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Abstract

Cardiovascular magnetic resonance imaging (CMR) is a comprehensive and
versatile diagnostic and prognostic imaging modality that plays an increas-
ingly important role in management of patients with cardiovascular disease.
In this review, we discuss CMR applications in nonischemic cardiomyopathy,
ischemic heart disease, arrhythmias, right ventricular diseases, and valvular
heart disease. We emphasize the quantitative nature of CMR in current prac-
tice, from volumes, function, myocardial strain analysis, and late gadolinium
enhancement to parametric mapping, including T'1, T2, and T2* relaxation
times and extracellular volume fraction assessment.
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Cardiovascular
magnetic resonance
imaging (CMR):
overall term for a vast
collection of sequences
and techniques to
image the heart using
magnetic resonance
imaging

Steady-state free
procession (SSFP):
an imaging sequence
to evaluate cardiac
morphology and
function with high
myocardium-to—blood
pool contrast

Late gadolinium
enhancement (LGE):
bright areas indicating
fibrosis and necrosis
detected 10-30 min
after injection of
gadolinium-containing
contrast

T1: a time constant of
longitudinal
magnetization
relaxation, obtained by
sampling the tissue
longitudinal relaxation
curve using different
sequences

T2: a time constant of
transverse
magnetization decay,
obtained by sampling
the tissue transverse
relaxation curve

T2*: an observed time
constant of transverse
magnetization decay,
strongly influenced by
inhomogeneity of the
main magnetic field,
which can occur due to
susceptibility-induced
field distortions
produced by iron in
the tissue
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INTRODUCTION

Cardiovascular magnetic resonance imaging (CMR) has evolved in the last 20 years to become an
important noninvasive cardiovascular imaging tool. Its high signal-to-noise ratio using the steady-
state free procession (SSFP) cine imaging technique allows precise quantification of chamber size
and function. Its velocity encoding, using phase contrast methods, enables quantification of blood
flow. Its unique tissue characterization abilities allow identification of fibrosis, fat, iron, edema,
and other infiltrative processes that increase extracellular volume. CMR has improved diagnosis
and prognosis in patients with ischemic and nonischemic causes of cardiomyopathy. Its lack of
radiation makes it ideal in serial imaging to monitor patients on therapy.

In addition to late gadolinium enhancement (LGE), which is a robust technique to detect fi-
brosis, necrosis, or extracellular protein deposition, recent developments in quantitative tissue
characterization using native T'1, T2, T2*, and extracellular volume (ECV) mapping have allowed
further quantification of diffuse fibrosis/infiltration (elevated native T'1), fat deposition (reduced
native T'1), iron deposition (reduced native T'1, T2, or T2*), and edema (elevated T2). ECV map-
ping is obtained using a formula incorporating pre- and post-contrast myocardial and blood T'1
values calibrated by the patient’s hematocrit. Pre-contrast (native) T1 and T2 values are field-
strength and sequence dependent, so comparing exact values across different vendors and scanners
is difficult. ECV is independent of these issues and is more robust when compared across differ-
entscanners. First-pass perfusion with gadolinium-containing contrast in conjunction with a stress
agent (pharmacologic or exercise) permits detection of significant coronary stenoses. Myocardial
strain analysis using algorithms developed for analyzing SSFP cine images has been applied for
subclinical disease detection and prognostication. Advanced techniques, such as 4D flow, diffusion
tensor imaging, and metabolic imaging, are on the horizon to make CMR the ideal imaging tool
for the heart. Deep learning tools are poised to further streamline CMR acquisition, reconstruc-
tion, post-processing, and interpretation.

In this review, we focus on CMR methods that are currently available clinically, and on their
applications in cardiac diseases that are commonly seen by internists and general cardiologists.
Figure 1 illustrates current CMR methods and several common diseases with their morphologic
findings using cine imaging, LGE, parametric tissue mapping, myocardial perfusion, and flow
quantification.

