1932

Abstract

The first published description of therapeutic applications of antisense oligonucleotide (ASO) technology occurred in the late 1970s and was followed by the founding of commercial companies focused on developing antisense therapeutics in the late 1980s. Since the late 1980s, there has been steady progress in improving the technology platform, taking advantage of advances in oligonucleotide chemistry and formulations as well as increased understanding of the distribution and safety of ASOs. There are several approved ASO drugs and a broad pipeline in development. In addition, advances in understanding human disease, including the genetic basis for most monogenic diseases and the availability of the full human genome sequence, have created numerous therapeutic applications for the technology. I summarize the state of the technology and highlight how advances in the technology position ASOs to be an important contributor to future medicines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-041217-010829
2019-01-27
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/med/70/1/annurev-med-041217-010829.html?itemId=/content/journals/10.1146/annurev-med-041217-010829&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sharp PA 2009. The centrality of RNA. Cell 136:577–80
    [Google Scholar]
  2. 2.  Goff LA, Rinn JL 2015. Linking RNA biology to lncRNAs. Genome Res 25:1456–65
    [Google Scholar]
  3. 3.  Bartel DP 2018. Metazoan microRNAs. Cell 173:20–51
    [Google Scholar]
  4. 4.  Cooper TA, Wan L, Dreyfuss G 2009. RNA and diseases. Cell 136:777–93
    [Google Scholar]
  5. 5.  Crooke ST, Witztum JL, Bennett CF et al. 2018. RNA-targeted therapeutics. Cell Metab 27:714–39
    [Google Scholar]
  6. 6.  Crooke ST 2017. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 27:70–77
    [Google Scholar]
  7. 7.  Bennett CF, Swayze EE 2010. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Ann. Rev. Pharmacol. Toxicol. 50:259–93
    [Google Scholar]
  8. 8.  Agrawal S 2010. Remembering Paul C. Zamecnik, M.D., “father of antisense” (1912–2009). Oligonucleotides 20:47–50
    [Google Scholar]
  9. 9.  Zamecnik PC, Stephenson ML 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. PNAS 75:289–94
    [Google Scholar]
  10. 10.  Stephenson ML, Zamecnik PC 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. PNAS 75:285–88
    [Google Scholar]
  11. 11.  Caruthers MH 1985. Gene synthesis machines: DNA chemistry and its uses. Science 230:281–85
    [Google Scholar]
  12. 12.  Krutzfeldt J, Rajewsky N, Braich R et al. 2005. Silencing of microRNAs in vivo with “antagomirs.”. Nature 438:685–89
    [Google Scholar]
  13. 13.  Esau C, Kang X, Peralta E et al. 2004. Micro-RNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279:52361–65
    [Google Scholar]
  14. 14.  Liang X-H, Shen W, Sun H et al. 2016. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34:875–80
    [Google Scholar]
  15. 15.  Liang XH, Sun H, Shen W et al. 2017. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res 45:9528–46
    [Google Scholar]
  16. 16.  Kinali M, Arechavala-Gomeza V, Feng L et al. 2009. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–28
    [Google Scholar]
  17. 17.  Passini MA, Bu J, Richards AM et al. 2011. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3:72ra18
    [Google Scholar]
  18. 18.  Sandberg R, Neilson JR, Sarma A et al. 2008. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–47
    [Google Scholar]
  19. 19.  Tushev G, Glock C, Heumuller M et al. 2018. Alternative 3′ UTRs modify the localization, regulatory potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron 98:495–511.e6
    [Google Scholar]
  20. 20.  Woo CJ, Maier VK, Davey R et al. 2017. Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. PNAS 114:E1509–18
    [Google Scholar]
