1932

Abstract

Molecular architectures known as bottlebrush polymers provide unique opportunities to tune the structure and properties of soft materials with applications ranging from rubbers to thin films and composites. This review addresses recent developments and future opportunities in the field with an emphasis on materials science enabled by contemporary bottlebrush chemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-091522-024148
2024-08-05
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-091522-024148.html?itemId=/content/journals/10.1146/annurev-matsci-091522-024148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McLeish TC. 1997.. Polymer architecture influence on rheology. . Curr. Opin. Solid State Mater. Sci. 2:(6):67882. https://doi.org/10.1016/S1359-0286(97)80009-5
    [Crossref] [Google Scholar]
  2. 2.
    Levi AE, Lequieu J, Horne JD, Bates MW, Ren JM, et al. 2019.. Miktoarm stars via grafting-through copolymerization: self-assembly and the star-to-bottlebrush transition. . Macromolecules 52:(4):1794802. https://doi.org/10.1021/acs.macromol.8b02321
    [Crossref] [Google Scholar]
  3. 3.
    Daniel WFM, Burdyńska J, Vatankhah-Varnoosfaderani M, Matyjaszewski K, Paturej J, et al. 2016.. Solvent-free, supersoft and superelastic bottlebrush melts and networks. . Nat. Mater. 15:(2):18389. https://doi.org/10.1038/nmat4508
    [Crossref] [Google Scholar]
  4. 4.
    Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski K. 2019.. Molecular bottlebrushes as novel materials. . Biomacromolecules 20:(1):2754. https://doi.org/10.1021/acs.biomac.8b01171
    [Crossref] [Google Scholar]
  5. 5.
    Paturej J, Sheiko SS, Panyukov S, Rubinstein M. 2016.. Molecular structure of bottlebrush polymers in melts. . Sci. Adv. 2:(11):e1601478. https://doi.org/10.1126/sciadv.1601478
    [Crossref] [Google Scholar]
  6. 6.
    Dalsin SJ, Hillmyer MA, Bates FS. 2014.. Molecular weight dependence of zero-shear viscosity in atactic polypropylene bottlebrush polymers. . ACS Macro Lett. 3:(5):42327. https://doi.org/10.1021/mz500082h
    [Crossref] [Google Scholar]
  7. 7.
    Sunday DF, Burns AB, Martin TB, Chang AB, Grubbs RH. 2023.. Relationship between graft density and the dilute solution structure of bottlebrush polymers: an inter-chemistry comparison and scaling analysis. . Macromolecules 56:(18):741931. https://doi.org/10.1021/acs.macromol.3c01436
    [Crossref] [Google Scholar]
  8. 8.
    Zhulina EB, Sheiko SS, Borisov OV. 2022.. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. . Soft Matter 18:(46):871432. https://doi.org/10.1039/D2SM01141G
    [Crossref] [Google Scholar]
  9. 9.
    Zografos A, All HA, Chang AB, Hillmyer MA, Bates FS. 2023.. Star-to-bottlebrush transition in extensional and shear deformation of unentangled polymer melts. . Macromolecules 56:(6):240617. https://doi.org/10.1021/acs.macromol.3c00015
    [Crossref] [Google Scholar]
  10. 10.
    Abbasi M, Faust L, Wilhelm M. 2019.. Comb and bottlebrush polymers with superior rheological and mechanical properties. . Adv. Mater. 31:(26):1806484. https://doi.org/10.1002/adma.201806484
    [Crossref] [Google Scholar]
  11. 11.
    Xie R, Lapkriengkri I, Pramanik NB, Mukherjee S, Blankenship JR, et al. 2022.. Hydrogen-bonding bottlebrush networks: self-healing materials from super-soft to stiff. . Macromolecules 55:(23):1051321. https://doi.org/10.1021/acs.macromol.2c01886
    [Crossref] [Google Scholar]
  12. 12.
    Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, et al. 2021.. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. . Nat. Commun. 12:(1):6472. https://doi.org/10.1038/s41467-021-26808-5
    [Crossref] [Google Scholar]
  13. 13.
    Tanaka J, Häkkinen S, Boeck PT, Cong Y, Perrier S, et al. 2020.. Orthogonal cationic and radical RAFT polymerizations to prepare bottlebrush polymers. . Angew. Chem. 132:(18):727075. https://doi.org/10.1002/ange.202000700
    [Crossref] [Google Scholar]
  14. 14.
    Shanmugam S, Cuthbert J, Kowalewski T, Boyer C, Matyjaszewski K. 2018.. Catalyst-free selective photoactivation of RAFT polymerization: a facile route for preparation of comblike and bottlebrush polymers. . Macromolecules 51:(19):777684. https://doi.org/10.1021/acs.macromol.8b01708
    [Crossref] [Google Scholar]
  15. 15.
    Bates CM, Chang AB, Momčilović N, Jones SC, Grubbs RH. 2015.. ABA triblock brush polymers: synthesis, self-assembly, conductivity, and rheological properties. . Macromolecules 48:(14):496773. https://doi.org/10.1021/acs.macromol.5b00880
    [Crossref] [Google Scholar]
  16. 16.
    Rzayev J. 2012.. Molecular bottlebrushes: new opportunities in nanomaterials fabrication. . ACS Macro Lett. 1:(9):114649. https://doi.org/10.1021/mz300402x
    [Crossref] [Google Scholar]
  17. 17.
    Verduzco R, Li X, Pesek SL, Stein GE. 2015.. Structure, function, self-assembly, and applications of bottlebrush copolymers. . Chem. Soc. Rev. 44:(8):240520. https://doi.org/10.1039/C4CS00329B
    [Crossref] [Google Scholar]
  18. 18.
    Tonge CM, Sauvé ER, Cheng S, Howard TA, Hudson ZM. 2018.. Multiblock bottlebrush nanofibers from organic electronic materials. . J. Am. Chem. Soc. 140:(37):11599603. https://doi.org/10.1021/jacs.8b07915
    [Crossref] [Google Scholar]
  19. 19.
    Xie R, Mukherjee S, Levi AE, Self JL, Wang H, et al. 2021.. Yielding behavior of bottlebrush and linear block copolymers. . Macromolecules 54:(12):563647. https://doi.org/10.1021/acs.macromol.1c00557
    [Crossref] [Google Scholar]
  20. 20.
    Kim KH, Nam J, Choi J, Seo M, Bang J. 2022.. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. . Polym. Chem. 13:(16):222461. https://doi.org/10.1039/D2PY00126H
    [Crossref] [Google Scholar]
  21. 21.
    Lord SJ, Sheiko SS, LaRue I, Lee H-I, Matyjaszewski K. 2004.. Tadpole conformation of gradient polymer brushes. . Macromolecules 37:(11):423540. https://doi.org/10.1021/ma035989z
    [Crossref] [Google Scholar]
  22. 22.
    Mukherjee S, Xie R, Reynolds VG, Uchiyama T, Levi AE, et al. 2020.. Universal approach to photo-crosslink bottlebrush polymers. . Macromolecules 53:(3):109097. https://doi.org/10.1021/acs.macromol.9b02210
    [Crossref] [Google Scholar]
  23. 23.
    Keith AN, Vatankhah-Varnosfaderani M, Clair C, Fahimipour F, Dashtimoghadam E, et al. 2020.. Bottlebrush bridge between soft gels and firm tissues. . ACS Cent. Sci. 6:(3):41319. https://doi.org/10.1021/acscentsci.9b01216
    [Crossref] [Google Scholar]
  24. 24.
    Yuk H, Lu B, Zhao X. 2019.. Hydrogel bioelectronics. . Chem. Soc. Rev. 48:(6):164267. https://doi.org/10.1039/C8CS00595H
    [Crossref] [Google Scholar]
  25. 25.