CLINICAL APPLICATIONS IN NONISCHEMIC CARDIOMYOPATHY
Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is a heterogenous disease characterized by left ventricular (LV)
dysfunction associated with LV or biventricular dilatation. With its advantages of greater accu-
racy than echocardiography in measuring LV volume, function, and mass, and in characterizing
myocardial tissue, CMR has played a critical role in the diagnosis, risk stratification, treatment
monitoring, and prognosis of DCM patients. Ischemic cardiomyopathy (subendocardial to trans-
mural LGE in a coronary artery distribution) can be ruled in or out using LGE patterns, while
sarcoidosis and myocarditis can be identified by focal epicardial and/or mid-myocardial involve-
ment. The pathological changes of dilated cardiomyopathy can manifest as focal septal mid-wall
LGE, which can be identified in approximately 30% of patients (1), or myocardial interstitial fibro-
sis, which can be determined by myocardial native T'1 and ECV mapping (2). While the presence
of LGE portends a worse prognosis in DCM patients (3), the clinical outcomes could also be af-
fected by the extent, location, and pattern of LGE (4). ECV adds incremental prognostic value to
LGE and native T1 mapping (5). Recovery from LV dilation and systolic dysfunction, also known
as reverse remodeling, can be observed in some patients treated with optimal medical therapy
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Extracellular volume
(ECV): a parameter
obtained from pre-
and post-contrast T'1
mapping of the
myocardium and blood
pool, adjusted for
patient’s hematocrit

Myocardial strain:
myocardial regional
function measured by
local tissue
deformation.
Myocardial feature
tracking and other
registration techniques
allow simplified
analysis using
steady-state free
procession images,
which can be easily
performed
retrospectively
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Figure 1 (Figure appears on preceding page)

Contemporary cardiovascular magnetic resonance imaging (CMR) techniques with illustrative examples.

(@) Morphological cine imaging can identify diseases such as dilated cardiomyopathy (DCM), hypertrophic
cardiomyopathy (HCM), left ventricular noncompaction (LVNC), and restrictive cardiomyopathy (RCM).
() Late gadolinium enhancement (LGE) examples demonstrate typical LGE patterns in DCM, HCM,
cardiac amyloid, sarcoidosis, myocarditis, idiopathic inflammatory myopathy (IIM), arrhythmogenic right
ventricular cardiomyopathy (ARVC), and ischemic cardiomyopathy (ICM). (¢) Parametric methods include
native T1, T2, T2*, and extracellular volume (ECV) mapping. (d) Myocardial perfusion with adenosine
stress identifies areas of ischemia (#770w) when compared to rest perfusion images. (¢) Valvular regurgitation
volume is quantified directly in aortic regurgitation using velocity encoded phase contrast technique. The
acquisition includes magnitude images and phase images. Flow quantification is obtained by post-processing
the phase images with a region of interest in the ascending aorta and integrating the blood flow over time.

(6). The presence of LGE and increased ECV may be associated with poor treatment response
(7). In new-onset idiopathic DCM, an increased myocardial T2 value suggests that inflammation
may be present and is a potential cause of the DCM (8). While myocardial strain can be obtained
in echocardiography using speckle tracking, CMR can also assess ventricular strain using feature
tracking, with longitudinal strain demonstrating the best prognostic value (9). New geometric
parameters, such as the 3D-spherical index, have demonstrated better prognostic value than LV
ejection fraction (EF) in DCM patients (10). A recent study showed that symptoms can recur in
patients with DCM after initial recovery with optimal medical treatment (11). This suggests that
our understanding of myocardial recovery in DCM patients is insufficient, and CMR can help us
to further explore the mechanism of reverse remodeling.

Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant hereditary disease. With the ad-
vancement of genetic testing (12), the current prevalence of 1:500 in the general population may
be an underestimate. CMR can provide comprehensive information for the diagnosis and treat-
ment of HCM, including assessment of focal or global myocardial thickening, abnormal valves
and blood flow, and myocardial histopathological changes (13). Although HCM is phenotypically
heterogeneous, CMR offers precise phenotypical description of areas of focal hypertrophy. Native
T1 and ECV mapping have helped to detect early myocardial abnormalities in mutation carriers
without myocardial hypertrophy, suggesting that myocardial interstitial fibrosis is an early fea-
ture of HCM (14, 15). Recent studies have found that focal and interstitial fibrosis in HCM may
progress over years, and such changes may be associated with myocardial remodeling and poor
prognosis (16). Additionally, the presence of basal inferoseptal crypts in the LV myocardium may
be helpful in distinguishing disease-causing HCM mutations from those with genotype-negative
HCM (17). Elongation of mitral valve leaflets is common in HCM and is also found in mutation
carriers without a typical HCM phenotype (18).