  21. 21.  Wu H, Lima WF, Crooke ST 1999. Properties of cloned and expressed human RNase H1. J. Biol. Chem. 274:28270–78
    [Google Scholar]
  22. 22.  Cerritelli SM, Crouch RJ 2009. Ribonucelase H: the enzymes in eukaryotes. FEBS J 276:1494–505
    [Google Scholar]
  23. 23.  Lima WF, Murray HM, Damle SS et al. 2016. Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Res 44:5299–312
    [Google Scholar]
  24. 24.  Ruhanen H, Ushakov K, Yasukawa T 2011. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells. Biochim. Biophys. Acta 1813:2000–7
    [Google Scholar]
  25. 25.  Tuschl T, Zamore PD, Lehmann R et al. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–97
    [Google Scholar]
  26. 26.  Bumcroft D, Manoharan M, Koteliansky V et al. 2006. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2:711–19
    [Google Scholar]
  27. 27.  Yoda M, Kawamata T, Paroo Z et al. 2010. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 17:17–23
    [Google Scholar]
  28. 28.  Kawamata T, Tomari Y 2010. Making RISC. Trends Biochem. Sci. 35:368–76
    [Google Scholar]
  29. 29.  Frank F, Sonenberg N, Nagar B 2010. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–22
    [Google Scholar]
  30. 30.  Khvorova A, Reynolds A, Jayasena SD 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–16
    [Google Scholar]
  31. 31.  Cech TR 1986. RNA as an enzyme. Sci. Am. 255:64–75
    [Google Scholar]
  32. 32.  Altman S, Baer MF, Bartkiewicz M et al. 1989. Catalysis by the RNA subunit of RNase P—a minireview. Gene 82:63–64
    [Google Scholar]
  33. 33.  Breaker RR, Joyce GF 1994. A DNA enzyme that cleaves RNA. Chem. Biol. 1:223–99
    [Google Scholar]
  34. 34.  Ward AJ, Norrbom M, Chun S et al. 2014. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res 42:5871–79
    [Google Scholar]
  35. 35.  Goraczniak R, Behlke MA, Gunderson SI 2009. Gene silencing by synthetic U1 adaptors. Nat. Biotechnol. 27:257–63
    [Google Scholar]
  36. 36.  Bennett CF, Baker BF, Pham N et al. 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  37. 37.  Ku SH, Jo SD, Lee YK et al. 2016. Chemical and structural modifications of RNAi therapeutics. Adv. Drug Deliv. Rev. 104:16–28
    [Google Scholar]
  38. 38.  Leung AK, Tam YY, Cullis PR 2014. Lipid nanoparticles for short interfering RNA delivery. Adv. Genet. 88:71–110
    [Google Scholar]
  39. 39.  Dahlman JE, Kauffman KJ, Langer R et al. 2014. Nanotechnology for in vivo targeted siRNA delivery. Adv. Genet. 88:37–69
    [Google Scholar]
  40. 40.  Geary RS, Norris D, Yu R et al. 2015. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87:46–51
    [Google Scholar]
  41. 41.  Finkel RS, Chiriboga CA, Vajsar J et al. 2016. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–26
    [Google Scholar]
  42. 42.  Juliano RL, Carver K 2015. Cellular uptake and intracellular trafficking of oligonucleotides. Adv. Drug Deliv. Rev. 87:35–45
    [Google Scholar]
  43. 43.  Bailey JK, Shen W, Liang XH et al. 2017. Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Res 45:10649–71
    [Google Scholar]
  44. 44.  Cirak S, Arechavala-Gomeza V, Guglieri M et al. 2011. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605
    [Google Scholar]
  45. 45.  Iversen PL 2008. Morpholinos. Antisense Drug Technology: Principles, Strategies, and Applications ST Crooke 565–82 Boca Raton, FL: Taylor and Francis
    [Google Scholar]
  46. 46.  Coelho T, Adams D, Silva A et al. 2013. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369:819–29
    [Google Scholar]
  47. 47.  Akinc A, Querbes W, De S et al. 2010. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18:1357–64
    [Google Scholar]
  48. 48.  Ackermann EJ, Guo S, Benson MD et al. 2016. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid 23:148–57
    [Google Scholar]
  49. 49.  Gertz MA 2017. Hereditary ATTR amyloidosis: burden of illness and diagnostic challenges. Am. J. Manag. Care 23:S107–12