    Cai L-H, Kodger TE, Guerra RE, Pegoraro AF, Rubinstein M, Weitz DA. 2015.. Soft poly(dimethylsiloxane) elastomers from architecture-driven entanglement free design. . Adv. Mater. 27:(35):513240. https://doi.org/10.1002/adma.201502771
    [Crossref] [Google Scholar]
  26. 26.
    Hu M, Xia Y, McKenna GB, Kornfield JA, Grubbs RH. 2011.. Linear rheological response of a series of densely branched brush polymers. . Macromolecules 44:(17):693543. https://doi.org/10.1021/ma2009673
    [Crossref] [Google Scholar]
  27. 27.
    Vatankhah-Varnoosfaderani M, Daniel WFM, Zhushma AP, Li Q, Morgan BJ, et al. 2017.. Bottlebrush elastomers: a new platform for freestanding electroactuation. . Adv. Mater. 29:(2):1604209. https://doi.org/10.1002/adma.201604209
    [Crossref] [Google Scholar]
  28. 28.
    Reynolds VG, Mukherjee S, Xie R, Levi AE, Atassi A, et al. 2020.. Super-soft solvent-free bottlebrush elastomers for touch sensing. . Mater. Horiz. 7:(1):18187. https://doi.org/10.1039/C9MH00951E
    [Crossref] [Google Scholar]
  29. 29.
    Rubinstein M, Colby RH. 2003.. Polymer Physics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  30. 30.
    Yarusso DJ. 2002.. Effect of rheology on PSA performance. . In Adhesion Science and Engineering, ed. DA Dillard, AV Pocius, M Chaudhury , pp. 499533. Amsterdam:: Elsevier. https://doi.org/10.1016/B978-0-444-51140-9.50040-8
    [Google Scholar]
  31. 31.
    Packham DE. 2002.. Surface roughness and adhesion. . In Adhesion Science and Engineering, ed. DA Dillard, AV Pocius, M Chaudhury , pp. 31749. Amsterdam:: Elsevier. https://doi.org/10.1016/B978-044451140-9/50007-X
    [Google Scholar]
  32. 32.
    Dadashi-Silab S, Stache EE. 2023.. Sticky or not: adhesion by architectural design. . ACS Cent. Sci. 9:(2):13436. https://doi.org/10.1021/acscentsci.3c00104
    [Crossref] [Google Scholar]
  33. 33.
    Arrington KJ, Radzinski SC, Drummey KJ, Long TE, Matson JB. 2018.. Reversibly cross-linkable bottlebrush polymers as pressure-sensitive adhesives. . ACS Appl. Mater. Interfaces 10:(31):2666268. https://doi.org/10.1021/acsami.8b08480
    [Crossref] [Google Scholar]
  34. 34.
    Maw M, Dashtimoghadam E, Keith AN, Morgan BJ, Tanas AK, et al. 2023.. Sticky architecture: encoding pressure sensitive adhesion in polymer networks. . ACS Cent. Sci. 9:(2):197205. https://doi.org/10.1021/acscentsci.2c01407
    [Crossref] [Google Scholar]
  35. 35.
    Dashtimoghadam E, Maw M, Keith AN, Vashahi F, Kempkes V, et al. 2022.. Super-soft, firm, and strong elastomers toward replication of tissue viscoelastic response. . Mater. Horiz. 9:(12):302230. https://doi.org/10.1039/D2MH00844K
    [Crossref] [Google Scholar]
  36. 36.
    Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S. 2014.. Carbon nanotube based elastomer composites – an approach towards multifunctional materials. . J. Mater. Chem. C 2:(40):844685. https://doi.org/10.1039/C4TC01037J
    [Crossref] [Google Scholar]
  37. 37.
