1932

Abstract

An altered gut microbiome is a feature of many multifactorial diseases, and microbiome effects on host metabolism, immune function, and possibly neurological function are implicated. Increased biological age is accompanied by a change in the gut microbiome. However, age-related health loss does not occur uniformly across all subjects but rather depends on differential loss of gut commensals and gain of pathobionts. In this article, we summarize the known and possible effects of the gut microbiome on the hallmarks of aging and describe the most plausible mechanisms. Understanding and targeting these factors could lead to prolonging health span by rationally maintaining the gut microbiome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042423-042542
2025-01-27
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-042423-042542.html?itemId=/content/journals/10.1146/annurev-med-042423-042542&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    O'Toole PW, Claesson MJ. 2010.. Gut microbiota: changes throughout the lifespan from infancy to elderly. . Int. Dairy J. 20::28191
    [Google Scholar]
  2. 2.
    Claesson MJ, Clooney AG, O'Toole PW. 2017.. A clinician's guide to microbiome analysis. . Nat. Rev. Gastroenterol. Hepatol. 14::58595
    [Google Scholar]
  3. 3.
    Claesson MJ, Jeffery IB, Conde S, et al. 2012.. Gut microbiota composition correlates with diet and health in the elderly. . Nature 488::17885
    [Google Scholar]
  4. 4.
    Ryan FJ, Ahern AM, Fitzgerald RS, et al. 2020.. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. . Nat. Commun. 11::1512
    [Google Scholar]
  5. 5.
    Li JV, Swann J, Marchesi JR. 2017.. Biology of the microbiome 2: metabolic role. . Gastroenterol. Clin. N. Am. 46::3747
    [Google Scholar]
  6. 6.
    Durack J, Lynch SV. 2019.. The gut microbiome: relationships with disease and opportunities for therapy. . J. Exp. Med. 216::2040
    [Google Scholar]
  7. 7.
    Lynch SV, Pedersen O. 2016.. The human intestinal microbiome in health and disease. . N. Engl. J. Med. 375::236979
    [Google Scholar]
  8. 8.
    Ley RE, Backhed F, Turnbaugh P, et al. 2005.. Obesity alters gut microbial ecology. . PNAS 102::1107075
    [Google Scholar]
  9. 9.
    Caruso R, Lo BC, Nunez G. 2020.. Host–microbiota interactions in inflammatory bowel disease. . Nat. Rev. Immunol. 20::41126
    [Google Scholar]
  10. 10.
    Collins SM. 2014.. A role for the gut microbiota in IBS. . Nat. Rev. Gastroenterol. Hepatol. 11::497505
    [Google Scholar]
  11. 11.
    Jeffery IB, Das A, O'Herlihy E, et al. 2020.. Differences in fecal microbiomes and metabolomes of people with versus without irritable bowel syndrome and bile acid malabsorption. . Gastroenterology 158::101628.e8
    [Google Scholar]
  12. 12.
    Forslund K, Hildebrand F, Nielsen T, et al. 2015.. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. . Nature 528::26266
    [Google Scholar]
  13. 13.
    Shanahan F, van Sinderen D, O'Toole PW, Stanton C. 2017.. Feeding the microbiota: transducer of nutrient signals for the host. . Gut 66::170917
    [Google Scholar]
  14. 14.
    Vrieze A, Van Nood E, Holleman F, et al. 2012.. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. . Gastroenterology 143::91316.e7
    [Google Scholar]
  15. 15.
    Koopen AM, Almeida EL, Attaye I, et al. 2021.. Effect of fecal microbiota transplantation combined with Mediterranean diet on insulin sensitivity in subjects with metabolic syndrome. . Front. Microbiol. 12::662159
    [Google Scholar]
  16. 16.
    Valles-Colomer M, Menni C, Berry SE, et al. 2023.. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. . Nat. Med. 29::55161
    [Google Scholar]
  17. 17.
    Tang WHW, Li DY, Hazen SL. 2019.. Dietary metabolism, the gut microbiome, and heart failure. . Nat. Rev. Cardiol. 16::13754
    [Google Scholar]
  18. 18.