Native T'1 mapping could help to differentiate HCM (elevated T'1) from athlete’s heart (normal
T1) and hypertensive heart disease (mildly elevated T1) (15, 19). Additionally, the differences in
native T'1 and ECV between rare diseases and HCM can differentiate cardiac hypertrophy from
disorders such as transthyretin amyloidosis (highly elevated T1 and ECV) (20) or Fabry disease
(decreased T'1) (21).

A recent meta-analysis showed significant predictive value in LGE for sudden cardiac death
prediction in HCM (adjusted hazard ratio 1.36/10% LGE; 95% confidence interval 1.10-1.69;
p=0.005) (22). Decreased right ventricular (RV) EF measured by CMR also suggests a poor prog-
nosis in HCM (23). Several additional CMR imaging markers have demonstrated independent
prognostic value, such as decreased LV strain by feature tracking, decreased left atrial longitudinal

Han o Chen o Ferrari



strain, elevated T2 signal, and LGE texture features in HCM (24-27). Future studies are needed
to create a risk stratification model incorporating multiple clinical and CMR prognosticators.

Infiltrative or Inflammatory Cardiomyopathies

Systemic diseases that can affect the heart include amyloidosis, sarcoidosis, rheumatologic diseases
such as rheumatoid arthritis, systemic sclerosis, idiopathic inflammatory myopathy, and vasculi-
tis. Other systemic disorders include endocrine and metabolic diseases such as hemochromatosis,
hyper or hypothyroidism, carcinoid, pheochromocytoma, Anderson-Fabry disease, and systemic
infectious disease such as human immunodeficiency virus. Occasionally, isolated cardiac presen-
tations are well described in amyloid and sarcoid. The cardiac manifestations of these diseases
can be quite varied, including myocardial inflammation, vasculitis or coronary artery disease or
dissection causing infarction, valvular disease, and different patterns of myocardial fibrosis. We
illustrate here a few examples with typical findings on CMR.

Cardiac amyloidosis. Global subendocardial LGE is a characteristic finding with 88% sensitiv-
ity and 90% specificity in the diagnosis of cardiac amyloidosis (28). ECV and native T1 values
are correlated with serum biomarkers and can increase significantly, even in patients without sig-
nificant LV hypertrophy or typical LGE (29). Based on myocardial segmental strain and ECV
analysis, the basal ventricular myocardium is found to be affected earlier and more severely with
amyloid infiltration (30, 31). The relative apical sparing can be used to differentiate between car-
diac amyloidosis and other forms of LV hypertrophy. Recently, a T2 mapping study also showed
significantly elevated T2 in light-chain compared to transthyretin cardiac amyloidosis (32).

A meta-analysis that included 425 patients with amyloidosis in seven studies showed signifi-
cantly higher all-cause mortality in LGE-positive patients (33). LGE-based semiquantitative anal-
ysis can further differentiate patients’ prognoses (34). ECV and LGE pattern can improve the risk
prediction beyond the Mayo staging system (35). Although cardiac amyloidosis predominantly af-
fects the LV, RV volume and RV dysfunction are better prognosticators (36). Recent studies have
also shown that CMR-based radial, longitudinal, and circumferential strains are independent pre-
dictors of patients with light-chain amyloidosis (37).

Cardiac sarcoidosis. Cardiac sarcoidosis can be part of a multi-system disease with infiltration of
noncaseating granulomas. When the heart is involved, complete atrioventricular block, ventric-
ular tachycardia, heart failure, and sudden death can occur. Currently, the Japanese Ministry of
Health and Welfare (JMHW) diagnosis of sarcoidosis is an international standard and is depen-
dent on histopathological findings on biopsy. Typical myocardial involvement manifests in CMR
as a noncoronary distribution of segmental wall motion abnormality and delayed enhancement
with elevated T2 values (38). CMR myocardial quantification can detect early myocardial abnor-
malities of sarcoidosis by elevated T1, T2, and ECV values compared to normal controls (39).
The values of the area under the curve for T1 and T2 in patients with sarcoidosis as compared to
normal controls were 0.96 and 0.89, respectively, which were significantly higher than the JMHW
criteria (0.61) and Heart Rhythm Society criteria (0.67) (40). After treatment, the T'1 and T2 val-
ues were significantly lower, while the untreated patients showed no change in T'1 and T2 values,
suggesting that T'1 and T2 mapping techniques can be used for early detection and monitoring
of cardiac sarcoidosis (40).