    Le ML, Lapkriengkri I, Albanese KR, Nguyen PH, Tran C, et al. 2023.. Engineering soft, elastic, and conductive polymers for stretchable electronics using ionic compatibilization. . Chem. Mater. 35:(17):730110. https://doi.org/10.1021/acs.chemmater.3c01685
    [Crossref] [Google Scholar]
  38. 38.
    Kim N, Lienemann S, Petsagkourakis I, Mengistie DA, Kee S, et al. 2020.. Elastic conducting polymer composites in thermoelectric modules. . Nat. Commun. 11:(1):1424. https://doi.org/10.1038/s41467-020-15135-w
    [Crossref] [Google Scholar]
  39. 39.
    Yang Y, Zhao G, Cheng X, Deng H, Fu Q. 2021.. Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing. . ACS Appl. Mater. Interfaces 13:(12):14599611. https://doi.org/10.1021/acsami.1c00879
    [Crossref] [Google Scholar]
  40. 40.
    Xu Y, Su Y, Xu X, Arends B, Zhao G, et al. 2023.. Porous liquid metal–elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. . Sci. Adv. 9:(1):eadf0575. https://doi.org/10.1126/sciadv.adf0575
    [Crossref] [Google Scholar]
  41. 41.
    Markvicka EJ, Bartlett MD, Huang X, Majidi C. 2018.. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. . Nat. Mater. 17:(7):61824. https://doi.org/10.1038/s41563-018-0084-7
    [Crossref] [Google Scholar]
  42. 42.
    Tutika R, Kmiec S, Tahidul Haque ABM, Martin SW, Bartlett MD. 2019.. Liquid metal–elastomer soft composites with independently controllable and highly tunable droplet size and volume loading. . ACS Appl. Mater. Interfaces 11:(19):1787383. https://doi.org/10.1021/acsami.9b04569
    [Crossref] [Google Scholar]
  43. 43.
    Self JL, Reynolds VG, Blankenship J, Mee E, Guo J, et al. 2022.. Carbon nanotube composites with bottlebrush elastomers for compliant electrodes. . ACS Polym. Au 2:(1):2734. https://doi.org/10.1021/acspolymersau.1c00034
    [Crossref] [Google Scholar]
  44. 44.
    Xu P, Wang S, Lin A, Min H-K, Zhou Z, et al. 2023.. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. . Nat. Commun. 14:(1):623. https://doi.org/10.1038/s41467-023-36214-8
    [Crossref] [Google Scholar]
  45. 45.
    Self JL, Sample CS, Levi AE, Li K, Xie R, et al. 2020.. Dynamic bottlebrush polymer networks: self-healing in super-soft materials. . J. Am. Chem. Soc. 142:(16):756773. https://doi.org/10.1021/jacs.0c01467
    [Crossref] [Google Scholar]
  46. 46.
    Oropeza D, Roberts R, Hart AJ. 2022.. A rapid development workflow for binder inks for additive manufacturing with application to polymer and reactive binder ink formulation. . J. Manuf. Process. 73::47182. https://doi.org/10.1016/j.jmapro.2021.10.068
    [Crossref] [Google Scholar]
  47. 47.
    Das S. 2003.. Physical aspects of process control in selective laser sintering of metals. . Adv. Eng. Mater. 5:(10):70111. https://doi.org/10.1002/adem.200310099
    [Crossref] [Google Scholar]
  48. 48.
    Gunasekaran J, Sevvel P, John Solomon I. 2021.. Metallic materials fabrication by selective laser melting: a review. . Mater. Today Proc. 37::25256. https://doi.org/10.1016/j.matpr.2020.05.162
    [Crossref] [Google Scholar]
  49. 49.
    Garcia RV, Murphy EA, Sinha NJ, Okayama Y, Urueña JM, et al. 2023.. Tailoring writability and performance of star block copolypeptides hydrogels through side-chain design. . Small 19:(50):2302794. https://doi.org/10.1002/smll.202302794
    [Crossref] [Google Scholar]
  50. 50.