    Jiang Y, Pang S, Liu X, et al. 2024.. The gut microbiome affects atherosclerosis by regulating reverse cholesterol transport. . J. Cardiovasc. Transl. Res. 17::62437
    [Google Scholar]
  19. 19.
    Wahlstrom A, Sayin SI, Marschall HU, Backhed F. 2016.. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. . Cell Metab. 24::4150
    [Google Scholar]
  20. 20.
    Boulange CL, Neves AL, Chilloux J, et al. 2016.. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. . Genome Med. 8::42
    [Google Scholar]
  21. 21.
    Duncan SH, Conti E, Ricci L, Walker AW. 2023.. Links between diet, intestinal anaerobes, microbial metabolites and health. . Biomedicines 11::1338
    [Google Scholar]
  22. 22.
    Bravo JA, Julio-Pieper M, Forsythe P, et al. 2012.. Communication between gastrointestinal bacteria and the nervous system. . Curr. Opin. Pharmacol. 12::66772
    [Google Scholar]
  23. 23.
    Ross FC, Mayer DE, Gupta A, et al. 2024.. Existing and future strategies to manipulate the gut microbiota with diet as a potential adjuvant treatment for psychiatric disorders. . Biol. Psychiatry 95::34860
    [Google Scholar]
  24. 24.
    Lynch JB, Hsiao EY. 2023.. Toward understanding links between the microbiome and neurotransmitters. . Ann. N. Y. Acad. Sci. 1524::1016
    [Google Scholar]
  25. 25.
    Valles-Colomer M, Falony G, Darzi Y, et al. 2019.. The neuroactive potential of the human gut microbiota in quality of life and depression. . Nat. Microbiol. 4::62332
    [Google Scholar]
  26. 26.
    Meyer K, Lulla A, Debroy K, et al. 2022.. Association of the gut microbiota with cognitive function in midlife. . JAMA Netw. Open 5::e2143941
    [Google Scholar]
  27. 27.
    Costea PI, Zeller G, Sunagawa S, et al. 2017.. Towards standards for human fecal sample processing in metagenomic studies. . Nat. Biotechnol. 35::106976
    [Google Scholar]
  28. 28.
    Maier L, Goemans CV, Wirbel J, et al. 2021.. Unravelling the collateral damage of antibiotics on gut bacteria. . Nature 599::12024
    [Google Scholar]
  29. 29.
    Imhann F, Bonder MJ, Vich Vila A, et al. 2016.. Proton pump inhibitors affect the gut microbiome. . Gut 65::74048
    [Google Scholar]
  30. 30.
    Vieira-Silva S, Falony G, Belda E, et al. 2020.. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. . Nature 581::31015
    [Google Scholar]
  31. 31.
    McGovern AS, Hamlin AS, Winter G. 2019.. A review of the antimicrobial side of antidepressants and its putative implications on the gut microbiome. . Aust. N. Z. J. Psychiatry 53::115166
    [Google Scholar]
  32. 32.
    López-Otín C, Blasco MA, Partridge L, et al. 2013.. The hallmarks of aging. . Cell 153::1194217
    [Google Scholar]
  33. 33.
    López-Otín C, Blasco MA, Partridge L, et al. 2023.. Hallmarks of aging: an expanding universe. . Cell 186::24378
    [Google Scholar]
  34. 34.
    Schmauck-Medina T, Moliere A, Lautrup S, et al. 2022.. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. . Aging 14::682939
    [Google Scholar]
  35. 35.
    McCann A, Jeffery IB, Ouliass B, et al. 2019.. Exploratory analysis of covariation of microbiota-derived vitamin K and cognition in older adults. . Am. J. Clin. Nutr. 110::140415
    [Google Scholar]
  36. 36.
    Dai L, Mafra D, Shiels PG, et al. 2023.. Vitamin K and hallmarks of ageing: focus on diet and gut microbiome. . Nutrients 15::2727
    [Google Scholar]
  37. 37.
    Ma L, Zhang L, Li J, et al. 2023.. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. . Mol. Med. 29::148
    [Google Scholar]
  38. 38.
    Prajapati SK, Shah R, Alford N, et al. 2023.. The triple alliance: microbiome, mitochondria, and metabolites in the context of age-related cognitive decline and Alzheimer's disease. . J. Gerontol. A Biol. Sci. Med. Sci. 78::2187202
    [Google Scholar]
  39. 39.