Delayed enhancement is an important predictor of cardiac events in LGE-positive patients
with sarcoidosis, who were 9 times more likely to have adverse events than LGE-negative patients
(41). Among sarcoidosis patients with an LVEF greater than 50%, LGE-positive patients had a
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significantly higher risk of death or ventricular tachycardia than LGE-negative patients (4.9 versus
0.2%, p < 0.01). In a meta-study involving 10 studies, LGE-positive patients were 3 times more
likely to have all-cause mortality than LGE-negative patients, and the risk of arrhythmia and all-
cause mortality was nearly 11 times higher (42).

Iron overload cardiomyopathy. Iron deposition in the myocardium can lead to cardiac dysfunc-
tion and heart failure, commonly found in transfusion-dependent thalassemia and primary iron
excess in hereditary hemochromatosis. The current tool for quantitative evaluation of cardiac
iron deposition is T2* mapping; myocardial T2* < 20 ms suggests myocardial iron deposition,
and myocardial T2* < 10 ms suggests severe myocardial iron deposition. An international survey
of 3,095 thalassemia patients in 27 centers showed that T2* < 10 ms was a predictor of heart fail-
ure and death (43). Cardiac T2* mapping of iron deposition can be used for risk stratification and
evaluation of treatment efficacy (44). The implementation of screening programs in the United
Kingdom using T2* CMR has dramatically improved the natural history of iron overload car-
diomyopathy with significantly increased survival (45). Recently, CMR T1 and T2 mapping have
been shown to have excellent sensitivity and specificity to detect iron overload (46).

Arrhythmogenic Right Ventricular Cardiomyopathy

Arrhythmogenic RV cardiomyopathy (ARVC) is a genetic cardiomyopathy characterized by fibro-
fatty replacement of predominantly the RV myocardium, which predisposes patients to RV dys-
function and life-threatening ventricular arrhythmias. Although the estimated prevalence in the
general population is only 1:5,000, ARVC is one of the most common causes of death in young
people and athletes (47). Quantitative CMR criteria for RV size and global function, in addition
to qualitatively assessed regional RV dysfunction, are included in the 2010 modified task force cri-
teria for ARVC diagnosis (48). Additionally, structural abnormalities in ARVC have been shown
to be preferentially located in the epicardial subtricuspid region, whereas the RV apex and endo-
cardium are relatively spared (49). RV LGE has been observed in up to 88% of patients (50) and
has been shown to be closely related to arrhythmia events (51).

Left Ventricular Noncompaction Cardiomyopathy

LV noncompaction cardiomyopathy (LVNC) is characterized by extensive LV trabeculations with
a thin, compacted myocardial layer and potential risk of heart failure, thromboembolism, and ma-
lignant arrhythmias (52). There is a lack of uniform diagnostic criteria for LVNC. CMR has the
advantage of a high contrast ratio between the myocardium and blood pool and plays a grow-
ing role in the diagnosis of LVNC (52, 53). However, the degree of LV trabeculation does not
show greater prognostic value than LV dilation, systolic dysfunction, and the presence of LGE
(54). Additionally, the degree of trabeculation was not found to be associated with cardiovascular
outcomes in DCM patients (55).

CLINICAL APPLICATIONS IN ISCHEMIC HEART DISEASE
Stress Testing

CMR stress testing is performed either with vasodilators (adenosine, regadenoson, or dipyri-
damole) or by increasing myocardial demand using dobutamine or exercise (56). The safety and
feasibility of stress CMR have been confirmed in patients with coronary artery disease (CAD)
(57). Meta-analysis showed that the sensitivity and specificity of stress CMR to diagnose CAD
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were very high (at 3T, sensitivity of 90% and specificity of 79%) (58). Stress-induced wall motion
abnormalities and perfusion defects demonstrated good sensitivity and specificity for the diagno-
sis of CAD (59). Subsequent studies have confirmed stress CMR’s prognostic value in diagnosing
coronary artery disease (60, 61). Stress CMR reduced unnecessary revascularization in patients
with acute chest pain (62).

Exercise stress CMR has been limited in clinical use due to the need of MRI-compatible equip-
ment. The feasibility of exercise CMR has been demonstrated in normal volunteers and in patients
suspected of ischemic heart disease (63, 64). Subsequent studies have shown that stress CMR can
be used to predict myocardial infarction (MI), cardiac death, and hospitalization in patients with
unstable angina and known or suspected CAD (65).