    Robinson LL, Self JL, Fusi AD, Bates MW, Read de Alaniz J, et al. 2021.. Chemical and mechanical tunability of 3D-printed dynamic covalent networks based on boronate esters. . ACS Macro Lett. 10:(7):85763. https://doi.org/10.1021/acsmacrolett.1c00257
    [Crossref] [Google Scholar]
  51. 51.
    Shahrubudin N, Lee TC, Ramlan R. 2019.. An overview on 3D printing technology: technological, materials, and applications. . Procedia Manuf. 35::128696. https://doi.org/10.1016/j.promfg.2019.06.089
    [Crossref] [Google Scholar]
  52. 52.
    Capel AJ, Rimington RP, Lewis MP, Christie SDR. 2018.. 3D printing for chemical, pharmaceutical and biological applications. . Nat. Rev. Chem. 2:(12):42236. https://doi.org/10.1038/s41570-018-0058-y
    [Crossref] [Google Scholar]
  53. 53.
    Wallin TJ, Pikul J, Shepherd RF. 2018.. 3D printing of soft robotic systems. . Nat. Rev. Mater. 3:(6):84100. https://doi.org/10.1038/s41578-018-0002-2
    [Crossref] [Google Scholar]
  54. 54.
    Choi C, Okayama Y, Morris PT, Robinson LL, Gerst M, et al. 2022.. Digital light processing of dynamic bottlebrush materials. . Adv. Funct. Mater. 32:(25):2200883. https://doi.org/10.1002/adfm.202200883
    [Crossref] [Google Scholar]
  55. 55.
    Tan Y, Chen H, Kang W, Wang X. 2022.. Versatile light-mediated synthesis of dry ion-conducting dynamic bottlebrush networks with high elasticity, interfacial adhesiveness, and flame retardancy. . Macromolecules 55:(21):971525. https://doi.org/10.1021/acs.macromol.2c01234
    [Crossref] [Google Scholar]
  56. 56.
    Xie R, Mukherjee S, Levi AE, Reynolds VG, Wang H, et al. 2020.. Room temperature 3D printing of super-soft and solvent-free elastomers. . Sci. Adv. 6:(46):eabc6900. https://doi.org/10.1126/sciadv.abc6900
    [Crossref] [Google Scholar]
  57. 57.
    Nian S, Zhu J, Zhang H, Gong Z, Freychet G, et al. 2021.. Three-dimensional printable, extremely soft, stretchable, and reversible elastomers from molecular architecture-directed assembly. . Chem. Mater. 33:(7):243645. https://doi.org/10.1021/acs.chemmater.0c04659
    [Crossref] [Google Scholar]
  58. 58.
    Vigneron JP, Simonis P. 2012.. Natural photonic crystals. . Phys. B Condens. Matter 407:(20):403236. https://doi.org/10.1016/j.physb.2011.12.130
    [Crossref] [Google Scholar]
  59. 59.
    Joannopoulos JD, Villeneuve PR, Fan S. 1997.. Photonic crystals. . Solid State Commun. 102:(2):16573. https://doi.org/10.1016/S0038-1098(96)00716-8
    [Crossref] [Google Scholar]
  60. 60.
    Runge MB, Bowden NB. 2007.. Synthesis of high molecular weight comb block copolymers and their assembly into ordered morphologies in the solid state. . J. Am. Chem. Soc. 129:(34):1055160. https://doi.org/10.1021/ja072929q
    [Crossref] [Google Scholar]
  61. 61.
    Sveinbjörnsson BR, Weitekamp RA, Miyake GM, Xia Y, Atwater HA, Grubbs RH. 2012.. Rapid self-assembly of brush block copolymers to photonic crystals. . PNAS 109:(36):1433236. https://doi.org/10.1073/pnas.1213055109
    [Crossref] [Google Scholar]
  62. 62.