    Barrett M, Hand CK, Shanahan F, et al. 2020.. Mutagenesis by microbe: the role of the microbiota in shaping the cancer genome. . Trends Cancer 6::27787
    [Google Scholar]
  40. 40.
    Janney A, Powrie F, Mann EH. 2020.. Host–microbiota maladaptation in colorectal cancer. . Nature 585::50917
    [Google Scholar]
  41. 41.
    Nougayrede JP, Homburg S, Taieb F, et al. 2006.. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. . Science 313::84851
    [Google Scholar]
  42. 42.
    Lopez LR, Bleich RM, Arthur JC. 2021.. Microbiota effects on carcinogenesis: initiation, promotion, and progression. . Annu. Rev. Med. 72::24361
    [Google Scholar]
  43. 43.
    Sheehan D, Shanahan F. 2017.. The gut microbiota in inflammatory bowel disease. . Gastroenterol. Clin. N. Am. 46::14354
    [Google Scholar]
  44. 44.
    Ravi A, Garg P, Sitaraman SV. 2007.. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane?. Inflamm. Bowel Dis. 13::97107
    [Google Scholar]
  45. 45.
    Donohoe DR, Garge N, Zhang X, et al. 2011.. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. . Cell Metab. 13::51726
    [Google Scholar]
  46. 46.
    Kibe R, Kurihara S, Sakai Y, et al. 2014.. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. . Sci. Rep. 4::4548
    [Google Scholar]
  47. 47.
    Yu T, Guo F, Yu Y, et al. 2017.. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. . Cell 170::54863.e16
    [Google Scholar]
  48. 48.
    Woo V, Alenghat T. 2022.. Epigenetic regulation by gut microbiota. . Gut Microbes 14::2022407
    [Google Scholar]
  49. 49.
    Bollati V, Schwartz J, Wright R, et al. 2009.. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. . Mech. Ageing Dev. 130::23439
    [Google Scholar]
  50. 50.
    Sharma M, Li Y, Stoll ML, Tollefsbol TO. 2019.. The epigenetic connection between the gut microbiome in obesity and diabetes. . Front. Genet. 10::1329
    [Google Scholar]
  51. 51.
    Ansari I, Raddatz G, Gutekunst J, et al. 2020.. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. . Nat. Microbiol. 5::61019
    [Google Scholar]
  52. 52.
    Furusawa Y, Obata Y, Fukuda S, et al. 2013.. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. . Nature 504::44650
    [Google Scholar]
  53. 53.
    Chang PV, Hao L, Offermanns S, Medzhitov R. 2014.. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. . PNAS 111::224752
    [Google Scholar]
  54. 54.
    Kadosh E, Snir-Alkalay I, Venkatachalam A, et al. 2020.. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. . Nature 586::13338
    [Google Scholar]
  55. 55.
    Franceschi C, Bonafe M, Valensin S, et al. 2000.. Inflamm-aging. An evolutionary perspective on immunosenescence. . Ann. N. Y. Acad. Sci. 908::24454
    [Google Scholar]
  56. 56.
    Bulut O, Kilic G, Dominguez-Andres J. 2022.. Immune memory in aging: a wide perspective covering microbiota, brain, metabolism, and epigenetics. . Clin. Rev. Allergy Immunol. 63::499529
    [Google Scholar]
  57. 57.
    Ghosh TS, Das M, Jeffery IB, O'Toole PW. 2020.. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. . eLife 9::e30240
    [Google Scholar]
  58. 58.
    Bana B, Cabreiro F. 2019.. The microbiome and aging. . Annu. Rev. Genet. 53::23961
    [Google Scholar]
  59. 59.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. 2016.. Human gut microbes impact host serum metabolome and insulin sensitivity. . Nature 535::37681
    [Google Scholar]
  60. 60.
    Bauer PV, Hamr SC, Duca FA. 2016.. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. . Cell. Mol. Life Sci. 73::73755
    [Google Scholar]
  61. 61.
    Oh HYP, Visvalingam V, Wahli W. 2019.. The PPAR–microbiota–metabolic organ trilogy to fine-tune physiology. . FASEB J. 33::970630
    [Google Scholar]
  62. 62.
