1932

Abstract

Type 2 diabetes rates continue to rise unabated, underscoring the need to better understand the etiology and potential therapeutic options available for this disease. The gut microbiome plays a role in glucose homeostasis, and diabetes is associated with alterations in the gut microbiome. Given that consumption of a Western diet is associated with increased metabolic disease, and that a Western diet alters the gut microbiome, it is plausible that changes in the gut microbiota mediate the dysregulation in glucose homeostasis. In this review, we highlight a few of the most significant mechanisms by which the gut microbiome can influence glucose regulation, including changes in gut permeability, gut–brain signaling, and production of bacteria-derived metabolites like short-chain fatty acids and bile acids. A better understanding of these pathways could lead to the development of novel therapeutics to target the gut microbiome in order to restore glucose homeostasis in metabolic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042220-012821
2022-01-27
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042220-012821.html?itemId=/content/journals/10.1146/annurev-med-042220-012821&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lyon L. 2018.. ‘ All disease begins in the gut’: Was Hippocrates right?. Brain 141:3e20
    [Google Scholar]
  2. 2. 
    WHO (World Health Organ.) 2021. Diabetes Fact Sheet, WHO, Geneva https://www.who.int/news-room/fact-sheets/detail/diabetes
    [Google Scholar]
  3. 3. 
    Gentileschi P, Bianciardi E, Benavoli D, Campanelli M. 2021. Metabolic surgery for type II diabetes: an update. Acta Diabetol 58:1153–59
    [Google Scholar]
  4. 4. 
    Müller TD, Finan B, Bloom SR et al. 2019. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30:72–130
    [Google Scholar]
  5. 5. 
    Bauer PV, Duca FA, Waise TMZ et al. 2018. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab 27:1101–17.e5
    [Google Scholar]
  6. 6. 
    Sun L, Xie C, Wang G et al. 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24:1919–29
    [Google Scholar]
  7. 7. 
    Karlsson FH, Tremaroli V, Nookaew I et al. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:745299–103
    [Google Scholar]
  8. 8. 
    Qin J, Li Y, Cai Z et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:741855–60
    [Google Scholar]
  9. 9. 
    Koh A, Molinaro A, Stahlman M et al. 2018. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175:4947–61.e17
    [Google Scholar]
  10. 10. 
    Sonnenburg JL, Bäckhed F. 2016. Diet–microbiota interactions as moderators of human metabolism. Nature 535:761056–64
    [Google Scholar]
  11. 11. 
    Bray GA, Paeratakul S, Popkin BM 2004. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol. Behav. 83:4549–55
    [Google Scholar]
  12. 12. 
    Cani PD, Osto M, Geurts L, Everard A 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:4279–88
    [Google Scholar]
  13. 13. 
    Creely SJ, McTernan PG, Kusminski CM et al. 2007. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292:3E740–47
    [Google Scholar]
  14. 14. 
    Cani PD, Amar J, Iglesias MA et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:71761–72
    [Google Scholar]
  15. 15. 
    Moreno-Navarrete JM, Manco M, Ibáñez J et al. 2010. Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance. Int. J. Obes. 34:2240–49
    [Google Scholar]
  16. 16. 
    Cani PD, Possemiers S, Van de Wiele T et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:81091–103
    [Google Scholar]
  17. 17. 
    Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. 2014. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int. J. Food Sci. Nutr. 65:1117–23
    [Google Scholar]
  18. 18. 
    Dewulf EM, Cani PD, Claus SP et al. 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:81112–21
    [Google Scholar]
  19. 19. 
    Cani PD, de Vos WM. 2017. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8:1765
    [Google Scholar]
  20. 20. 
    Dao MC, Everard A, Aron-Wisnewsky J et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:3426–36
    [Google Scholar]
  21. 21. 
    Everard A, Belzer C, Geurts L et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:229066–71
    [Google Scholar]
  22. 22. 
    Depommier C, Everard A, Druart C et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:71096–103
    [Google Scholar]
  23. 23. 
    Hanninen A, Toivonen R, Poysti S et al. 2018. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 67:81445–53
    [Google Scholar]
  24. 24. 
    Shin J, Noh JR, Chang DH et al. 2019. Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front. Microbiol. 10:1137
    [Google Scholar]
  25. 25. 
    Plovier H, Everard A, Druart C et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:1107–13
    [Google Scholar]
  26. 26. 
    Bauer PV, Hamr SC, Duca FA. 2016. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell Mol. Life Sci. 73:4737–55
    [Google Scholar]
  27. 27. 
    Psichas A, Reimann F, Gribble FM. 2015. Gut chemosensing mechanisms. J. Clin. Investig. 125:3908–17
    [Google Scholar]
  28. 28. 
    Dockray GJ. 2013. Enteroendocrine cell signalling via the vagus nerve. Curr. Opin. Pharmacol. 13:6954–58
    [Google Scholar]
  29. 29. 