    Piunova VA, Miyake GM, Daeffler CS, Weitekamp RA, Grubbs RH. 2013.. Highly ordered dielectric mirrors via the self-assembly of dendronized block copolymers. . J. Am. Chem. Soc. 135:(41):1560916. https://doi.org/10.1021/ja4081502
    [Crossref] [Google Scholar]
  63. 63.
    Miyake GM, Piunova VA, Weitekamp RA, Grubbs RH. 2012.. Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. . Angew. Chem. Int. Ed. 51:(45):1124648. https://doi.org/10.1002/anie.201205743
    [Crossref] [Google Scholar]
  64. 64.
    Miyake GM, Weitekamp RA, Piunova VA, Grubbs RH. 2012.. Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. . J. Am. Chem. Soc. 134:(34):1424954. https://doi.org/10.1021/ja306430k
    [Crossref] [Google Scholar]
  65. 65.
    Lequieu J, Quah T, Delaney KT, Fredrickson GH. 2020.. Complete photonic band gaps with nonfrustrated ABC bottlebrush block polymers. . ACS Macro Lett. 9:(7):107480. https://doi.org/10.1021/acsmacrolett.0c00380
    [Crossref] [Google Scholar]
  66. 66.
    Liberman-Martin AL, Chang AB, Chu CK, Siddique RH, Lee B, Grubbs RH. 2021.. Processing effects on the self-assembly of brush block polymer photonic crystals. . ACS Macro Lett. 10:(12):148086. https://doi.org/10.1021/acsmacrolett.1c00579
    [Crossref] [Google Scholar]
  67. 67.
    Patel BB, Pan T, Chang Y, Walsh DJ, Kwok JJ, et al. 2022.. Concentration-driven self-assembly of PS-b-PLA bottlebrush diblock copolymers in solution. . ACS Polym. Au 2:(4):23244. https://doi.org/10.1021/acspolymersau.1c00057
    [Crossref] [Google Scholar]
  68. 68.
    Song D-P, Zhao TH, Guidetti G, Vignolini S, Parker RM. 2019.. Hierarchical photonic pigments via the confined self-assembly of bottlebrush block copolymers. . ACS Nano 13:(2):176471. https://doi.org/10.1021/acsnano.8b07845
    [Google Scholar]
  69. 69.
    Patel BB, Walsh DJ, Kim DH, Kwok J, Lee B, et al. 2020.. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. . Sci. Adv. 6:(24):eaaz7202. https://doi.org/10.1126/sciadv.aaz7202
    [Crossref] [Google Scholar]
  70. 70.
    Gu W, Huh J, Hong SW, Sveinbjornsson BR, Park C, et al. 2013.. Self-assembly of symmetric brush diblock copolymers. . ACS Nano 7:(3):255158. https://doi.org/10.1021/nn305867d. Correction. 2015 . ACS Nano 9:(7):7729
    [Google Scholar]
  71. 71.
    Patel BB, Walsh DJ, Patel K, Hoon Kim D, Kwok JJ, et al. 2022.. Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing. . Soft Matter 18:(8):166677. https://doi.org/10.1039/D1SM01634B
    [Crossref] [Google Scholar]
  72. 72.
    Fei H-F, Yavitt BM, Hu X, Kopanati G, Ribbe A, Watkins JJ. 2019.. Influence of molecular architecture and chain flexibility on the phase map of polystyrene-block-poly(dimethylsiloxane) brush block copolymers. . Macromolecules 52:(17):644957. https://doi.org/10.1021/acs.macromol.9b00843
    [Crossref] [Google Scholar]
  73. 73.
    Kawamoto K, Zhong M, Gadelrab KR, Cheng L-C, Ross CA, et al. 2016.. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. . J. Am. Chem. Soc. 138:(36):115014. https://doi.org/10.1021/jacs.6b07670
    [Crossref] [Google Scholar]
  74. 74.
