemId=/content/journals/10.1146/annurev-matsci-081720-092213&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Miracle D, Senkov O. 2017. A critical review of high entropy alloys and related concepts. Acta Mater. 122:448–511
    [Google Scholar]
  2. 2.
    Cantor B, Chang ITH, Knight P, Vincent AJB. 2004. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377:213–18
    [Google Scholar]
  3. 3.
    Senkov O, Scott J, Senkova S, Miracle D, Woodward C. 2011. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509:6043–48
    [Google Scholar]
  4. 4.
    Feuerbacher M, Lienig T, Thomas C. 2018. A single-phase bcc high-entropy alloy in the refractory Zr–Nb–Ti–V–Hf system. Scr. Mater. 152:40–43
    [Google Scholar]
  5. 5.
    Feuerbacher M, Heidelmann M, Thomas C. 2016. Hexagonal high-entropy alloys. Mater. Res. Lett. 3:1–6
    [Google Scholar]
  6. 6.
    Rogal L, Bobrowski P, Körmann F, Divinski S, Stein F, Grabowski B. 2017. Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy. Sci. Rep. 7:2209
    [Google Scholar]
  7. 7.
    Yeh J, Chen S, Lin S, Gan J, Chin T et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6:299–303
    [Google Scholar]
  8. 8.
    Divinski SV, Lukianova OA, Wilde G, Dash A, Esakkiraja N, Paul A 2022. High-entropy alloys: diffusion. Encyclopedia of Materials, Vol. 2 G Miyamoto, MC Gao 402–16 Amsterdam: Elsevier
    [Google Scholar]
  9. 9.
    Dabrowa J, Zajusz M, Kucza W, Cieslak G, Berent K et al. 2019. Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783:193–207
    [Google Scholar]
  10. 10.
    Mehta A, Sohn Y. 2021. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mater. Res. Lett. 9:5239–46
    [Google Scholar]
  11. 11.
    Mehrer H. 1990. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes Berlin: Springer
    [Google Scholar]
  12. 12.
    Vaidya M, Pradeep K, Murty B, Wilde G, Divinski S. 2018. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146:211–24
    [Google Scholar]
  13. 13.
    Gaertner D, Kottke J, Chumlyakov Y, Hergemöller F, Wilde G, Divinski SV. 2020. Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: kinetic hints towards a low-temperature phase instability of the solid-solution?. Scr. Mater. 187:57–62
    [Google Scholar]
  14. 14.
    Paul A, Laurila T, Vuorinen V, Divinski SV. 2014. Thermodynamics, Diffusion and the Kirkendall Effect in Solids Cham, Switz: Springer
    [Google Scholar]
  15. 15.
    Murch GE, Thorn RJ. 1979. Calculation of the diffusion correlation factor by Monte Carlo methods. Philos. Mag. A 39:673–77
    [Google Scholar]
  16. 16.
    Mizuno M, Sugita K, Araki H. 2019. Defect energetics for diffusion in CrMnFeCoNi high-entropy alloy from first-principles calculations. Comput. Mater. Sci. 170:109163
    [Google Scholar]
  17. 17.
    Quyang H, Fultz B. 1989. Percolation in alloys with thermally activated diffusion. J. Appl. Phys. 66:4752–55
    [Google Scholar]
  18. 18.
    Mehrer H 1990. Diffusion in Metals and Alloys. Berlin: Springer
    [Google Scholar]
  19. 19.
    Kottke J, Utt D, Laurent-Brocq M, Fareed A, Gaertner D et al. 2020. Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100-xNix alloys. Acta Mater. 194:236–48
    [Google Scholar]
  20. 20.
    Vaidya M, Trubel S, Murty B, Wilde G, Divinski S. 2016. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688:994–1001
    [Google Scholar]
  21. 21.
    Nadutov V, Mazanko V, Makarenko S. 2017. Tracer diffusion of cobalt in high-entropy alloys AlxFeNiCoCuCr. Metallofiz. Noveishie Tekhnologii 39:337–48
    [Google Scholar]
  22. 22.
    Vaidya M, Sen S, Zhang X, Frommeyer L, Rogal L et al. 2020. Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys. Acta Mater. 196:220–30
    [Google Scholar]
  23. 23.
    Maier K, Mehrer H, Lessmann E, Schuele W. 1976. Self-diffusion in nickel at low temperatures. Phys. Status Solidi B 78:689–98
    [Google Scholar]
  24. 24.