    Long SL, Gahan CGM, Joyce SA. 2017.. Interactions between gut bacteria and bile in health and disease. . Mol. Aspects Med. 56::5465
    [Google Scholar]
  63. 63.
    Ghosh TS, Shanahan F, O'Toole PW. 2022.. The gut microbiome as a modulator of healthy ageing. . Nat. Rev. Gastroenterol. Hepatol. 19::56584
    [Google Scholar]
  64. 64.
    Wilmanski T, Diener C, Rappaport N, et al. 2021.. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. . Nat. Metab. 3::27486
    [Google Scholar]
  65. 65.
    O'Toole PW, Jeffery IB. 2015.. Gut microbiota and aging. . Science 350::121415
    [Google Scholar]
  66. 66.
    Galkin F, Mamoshina P, Aliper A, et al. 2020.. Human gut microbiome aging clock based on taxonomic profiling and deep learning. . iScience 23::101199
    [Google Scholar]
  67. 67.
    Arumugam M, Raes J, Pelletier E, et al. 2011.. Enterotypes of the human gut microbiome. . Nature 473::17480
    [Google Scholar]
  68. 68.
    Wu GD, Chen J, Hoffmann C, et al. 2011.. Linking long-term dietary patterns with gut microbial enterotypes. . Science 334::1058
    [Google Scholar]
  69. 69.
    Jeffery IB, Lynch DB, O'Toole PW. 2016.. Composition and temporal stability of the gut microbiota in older persons. . ISME J. 10::17082
    [Google Scholar]
  70. 70.
    Biagi E, Nylund L, Candela M, et al. 2010.. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. . PLOS ONE 5::e10667
    [Google Scholar]
  71. 71.
    Rampelli S, Soverini M, D'Amico F, et al. 2020.. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. . mSystems 5::e00124-20
    [Google Scholar]
  72. 72.
    Collino S, Montoliu I, Martin FP, et al. 2013.. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. . PLOS ONE 8::e56564
    [Google Scholar]
  73. 73.
    Rampelli S, Candela M, Turroni S, et al. 2013.. Functional metagenomic profiling of intestinal microbiome in extreme ageing. . Aging 5::90212
    [Google Scholar]
  74. 74.
    Ruiz-Ruiz S, Sanchez-Carrillo S, Ciordia S, et al. 2020.. Functional microbiome deficits associated with ageing: chronological age threshold. . Aging Cell 19::e13063
    [Google Scholar]
  75. 75.
    Pang S, Chen X, Lu Z, et al. 2023.. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. . Nat. Aging 3::43649
    [Google Scholar]
  76. 76.
    Luan Z, Fu S, Qi S, et al. 2024.. A metagenomics study reveals the gut microbiome as a sex-specific modulator of healthy aging in Hainan centenarians. . Exp. Gerontol. 186::112356
    [Google Scholar]
  77. 77.
    Duvallet C, Gibbons SM, Gurry T, et al. 2017.. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. . Nat. Commun. 8::1784
    [Google Scholar]
  78. 78.
    Tzemah-Shahar R, Turjeman S, Sharon E, et al. 2023.. Signs of aging in midlife: physical function and sex differences in microbiota. . GeroScience 46::147788
    [Google Scholar]
  79. 79.
    Jackson MA, Jeffery IB, Beaumont M, et al. 2016.. Signatures of early frailty in the gut microbiota. . Genome Med. 8::8
    [Google Scholar]
  80. 80.
    Ghosh TS, Shanahan F, O'Toole PW. 2022.. Toward an improved definition of a healthy microbiome for healthy aging. . Nat. Aging 2::105469
    [Google Scholar]
  81. 81.
    O'Toole PW, Ghosh TS, Goswami S, et al. 2023.. Translating the microbiome: What's the target?. Gastroenterology 165::31719
    [Google Scholar]
  82. 82.
    Walter J, Armet AM, Finlay BB, Shanahan F. 2020.. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. . Cell 180::22132
    [Google Scholar]
  83. 83.
    Ghosh TS, Rampelli S, Jeffery IB, et al. 2020.. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. . Gut 69::121828
    [Google Scholar]
  84. 84.