    Bai L, Mesgarzadeh S, Ramesh KS et al. 2019. Genetic identification of vagal sensory neurons that control feeding. Cell 179:51129–43.e23
    [Google Scholar]
  30. 30. 
    Kupari J, Häring M, Agirre E et al. 2019. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep 27:82508–23.e4
    [Google Scholar]
  31. 31. 
    Williams EK, Chang RB, Strochlic DE et al. 2016. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166:1209–21
    [Google Scholar]
  32. 32. 
    Amato A, Cinci L, Rotondo A et al. 2010. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol. Motil. 22:6664-e203
    [Google Scholar]
  33. 33. 
    Ritter RC. 2011. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals. Physiol. Behav. 105:194–99
    [Google Scholar]
  34. 34. 
    Duca FA, Waise TMZ, Peppler WT, Lam TKT. 2021. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 12:903
    [Google Scholar]
  35. 35. 
    Wang PY, Caspi L, Lam CK et al. 2008. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452:71901012–16
    [Google Scholar]
  36. 36. 
    Dranse HJ, Waise TMZ, Hamr SC et al. 2018. Physiological and therapeutic regulation of glucose homeostasis by upper small intestinal PepT1-mediated protein sensing. Nat. Commun. 9:1118
    [Google Scholar]
  37. 37. 
    Zadeh-Tahmasebi M, Duca FA, Rasmussen BA et al. 2016. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J. Biol. Chem. 291:168816–24
    [Google Scholar]
  38. 38. 
    Rasmussen BA, Breen DM, Luo P et al. 2012. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 142:4834–43.e3
    [Google Scholar]
  39. 39. 
    Breen DM, Yue JT, Rasmussen BA et al. 2011. Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production. Diabetes 60:1203148–53
    [Google Scholar]
  40. 40. 
    Cheung GW, Kokorovic A, Lam CK et al. 2009. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 10:299–109
    [Google Scholar]
  41. 41. 
    Féry F. 1994. Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in type 2 diabetes: normalization of glucose kinetics by short-term fasting. J. Clin. Endocrinol. Metab. 78:3536–42
    [Google Scholar]
  42. 42. 
    Ge W, Zhao Y, Yang Y et al. 2021. An insulin-independent mechanism for transcriptional regulation of Foxo1 in type 2 diabetic mice. J. Biol. Chem. 297:1100846
    [Google Scholar]
  43. 43. 
    Bauer PV, Duca FA, Waise TMZ et al. 2018. Lactobacillus gasseri in the upper small intestine impacts an ACSL3-dependent fatty acid–sensing pathway regulating whole-body glucose homeostasis. Cell Metab 27:3572–87.e6
    [Google Scholar]
  44. 44. 
    Arora T, Akrami R, Pais R et al. 2018. Microbial regulation of the L cell transcriptome. Sci. Rep. 8:1207
    [Google Scholar]
  45. 45. 
    Duca FA, Swartz TD, Sakar Y, Covasa M. 2012. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLOS ONE 7:6e39748
    [Google Scholar]
  46. 46. 
    Heiss CN, Mannerås-Holm L, Lee YS et al. 2021. The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet–fed mice via a GLP-1R-dependent mechanism. Cell Rep 35:8109163
    [Google Scholar]
  47. 47. 
    Waise TMZ, Lim YM, Danaei Z et al. 2021. Small intestinal taurochenodeoxycholic acid–FXR axis alters local nutrient-sensing glucoregulatory pathways in rats. Mol. Metab. 44:101132
    [Google Scholar]
  48. 48. 
    Russell DW. 2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72:137–74
    [Google Scholar]
  49. 49. 
    Ahmad TR, Haeusler RA 2019. Bile acids in glucose metabolism and insulin signalling—mechanisms and research needs. Nat. Rev. Endocrinol. 15:12701–12
    [Google Scholar]
  50. 50. 
    Jiang C, Xie C, Lv Y et al. 2015. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6:10166
    [Google Scholar]
  51. 51. 
    Ma K, Saha PK, Chan L, Moore DD 2006. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Investig. 116:41102–9
    [Google Scholar]
  52. 52. 
    Zhang Y, Lee FY, Barrera G et al. 2006. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. PNAS 103:41006–11
    [Google Scholar]
  53. 53. 
    Gonzalez FJ, Jiang C, Patterson AD. 2016. An intestinal microbiota–farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151:5845–59
    [Google Scholar]
  54. 54. 
    Jiang C, Xie C, Li F et al. 2015. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Investig. 125:1386–402
    [Google Scholar]
  55. 55. 
    Li F, Jiang C, Krausz KW et al. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384
    [Google Scholar]
  56. 56. 
    Kir S, Beddow SA, Samuel VT et al. 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:60241621–24
    [Google Scholar]
  57. 57. 
    Potthoff MJ, Boney-Montoya J, Choi M et al. 2011. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB–PGC-1α pathway. Cell Metab 13:6729–38
    [Google Scholar]
  58. 58. 