    James D, Leak G. 1966. Self-diffusion and diffusion of cobalt in alpha and delta-iron. Philos. Mag. 14:701–13
    [Google Scholar]
  25. 25.
    Hood G, Zou H, Schultz R, Matsuura N, Roy J, Jackman J 1997. Self- and Hf diffusion in α-Zr and in dilute, Fe-free, Zr(Ti) and Zr(Nb) alloys. Defect Diffus. Forum 143:49–54
    [Google Scholar]
  26. 26.
    Million B, Růžičková J, Velíšek J, Vřešťál J. 1981. Diffusion processes in the Fe–Ni system. Mater. Sci. Eng. 50:143–52
    [Google Scholar]
  27. 27.
    Iijima Y, Kimura K, Lee CG. 1995. Self-diffusion in B.C.C. and ordered phases of an equiatomic iron–cobalt alloy. Acta Metal. Mater. 43:1183–88
    [Google Scholar]
  28. 28.
    Zhang J, Muralikrishna GM, Asabre A, Kalchev Y, Müller J et al. 2021. Tracer diffusion in the σ phase of the CoCrFeMnNi system. Acta Metall. 203:116498
    [Google Scholar]
  29. 29.
    Frank S, Södervall U, Herzig C. 1995. Self-diffusion of Ni in single and polycrystals of Ni3Al. A study of SIMS and radiotracer analysis. Phys. Status Solidi B 191:45–55
    [Google Scholar]
  30. 30.
    Knorr K, Macht M, Freitag K, Mehrer H. 1999. Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. J. Non-Cryst. Solids 250–252:2669–73
    [Google Scholar]
  31. 31.
    Köstler C, Faupel F, Hehenkamp T. 1986. Carbon-vacancy binding in Ni–C alloys. Scr. Metall. 20:1755–59
    [Google Scholar]
  32. 32.
    Chen T, Tiwari GP, Iijima1 Y, Yamauchi K. 2003. Volume and grain boundary diffusion of chromium in Ni-base Ni–Cr–Fe alloys. Mater. Trans. 44:140–46
    [Google Scholar]
  33. 33.
    Lukianova O, Rao Z, Kulitckii V, Li Z, Wilde G, Divinski S. 2020. Impact of interstitial carbon on self-diffusion in CoCrFeMnNi high entropy alloys. Scr. Mater. 188:264–68
    [Google Scholar]
  34. 34.
    Herzig C, Willecke R, Vieregge K. 1991. Self-diffusion and fast cobalt impurity diffusion in the bulk and in grain boundaries of hexagonal titanium. Philos. Mag. A 63:949–58
    [Google Scholar]
  35. 35.
    Wang Q, Lu Y, Yu Q, Zhang Z 2018. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi. Sci. Rep. 8:14910
    [Google Scholar]
  36. 36.
    Tsai K, Tsai M, Yeh J. 2013. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61:4887–97
    [Google Scholar]
  37. 37.
    Divinski S 2017. Defects and diffusion in ordered compounds. Handbook of Solid State Diffusion, Vol. 1: Diffusion Fundamentals and Techniques A Paul, SV Divinski 449–518 Amsterdam: Elsevier
    [Google Scholar]
  38. 38.
    He QF, Ye YF, Yang Y. 2017. Formation of random solid solution in multicomponent alloys: from Hume-Rothery rules to entropic stabilization. J. Phase Equilib. Diffus. 38:416–25
    [Google Scholar]
  39. 39.
    Faupel F, Frank W, Macht MP, Mehrer H, Naundorf V et al. 2003. Diffusion in metallic glasses and supercooled melts. Rev. Modern. Phys. 75:237–80
    [Google Scholar]
  40. 40.
    Paul A, Divinski S, eds. 2017. Handbook of Solid State Diffusion, Vol. 1: Diffusion Fundamentals and Techniques Amsterdam: Elsevier
    [Google Scholar]
  41. 41.
    Manning JR. 1970. Cross terms in the thermodynamic diffusion equations for multicomponent alloys. Metall. Mater. Trans. B 1:2499–505
    [Google Scholar]
  42. 42.
    Manning J. 1967. Diffusion and the Kirkendall shift in binary alloys. Acta Metall. 15:5817–26
    [Google Scholar]
  43. 43.
    Darken LS. 1948. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. AIME 175:184–201
    [Google Scholar]
  44. 44.
    Le Claire AD 1958. Random walks and drift in chemical diffusion. Philos. Mag. 3:33921–39
    [Google Scholar]
  45. 45.