Viability Evaluation

The current goal of assessing myocardial viability is to analyze the proportion of viable my-
ocardium in patients in order to determine which patients are most likely to benefit from revas-
cularization. Evaluating myocardial viability by CMR includes three main assessments: (z) LV
end-diastolic wall thickness (EDWT) at rest >5.5-6.0 mm; (4) LV wall hyperenhancement (LGE-
CMR) < 50%; and (c) change of ventricular wall thickness with low-dose dobutamine (LDD) stress
CMR > 2 mm (66). Using single-photon-emission computed tomography (SPECT) as the gold
standard for viability, the sensitivity of EDWT, LGE-CMR, and LDD was 94%, 93%, and 84%,
respectively, but the specificity was lower. Using the recovery of contractile function six months af-
ter coronary artery bypass graft as the gold standard, the sensitivity of LGE-CMR, EDWT, LDD,
and SPECT was 99%, 96%, 84%, and 86%, respectively (67). This suggests that CMR may be
better than SPECT imaging in assessing myocardial viability. A meta-analysis showed that the rel-
ative sensitivity of predicting LV segmental systolic function recovery after revascularization was
LGE-CMR > EDWT > LDD and the relative specificity was LDD > LGE-CMR > EDWT
(68). Dysfunctional viable myocardium with LGE-CMR is an independent predictor of mortality
in patients with ischemic LV dysfunction without revascularization (69). A recent study found that
native T'1 mapping could also distinguish between irreversible and reversible myocardial injury
in patients with ST-segment elevation MI and that T'1 value had a strong correlation with LV
remodeling (70).

Coronary Artery Imaging

Coronary MR angiography can be performed using the SSFP technique, and some studies have
demonstrated feasibility; however, the accuracy and sensitivity are limited as compared to com-
puted tomography (CT) angiography (71). Recent advances in CMR techniques, such as non-
contrast T'1-weighted imaging and molecular imaging techniques, demonstrated that the lipid
core or hemorrhage in coronary plaque were indictors for unstable plaque (72, 73). In clinical
settings, such as assessing for coronary aneurysm or congenital anomalous coronary origin, and
in patients with contraindication to iodinated contrast, coronary MR angiography can be useful.

Myocardial Infarction with Nonobstructive Coronary Arteries

Myocardial infarction with nonobstructive coronary arteries (MINOCA) is an emerging subgroup
of myocardial injury, accounting for nearly 5-10% of acute MI patients with unfavorable prog-
nosis (74). A combination of cine, T2-weighted, and LGE imaging can be helpful in identifying
MINOCA in patients with elevated cardiac biomarkers (75). CMR changed the diagnosis in al-
most 50% of patients and led to changes in clinical management and correct prediction of the
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infarct-related artery in some patients (76). In a group of patients with aborted sudden cardiac
death, CMR helped to identify occult MI in individuals with normal coronary arteries (77).

ARRHYTHMIA EVALUATION

Atrial fibrillation (AF) is the most common sustained arrhythmia, and its treatment continues to be
challenging. In the Multi-Ethnic Study of Atherosclerosis (MESA), left atrial volume enlargement
as well as decreased left atrial functional parameters increased the risk for incident AF (78). There
is evidence that left atrial LGE, indicating atrial fibrotic changes, may precede AF onset in a
significant proportion of individuals (79). The results of several studies suggest that the total scar
burden and location play important roles in the development of arrhythmia recurrences after AF
ablation. Pulmonary vein reconnection is considered the main cause for AF ablation failure, and
discontinuities in previous ablation sets are a common underlying mechanism for resumption of
conduction. CMR may be able to guide repeat pulmonary vein isolation procedures in AF ablation
by identifying and localizing gaps and may reduce procedure time (80).

Ventricular tachycardia (VT) is a major cause of sudden cardiac death, especially in patients
with structural heart disease. CMR is considered the gold standard for imaging of the VT substrate
(81) to provide guidance for VT ablation (82). The future of complex VT ablation lies in CMR-
guided interventions in which the ablation takes place in the scanner, where the substrates can be
visualized in real time. Recently, patients with isthmus-dependent atrial flutter were successfully
treated with CMR-guided cavotricuspid isthmus ablation (83). It is a first step toward real-time
CMR-guided complex ablation procedures.