    [Google Scholar]
  50. 50.  Plante-Bordeneuve V, Said G 2011. Familial amyloid polyneuropathy. Lancet Neurol 10:1086–97
    [Google Scholar]
  51. 51.  Benson MD, Waddington-Cruz M, Berk JL et al. 2018. Inotersen treatment for patients with heriditary transthyretin amyloidosis. N. Engl. J. Med. 379:22–31
    [Google Scholar]
  52. 52.  Crooke ST, Baker BF, Witztum JL et al. 2017. The effects of 2′-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther 27:121–29
    [Google Scholar]
  53. 53.  Suhr OB, Coelho T, Buades J et al. 2015. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet. J. Rare Dis. 10:109
    [Google Scholar]
  54. 54.  Adams D, Gonzalez-Duarte A, O'Riordan WD et al. 2018. Patisiran, an RNAi therapeutic for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:11–21
    [Google Scholar]
  55. 55.  Niks EH, Aartsma-Rus A 2017. Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 17:225–36
    [Google Scholar]
  56. 56.  Mendell JR, Rodino-Klapac LR, Sahenk Z et al. 2013. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74:637–47
    [Google Scholar]
  57. 57.  Unger EF, Califf RM 2017. Regarding “Eteplirsen for the treatment of Duchenne muscular dystrophy. .” Ann. Neurol. 81:162–64
    [Google Scholar]
  58. 58.  Mendell JR 2017. Reply. Ann. Neurol. 81:164–65
    [Google Scholar]
  59. 59.  Aartsma-Rus A, Krieg AM 2017. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:1–3
    [Google Scholar]
  60. 60.  Mendell JR, Goemans N, Lowes LP et al. 2016. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79:257–71
    [Google Scholar]
  61. 61.  Charleston JS, Schnell FJ, Dworzak J et al. 2018. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 90:e2146–54
    [Google Scholar]
  62. 62.  Melki J, Lefebvre S, Burglen L et al. 1994. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264:1474–77
    [Google Scholar]
  63. 63.  Darras BT 2015. Spinal muscular atrophies. Pediatr. Clin. North Am. 62:743–66
    [Google Scholar]
  64. 64.  Mendell JR, Al-Zaidy S, Shell R et al. 2017. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377:1713–22
    [Google Scholar]
  65. 65.  Hua Y, Vickers TA, Okunola HL et al. 2008. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82:834–48
    [Google Scholar]
  66. 66.  Hua Y, Sahashi K, Rigo F et al. 2011. Peripheral SMN restoration is essential for long-term rescue of a severe SMA mouse model. Nature 478:123–26
    [Google Scholar]
  67. 67.  Chiriboga CA, Swoboda KJ, Darras BT et al. 2016. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86:890–97
    [Google Scholar]
  68. 68.  Mercuri E, Darras BT, Chiriboga CA et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378:625–35
    [Google Scholar]
  69. 69.  Finkel RS, Mercuri E, Darras BT et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  70. 70.  De Vivo DC, Hwu WL, Reyna SP et al. 2017. Interim efficacy and safety results from the phase 2 Nurture study evaluating nusinersen in pre-symptomatic infants with spinal muscular atrophy. Neurology 88:16 Suppl.S46.003
    [Google Scholar]
  71. 71.  Xu L, Irony I, Bryan WW et al. 2017. Development of gene therapies—lessons from nusinersen. Gene Ther 24:527–28
    [Google Scholar]
  72. 72.  Tsimikas S, Viney NJ, Hughes SG et al. 2015. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386:1472–83
    [Google Scholar]
  73. 73.  Ray KK, Landmesser U, Leiter LA et al. 2017. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376:1430–40
    [Google Scholar]
  74. 74.  Koller E, Vincent TM, Chappell A et al. 2011. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39:4795–807
    [Google Scholar]
/content/journals/10.1146/annurev-med-041217-010829
Loading
/content/journals/10.1146/annurev-med-041217-010829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error