    Onsager L. 1931. Reciprocal relations in irreversible processes. II. Phys. Rev. 38:122265–79
    [Google Scholar]
  46. 46.
    Onsager L. 1945. Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46:5241–65
    [Google Scholar]
  47. 47.
    Esakkiraja N, Dash A, Mondal A, Hary Kumar K, Paul A 2021. Correlation between estimated diffusion coefficients from different types of diffusion couples in multicomponent system. Materialia 16:101046
    [Google Scholar]
  48. 48.
    Kirkaldy JS, Young DJ. 1987. Diffusion in the Condensed State. London: Inst. Met.
    [Google Scholar]
  49. 49.
    Kirkaldy J, Lane J. 1966. Diffusion in multicomponent metallic systems: IX. Intrinsic diffusion behavior and the Kirkendall effect in ternary substitutional solutions. Can. J. Phys. 44:92059–72
    [Google Scholar]
  50. 50.
    Cserháti C, Ugaste Ü, van Dal MJH, Lousberg NJHGM, Kodentsov AA, van Loo FJJ. 2001. On the relation between interdiffusion and tracer diffusion coefficients in ternary solid solutions. Defect Diffus. Forum 194:189–94
    [Google Scholar]
  51. 51.
    Paul A. 2013. A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems. Philos. Mag. 93:182297–315
    [Google Scholar]
  52. 52.
    Esakkiraja N, Pandey K, Dash A, Paul A. 2019. Pseudo-binary and pseudo-ternary diffusion couple methods for estimation of the diffusion coefficients in multicomponent systems and high entropy alloys. Philos. Mag. 99:2236–64
    [Google Scholar]
  53. 53.
    Dash A, Esakkiraja N, Paul A. 2020. Solving the issues of multicomponent diffusion in an equiatomic NiCoFeCr medium entropy alloy. Acta Mater. 193:163–71
    [Google Scholar]
  54. 54.
    Paul A. 2017. Comments on “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 135:153–57
    [Google Scholar]
  55. 55.
    Esakkiraja N, Gupta A, Jayaram V, Hickel T, Divinski SV, Paul A. 2020. Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy. Acta Mater. 195:35–49
    [Google Scholar]
  56. 56.
    Kiruthika P, Paul A 2015. A pseudo-binary interdiffusion study in the β-Ni (Pt) Al phase. Philos. Mag. Lett. 95:3138–44
    [Google Scholar]
  57. 57.
    Kiruthika P, Makineni S, Srivastava C, Chattopadhyay K, Paul A. 2016. Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys. Acta Mater. 105:438–48
    [Google Scholar]
  58. 58.
    DeHoff R, Kulkarni N. 2002. The trouble with diffusion. Mater. Res. 5:3209–29
    [Google Scholar]
  59. 59.
    Morral JE. 2018. Body-diagonal diffusion couples for high entropy alloys. J. Phase Equilib. Diffus. 39:151–56
    [Google Scholar]
  60. 60.
    Verma V, Tripathi A, Venkateswaran T, Kulkarni KN. 2020. First report on entire sets of experimentally determined interdiffusion coefficients in quaternary and quinary high-entropy alloys. J. Mater. Res. 35:2162–71
    [Google Scholar]
  61. 61.
    Esakkiraja N, Paul A. 2018. A novel concept of pseudo ternary diffusion couple for the estimation of diffusion coefficients in multicomponent systems. Scr. Mater. 147:79–82
    [Google Scholar]
  62. 62.
    Gaertner D, Abrahams K, Kottke J, Esin VA, Steinbach I et al. 2019. Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys. Acta Mater. 166:357–70
    [Google Scholar]
  63. 63.
    Zhong J, Chen L, Zhang L 2021. Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles. NPJ Comput. Mater. 7:35
    [Google Scholar]
  64. 64.
    Mehta A, Belova I, Murch G, Sohn Y. 2021. Measurement of interdiffusion and tracer diffusion coefficients in FCC Co-Cr-Fe-Ni multi-principal element alloy. J. Phase Equilib. Diffus. 42:696–707
    [Google Scholar]
  65. 65.
    Belova I, Sohn Y, Murch G. 2015. Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys. Philos. Mag. Lett. 95:416–24
    [Google Scholar]
  66. 66.
    Kumar H, Dash A, Paul A, Bhattacharyya S. 2022. A physics-informed neural network-based numerical inverse method for optimization of diffusion coefficients in NiCoFeCr multi principal element alloy. Scr. Mater. 214:114639
    [Google Scholar]
  67. 67.