    Liberman-Martin AL, Chu CK, Grubbs RH. 2017.. Application of bottlebrush block copolymers as photonic crystals. . Macromol. Rapid Commun. 38:(13):1700058. https://doi.org/10.1002/marc.201700058
    [Crossref] [Google Scholar]
  75. 75.
    Lee D, Charpota N, Mei H, Terlier T, Pietrzak D, et al. 2022.. Impact of processing effects on surface segregation of bottlebrush polymer additives. . Macromolecules 55:(19):890917. https://doi.org/10.1021/acs.macromol.2c01418
    [Crossref] [Google Scholar]
  76. 76.
    Miyagi K, Mei H, Terlier T, Stein GE, Verduzco R. 2020.. Analysis of surface segregation of bottlebrush polymer additives in thin film blends with attractive intermolecular interactions. . Macromolecules 53:(15):672030. https://doi.org/10.1021/acs.macromol.0c00744
    [Crossref] [Google Scholar]
  77. 77.
    Mei H, Laws TS, Mahalik JP, Li J, Mah AH, et al. 2019.. Entropy and enthalpy mediated segregation of bottlebrush copolymers to interfaces. . Macromolecules 52:(22):891022. https://doi.org/10.1021/acs.macromol.9b01801
    [Crossref] [Google Scholar]
  78. 78.
    Mah AH, Laws T, Li W, Mei H, Brown CC, et al. 2019.. Entropic and enthalpic effects in thin film blends of homopolymers and bottlebrush polymers. . Macromolecules 52:(4):152635. https://doi.org/10.1021/acs.macromol.8b02242
    [Crossref] [Google Scholar]
  79. 79.
    Mitra I, Li X, Pesek SL, Makarenko B, Lokitz BS, et al. 2014.. Thin film phase behavior of bottlebrush/linear polymer blends. . Macromolecules 47:(15):526976. https://doi.org/10.1021/ma501070w
    [Crossref] [Google Scholar]
  80. 80.
    Kim KH, Kim M, Moon J, Huh J, Bang J. 2021.. Bottlebrush copolymer as surface neutralizer for vertical alignment of block copolymer nanodomains in thin films. . ACS Macro Lett. 10:(3):34653. https://doi.org/10.1021/acsmacrolett.0c00879
    [Crossref] [Google Scholar]
  81. 81.
    Bates CM, Maher MJ, Janes DW, Ellison CJ, Willson CG. 2014.. Block copolymer lithography. . Macromolecules 47:(1):212. https://doi.org/10.1021/ma401762n
    [Crossref] [Google Scholar]
  82. 82.
    Mansky P, Liu Y, Huang E, Russell TP, Hawker C. 1997.. Controlling polymer-surface interactions with random copolymer brushes. . Science 275:(5305):145860. https://doi.org/10.1126/science.275.5305.1458
    [Crossref] [Google Scholar]
  83. 83.
    Bates CM, Seshimo T, Maher MJ, Durand WJ, Cushen JD, et al. 2012.. Polarity-switching top coats enable orientation of sub–10-nm block copolymer domains. . Science 338:(6108):77579. https://doi.org/10.1126/science.1226046
    [Crossref] [Google Scholar]
  84. 84.
    Yamauchi Y, Samitsu S, Goto K, Takeuchi M. 2020.. Bottlebrush polymer-reinforced transparent multiphase plastics with enhanced thermal stability. . Chem. Commun. 56:(93):1464144. https://doi.org/10.1039/D0CC06769E
    [Crossref] [Google Scholar]
  85. 85.
    Banquy X, Burdyńska J, Lee DW, Matyjaszewski K, Israelachvili J. 2014.. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. . J. Am. Chem. Soc. 136:(17):6199202. https://doi.org/10.1021/ja501770y
    [Crossref] [Google Scholar]
  86. 86.