RIGHT VENTRICLE AND PULMONARY ARTERY
HYPERTENSION EVALUATION

The RV is difficult to evaluate using echocardiography due to its retrosternal location and com-
plex geometry; thus, CMR is the gold standard for the assessment of RV size and function. RV
size and function are altered by diseases affecting the preload (left to right shunts, tricuspid re-
gurgitation, and pulmonic regurgitation), afterload (increased pulmonary vascular resistance in
pulmonary hypertension and pulmonic stenosis), and intrinsic myocardium of the RV (ARVC).
The ratio of RV to LV end-diastolic volume can better detect RV enlargement than using indexed
RV end-diastolic volume alone (84).

Left to right shunts can be measured using velocity-encoded phase contrast imaging, which
allows for Qp:Qs shunt calculations noninvasively. Tomographic structural imaging with MR an-
giography can identify atrial septal defects and partial anomalous pulmonary venous return.

Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature, but the re-
lated mortality and morbidity depend on RV function. CMR can assess RV-pulmonary artery
coupling, which reflects the relationship between myocardial contractility and pulmonary vas-
cular compliance. RV—pulmonary artery coupling derived from CMR was shown to be in good
agreement with invasive right heart catheterization measurements and was prognostic (85). CMR
can evaluate RV tissue remodeling by LGE and T'1 mapping. The LGE of PAH occurs mainly
in the RV insertions, and its presence reflects disease progression and poor prognosis (86). The
native T'1 value of RV insertion is also closely related to the severity of the disease (87). Dynamic
monitoring of RV remodeling to follow therapeutic response is important in understanding the
effectiveness of PAH treatment.

CMR can also noninvasively assess pulmonary vascular hemodynamics via phase contrast se-
quences. Pulmonary artery stiffness might be helpful for early diagnosis of PAH (88), and increased

Han o Chen o Ferrari



pulmonary artery stiffness can be associated with increased mortality (89). Pulmonary vortex
intervals obtained by 4D flow can indirectly assess pulmonary artery pressure and identify pa-
tients with PAH and borderline PAH (90).

VALVULAR HEART DISEASE EVALUATION

Echocardiography is the predominant imaging modality for the assessment of heart valve disease.
CMR can complement echocardiography in the quantitative evaluation of valvular regurgitation
volumes and in the assessment of changes in myocardial tissue as sequelae of valve disease.

The use of CMR in aortic stenosis assessment includes anatomical assessment of the aortic
valve and aortic root; quantification of LV volume, mass, and function; and calculation of stenotic
jet velocity (91). In patients with aortic stenosis, LGE and T1 mapping can be used to identify
focal and diffuse fibrosis, which has prognostic implications (92, 93).

CMR can also accurately assess the structure of the aortic root, which is important for annular
sizing in patients who are candidates for transcatheter aortic valve replacement (TAVR) but who
cannot undergo contrast CT imaging (94). Aortic regurgitation can be directly measured using
CMR velocity-encoded phase contrast imaging. In post-operative TAVR paravalvular regurgi-
tation assessment, CMR can serve as an alternative to echocardiography, especially since grading
paravalvular regurgitation by using conventional echocardiography techniques can be challenging
99).

The current guidelines recommend the use of CMR to assess the severity of mitral regurgita-
tion when echocardiographic assessment is not satisfactory (96). CMR mitral regurgitation vol-
ume assessment, using the difference of LV stroke volume from cine imaging and aortic forward
flow volume from phase contrast imaging, has high reproducibility (97). Recent studies have in-
dicated that CMR-derived assessment of primary mitral regurgitation can better identify patients
with severe disease and adverse outcome than the guideline-recommended integrative approach
by echocardiography (98). Substrate evaluation by CMR also has determined papillary muscle
fibrosis to be associated with arrhythmogenic mitral valve prolapse (99).

CMR has been widely used in patients with pulmonary regurgitation after tetralogy of Fallot
repair to determine the timing and prognosis for pulmonic valve replacement (100).

CONCLUSION

CMR is a quantitative cardiovascular imaging tool that is versatile and avoids the risk of radi-
ation. It is uniquely suited for the quantitative evaluation and monitoring of cardiac structure
and myocardial substrate. Its contemporary application encompasses virtually all aspects of car-
diovascular diseases. With rapid advancement in acquisition and post-processing, CMR is the
deep-phenotyping tool of choice for the heart in the era of precision medicine.
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