    Manning JR. 1959. Tracer diffusion in a chemical concentration gradient in silver-cadmium. Phys. Rev. 116:69–80
    [Google Scholar]
  68. 68.
    Meyer R, Slifkin L. 1966. Activity coefficient and vacancy-flow effects on diffusion in silver-gold alloys. Phys. Rev. 149:556–63
    [Google Scholar]
  69. 69.
    Belova I, Kulkarni N, Sohn Y, Murch G. 2014. Simultaneous tracer diffusion and interdiffusion in a sandwich-type configuration to provide the composition dependence of the tracer diffusion coefficients. Philos. Mag. 94:3560–73
    [Google Scholar]
  70. 70.
    Muralikrishna G, Tas B, Esakkiraja N, Esin V, Hari Kumar K et al. 2021. Composition dependence of Fe tracer diffusion coefficients in Fe–Ga alloys: a case study by a tracer-interdiffusion couple method. Acta Mater. 203:116446
    [Google Scholar]
  71. 71.
    Zunger A, Wei SH, Ferreira LG, Bernard JE. 1990. Special quasirandom structures. Phys. Rev. Lett. 65:3353–56
    [Google Scholar]
  72. 72.
    Henkelman G, Uberuaga BP, Jónsson H. 2000. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113:229901–4
    [Google Scholar]
  73. 73.
    Henkelman G, Jónsson H. 2000. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113:229978–85
    [Google Scholar]
  74. 74.
    Zhang X, Divinski SV, Grabowski B. 2022. Ab initio prediction of vacancy energetics in HCP Al-Hf-Sc-Ti-Zr high entropy alloys and the subsystems. Acta Mater. 227:117677
    [Google Scholar]
  75. 75.
    Zhang X, Sluiter MHF. 2016. Cluster expansions for thermodynamics and kinetics of multicomponent alloys. J. Phase Equilib. Diffus. 37:144–52
    [Google Scholar]
  76. 76.
    Van der Ven A, Ceder G, Asta M, Tepesch PD. 2001. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64:18184307
    [Google Scholar]
  77. 77.
    Van der Ven A, Ceder G. 2005. Vacancies in ordered and disordered binary alloys treated with the cluster expansion. Phys. Rev. B 71:5054102
    [Google Scholar]
  78. 78.
    Van der Ven A, Ceder G. 2005. First principles calculation of the interdiffusion coefficient in binary alloys. Phys. Rev. Lett. 94:4045901
    [Google Scholar]
  79. 79.
    Zhang X, Sluiter MHF. 2015. Ab initio prediction of vacancy properties in concentrated alloys: the case of fcc Cu-Ni. Phys. Rev. B 91:17174107
    [Google Scholar]
  80. 80.
    Zhang X, Sluiter MHF. 2019. Kinetically driven ordering in phase separating alloys. Phys. Rev. Mater. 3:9095601
    [Google Scholar]
  81. 81.
    Zhang X, Grabowski B, Hickel T, Neugebauer J. 2018. Calculating free energies of point defects from ab initio. Comput. Mater. Sci. 148:249–59
    [Google Scholar]
  82. 82.
    Grabowski B, Ikeda Y, Srinivasan P, Körmann F, Freysoldt C et al. 2019. Ab initio vibrational free energies including anharmonicity for multicomponent alloys. NPJ Comput. Mater. 5:180
    [Google Scholar]
  83. 83.
    Duff AI, Davey T, Korbmacher D, Glensk A, Grabowski B et al. 2015. Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC. Phys. Rev. B 91:21214311
    [Google Scholar]
  84. 84.
    Allnatt AR. 1965. Theory of phenomenological coefficients in solid-state diffusion. I. General expressions. J. Chem. Phys. 43:61855–63
    [Google Scholar]
  85. 85.
    Van der Ven A, Yu HC, Ceder G, Thornton K 2010. Vacancy mediated substitutional diffusion in binary crystalline solids. Prog. Mater. Sci. 55:261–105
    [Google Scholar]
  86. 86.
    Zhang L, Chen Q. 2017. CALPHAD-type modeling of diffusion kinetics in multicomponent alloys. Handbook of Solid State Diffusion, Vol. 1 A Paul, S Divinski 321–62 Amsterdam: Elsevier
    [Google Scholar]
  87. 87.
    Manning J. 1968. Diffiision Kinetics for Atoms in Crystals Princeton, NJ: Van Nostrand
    [Google Scholar]
  88. 88.