    Seror J, Merkher Y, Kampf N, Collinson L, Day AJ, et al. 2011.. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan–aggrecan complexes. . Biomacromolecules 12:(10):343243. https://doi.org/10.1021/bm2004912
    [Crossref] [Google Scholar]
  87. 87.
    Andresen Eguiluz RC, Cook SG, Tan M, Brown CN, Pacifici NJ, et al. 2017.. Synergistic interactions of a synthetic lubricin-mimetic with fibronectin for enhanced wear protection. . Front. Bioeng. Biotechnol. 5::36. https://doi.org/10.3389/fbioe.2017.00036
    [Crossref] [Google Scholar]
  88. 88.
    Faivre J, Shrestha BR, Xie G, Olszewski M, Adibnia V, et al. 2018.. Intermolecular interactions between bottlebrush polymers boost the protection of surfaces against frictional wear. . Chem. Mater. 30:(12):414049. https://doi.org/10.1021/acs.chemmater.8b01676
    [Crossref] [Google Scholar]
  89. 89.
    Sun Z, Bonassar LJ, Putnam D. 2019.. Influence of block length on articular cartilage lubrication with a diblock bottle-brush copolymer. . ACS Appl. Mater. Interfaces 12:(1):33037. https://doi.org/10.1021/acsami.9b18933
    [Crossref] [Google Scholar]
  90. 90.
    Liu X, Thormann E, Dedinaite A, Rutland M, Visnevskij C, et al. 2013.. Low friction and high load bearing capacity layers formed by cationic-block-non-ionic bottle-brush copolymers in aqueous media. . Soft Matter 9:(22):536171. https://doi.org/10.1039/C3SM27862J
    [Crossref] [Google Scholar]
  91. 91.
    Moon HH, Choi EJ, Yun SH, Kim YC, Premkumar T, Song C. 2022.. Aqueous lubrication and wear properties of nonionic bottle-brush polymers. . RSC Adv. 12:(28):1774046. https://doi.org/10.1039/D2RA02711A
    [Crossref] [Google Scholar]
  92. 92.
    Olszewski M, Pham DA, González Bolívar S, Rabanel J-M, Martinez M, et al. 2022.. Synthesis and characterization of biocompatible sulfoxide-containing molecular bottlebrushes. . ACS Appl. Polym. Mater. 4:(11):856473. https://doi.org/10.1021/acsapm.2c01468
    [Crossref] [Google Scholar]
  93. 93.
    Adibnia V, Olszewski M, De Crescenzo G, Matyjaszewski K, Banquy X. 2020.. Superlubricity of zwitterionic bottlebrush polymers in the presence of multivalent ions. . J. Am. Chem. Soc. 142:(35):1484347. https://doi.org/10.1021/jacs.0c07215
    [Crossref] [Google Scholar]
  94. 94.
    Zhulina EB, Borisov OV. 2022.. Bottlebrush polymer gels: architectural control over swelling and osmotic bulk modulus. . Soft Matter 18:(6):123946. https://doi.org/10.1039/D1SM01575C
    [Crossref] [Google Scholar]
  95. 95.
    Wu B, Feng E, Liao Y, Liu H, Tang R, Tan Y. 2022.. Brush-modified hydrogels: preparations, properties, and applications. . Chem. Mater. 34:(14):621031. https://doi.org/10.1021/acs.chemmater.2c01666
    [Crossref] [Google Scholar]
  96. 96.
    Vashahi F, Martinez MR, Dashtimoghadam E, Fahimipour F, Keith AN, et al. 2022.. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. . Sci. Adv. 8:(3):eabm2469. https://doi.org/10.1126/sciadv.abm2469
    [Crossref] [Google Scholar]
  97. 97.
    Vohidov F, Milling LE, Chen Q, Zhang W, Bhagchandani S, et al. 2020.. ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. . Chem. Sci. 11:(23):597486. https://doi.org/10.1039/D0SC02611E
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-091522-024148
Loading
/content/journals/10.1146/annurev-matsci-091522-024148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error