    Xie C, Huang W, Young RL et al. 2021. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients 13:41104
    [Google Scholar]
  59. 59. 
    Katsuma S, Hirasawa A, Tsujimoto G. 2005. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329:1386–90
    [Google Scholar]
  60. 60. 
    Thomas C, Gioiello A, Noriega L et al. 2009. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:3167–77
    [Google Scholar]
  61. 61. 
    Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS et al. 2021. Hypothalamic bile acid–TGR5 signaling protects from obesity. Cell Metab 33:71483–92.e10
    [Google Scholar]
  62. 62. 
    Perino A, Velázquez-Villegas LA, Bresciani N et al. 2021. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 3:5595–603
    [Google Scholar]
  63. 63. 
    Trabelsi MS, Daoudi M, Prawitt J et al. 2015. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6:7629
    [Google Scholar]
  64. 64. 
    Pathak P, Xie C, Nichols RG et al. 2018. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor 1 signaling to improve metabolism. Hepatology 68:41574–88
    [Google Scholar]
  65. 65. 
    Zheng X, Chen T, Jiang R et al. 2021. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 33:4791–803.e7
    [Google Scholar]
  66. 66. 
    Salamone D, Rivellese AA, Vetrani C. 2021. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetol 58:91131–38
    [Google Scholar]
  67. 67. 
    Ojo O, Ojo OO, Zand N, Wang X 2021. The effect of dietary fibre on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Nutrients 13:61805
    [Google Scholar]
  68. 68. 
    Turnbaugh PJ, Ley RE, Mahowald MA et al. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  69. 69. 
    Schwiertz A, Taras D, Schafer K et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:1190–95
    [Google Scholar]
  70. 70. 
    Gurung M, Li Z, You H et al. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. eBioMedicine 51:102590
    [Google Scholar]
  71. 71. 
    Vrieze A, Van Nood E, Holleman F et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:4913–16.e7
    [Google Scholar]
  72. 72. 
    van der Beek CM, Canfora EE, Lenaerts K et al. 2016. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130:222073–82
    [Google Scholar]
  73. 73. 
    Lin HV, Frassetto A, Kowalik EJ Jr. et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3–independent mechanisms. PLOS ONE 7:4e35240
    [Google Scholar]
  74. 74. 
    Li Z, Yi CX, Katiraei S et al. 2018. Butyrate reduces appetite and activates brown adipose tissue via the gut–brain neural circuit. Gut 67:1269–79
    [Google Scholar]
  75. 75. 
    Gao Z, Yin J, Zhang J et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:71509–17
    [Google Scholar]
  76. 76. 
    Canfora EE, van der Beek CM, Jocken JWE et al. 2017. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7:2360
    [Google Scholar]
  77. 77. 
    Xu YH, Gao CL, Guo HL et al. 2018. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. J. Endocrinol. 238:3231–44
    [Google Scholar]
  78. 78. 
    Perry RJ, Peng L, Barry NA et al. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534:7606213–17
    [Google Scholar]
  79. 79. 
    Liou AP, Paziuk M, Luevano JM Jr. et al. 2013. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5:178ra41
    [Google Scholar]
  80. 80. 
    Bouter K, Bakker GJ, Levin E et al. 2018. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 9:5155
    [Google Scholar]
  81. 81. 
    Chambers ES, Viardot A, Psichas A et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54
    [Google Scholar]
  82. 82. 
    Chambers ES, Byrne CS, Morrison DJ et al. 2019. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut 68:1430–38
    [Google Scholar]
  83. 83. 
    Chambers ES, Byrne CS, Rugyendo A et al. 2019. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 21:2372–76
    [Google Scholar]
  84. 84. 
    Nohr MK, Pedersen MH, Gille A et al. 2013. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:103552–64
    [Google Scholar]
  85. 85. 
    Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I et al. 2019. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: role of free fatty acid receptor 2. Diabetes Obes. Metab. 21:2330–39
    [Google Scholar]
  86. 86. 
    Psichas A, Sleeth ML, Murphy KG et al. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39:424–29
    [Google Scholar]
  87. 87. 
    Christiansen CB, Gabe MBN, Svendsen B et al. 2018. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 315:1G53–65
    [Google Scholar]
  88. 88. 
    Staels B, Handelsman Y, Fonseca V. 2010. Bile acid sequestrants for lipid and glucose control. Curr. Diabetes Rep. 10:170–77
    [Google Scholar]
  89. 89. 
    Liu Y, Wang Y, Ni Y et al. 2020. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab 31:177–91.e5
    [Google Scholar]
  90. 90. 
    Berry SE, Valdes AM, Drew DA et al. 2020. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26:6964–73
    [Google Scholar]
  91. 91. 
    Zmora N, Zilberman-Schapira G, Suez J et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174:61388–405.e21
    [Google Scholar]
/content/journals/10.1146/annurev-med-042220-012821
Loading
/content/journals/10.1146/annurev-med-042220-012821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error