    Ye H, Ghosh TS, Hueston CM, et al. 2023.. Engraftment of aging-related human gut microbiota and the effect of a seven-species consortium in a pre-clinical model. . Gut Microbes 15::2282796
    [Google Scholar]
  85. 85.
    Perez M, Ntemiri A, Tan H, et al. 2021.. A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. . Gut Microbes 13::1919464
    [Google Scholar]
  86. 86.
    Tran TTT, Cousin FJ, Lynch DB, et al. 2019.. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. . Microbiome 7::39
    [Google Scholar]
  87. 87.
    Shanahan F, Ghosh TS, O'Toole PW. 2021.. The healthy microbiome—what is the definition of a healthy gut microbiome?. Gastroenterology 160::48394
    [Google Scholar]
  88. 88.
    Sehgal K, Cifu AS, Khanna S. 2022.. Treatment of Clostridioides difficile infection. . JAMA 328::88182
    [Google Scholar]
  89. 89.
    Gweon TG, Lee YJ, Kim KO, et al. 2022.. Clinical practice guidelines for fecal microbiota transplantation in Korea. . J. Neurogastroenterol. Motil. 28::2842
    [Google Scholar]
  90. 90.
    Baunwall SMD, Lee MM, Eriksen MK, et al. 2020.. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. . eClinicalMedicine 29::100642
    [Google Scholar]
  91. 91.
    Ianiro G, Bibbo S, Porcari S, et al. 2021.. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: experience of a large-volume European FMT center. . Gut Microbes 13::1994834
    [Google Scholar]
  92. 92.
    Suchman K, Luo Y, Grinspan A. 2022.. Fecal microbiota transplant for Clostridioides difficile infection is safe and efficacious in an immunocompromised cohort. . Dig. Dis. Sci. 67::486673
    [Google Scholar]
  93. 93.
    He R, Li P, Wang J, et al. 2022.. The interplay of gut microbiota between donors and recipients determines the efficacy of fecal microbiota transplantation. . Gut Microbes 14::2100197
    [Google Scholar]
  94. 94.
    Matson V, Chervin CS, Gajewski TF. 2021.. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. . Gastroenterology 160::60013
    [Google Scholar]
  95. 95.
    Li W, Deng X, Chen T. 2021.. Exploring the modulatory effects of gut microbiota in anti-cancer therapy. . Front. Oncol. 11::644454
    [Google Scholar]
  96. 96.
    Wieczorska K, Stolarek M, Stec R. 2020.. The role of the gut microbiome in colorectal cancer: Where are we? Where are we going?. Clin. Colorectal Cancer 19::512
    [Google Scholar]
  97. 97.
    Shoer S, Shilo S, Godneva A, et al. 2023.. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. . Nat. Commun. 14::5384
    [Google Scholar]
  98. 98.
    Zeevi D, Korem T, Zmora N, et al. 2015.. Personalized nutrition by prediction of glycemic responses. . Cell 163::107994
    [Google Scholar]
  99. 99.
    Rein M, Ben-Yacov O, Godneva A, et al. 2022.. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. . BMC Med. 20::56
    [Google Scholar]
  100. 100.
    Guizar-Heredia R, Noriega LG, Rivera AL, et al. 2023.. A new approach to personalized nutrition: postprandial glycemic response and its relationship to gut microbiota. . Arch. Med. Res. 54::17688
    [Google Scholar]
  101. 101.
    Tor-Roca A, Sanchez-Pla A, Korosi A, et al. 2023.. A Mediterranean diet-based metabolomic score and cognitive decline in older adults: a case–control analysis nested within the Three-City Cohort Study. . Mol. Nutr. Food Res. 68::e2300271
    [Google Scholar]
  102. 102.
    Ardisson Korat AV, Shea MK, Jacques PF, et al. 2024.. Dietary protein intake in midlife in relation to healthy aging—results from the prospective Nurses’ Health Study cohort. . Am. J. Clin. Nutr. 119::27182
    [Google Scholar]
  103. 103.
    Ntemiri A, Ghosh TS, Gheller ME, et al. 2020.. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. . Nutrients 12::2800
    [Google Scholar]
/content/journals/10.1146/annurev-med-042423-042542
Loading
/content/journals/10.1146/annurev-med-042423-042542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error