    Xia CH, Wang Y, Wang JJ, Lu XG, Zhang L. 2021. Thermodynamic assessment of the Co–Fe–Ni system and diffusion study of its fcc phase. J. Alloys Compd. 853:157165
    [Google Scholar]
  89. 89.
    Deng S, Chen W, Zhong J, Zhang L, Du Y, Chen L 2017. Diffusion study in bcc_A2 Fe-Mn-Si system: experimental measurement and CALPHAD assessment. Calphad 56:230–40
    [Google Scholar]
  90. 90.
    Abrahams K, Zomorodpoosh S, Khorasgani AR, Roslyakova I, Steinbach I, Kundin J. 2021. Automated assessment of a kinetic database for fcc Co–Cr–Fe–Mn–Ni high entropy alloys. Model. Simul. Mater. Sci. Eng. 29:0550072
    [Google Scholar]
  91. 91.
    Zhao N, Liu W, Wang JJ, Lu XG, Zhang L 2020. Thermodynamic assessment of the Ni–Co–Cr system and diffusion study of its fcc phase. Calphad 71:101996
    [Google Scholar]
  92. 92.
    Wang J, Zheng W, Xu G, Zeng X, Cui Y 2020. Thermodynamic assessment of the Ti–Al–Zr system and atomic mobility of its bcc phase. Calphad 70:101801
    [Google Scholar]
  93. 93.
    Jinwan H, Yang W, Jingjing W, Xiao-Gang L, Lijun Z 2018. Thermodynamic assessments of the Ni-Cr-Ti system and atomic mobility of its fcc phase. J. Phase Equilib. Diffus. 39:597–609
    [Google Scholar]
  94. 94.
    Bai W, Tian Y, Xu G, Yang Z, Liu L et al. 2019. Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys. Calphad 64:160–74
    [Google Scholar]
  95. 95.
    Bai W, Xu G, Tan M, Yang Z, Zeng L et al. 2018. Diffusivities and atomic mobilities in bcc Ti-Mo-Zr alloys. Materials 11:10)
    [Google Scholar]
  96. 96.
    Wei Z, Wang C, Qin S, Lu Y, Yu X, Liu X 2020. Assessment of atomic mobilities for bcc phase in the Ti-Nb-V system. J. Phase Equilib. Diffus. 41:191–206
    [Google Scholar]
  97. 97.
    Dong H, Wang J, Xu G, Zhou L, Cui Y. 2018. Assessment of atomic mobility for BCC Ti-Mn and Ti-Al-Mn alloys. Calphad 62:141–47
    [Google Scholar]
  98. 98.
    Whittle D, Green A. 1974. The measurement of diffusion coefficients in ternary system. Scr. Metall. 8:883–84
    [Google Scholar]
  99. 99.
    Zheng W, Wang J, He Y, Lu XG, Li L 2018. Experimental and computational study of diffusion mobilities for the bcc phase in the Fe-Al-(Si, Mn) systems. Calphad 61:189–97
    [Google Scholar]
  100. 100.
    Christianson DW, Zhu L, Manuel MV 2020. Experimental measurement of diffusion coefficients and assessment of diffusion mobilities in HCP Mg–Li–Al alloys. Calphad 71:101999
    [Google Scholar]
  101. 101.
    Zhao JC, Zheng X, Cahill DG. 2005. High-throughput diffusion multiples. Mater. Today 8:1028–37
    [Google Scholar]
  102. 102.
    Zhong J, Chen L, Zhang L 2020. High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review. J. Mater. Sci. 55:10303–38
    [Google Scholar]
  103. 103.
    Chen W, Zhang L. 2017. High-throughput determination of interdiffusion coefficients for Co–Cr–Fe–Mn–Ni high-entropy alloys. J. Phase Equilib. Diffus. 38:457–65
    [Google Scholar]
  104. 104.
    Zhang C, Zhang F, Jin K, Bei H, Chen S et al. 2017. Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J. Phase Equilib. Diffus. 38:434–44
    [Google Scholar]
  105. 105.
    Gheno T, Jomard F, Desgranges C, Martinelli L. 2018. Tracer diffusion of Cr in Ni and Ni–22Cr studied by SIMS. Materialia 3:145–52
    [Google Scholar]
  106. 106.
    Kundin J, Steinbach I, Abrahams K, Divinski SV 2021. Pair-exchange diffusion model for multicomponent alloys revisited. Materialia 16:101047
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-092213
Loading
/content/journals/10.1146/annurev-matsci-081720-092213
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error