1932

Abstract

T cells are key effectors of anticancer immunity. They are capable of distinguishing tumor cells from normal ones by recognizing major histocompatibility complex–bound cancer-specific peptides. Accumulating evidence suggests that peptides associated with T cell–mediated tumor rejection arise predominantly from somatically mutated proteins and are unique to every patient's tumor. Knowledge of an individual's cancer mutanome (the entirety of cancer mutations) allows harnessing this enormous tumor cell–specific repertoire of highly immunogenic antigens for individualized cancer vaccines. This review outlines the preclinical and clinical state of individualized cancer vaccine development and the challenges ahead.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042617-101816
2019-01-27
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/med/70/1/annurev-med-042617-101816.html?itemId=/content/journals/10.1146/annurev-med-042617-101816&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hanahan D, Weinberg RA 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74
    [Google Scholar]
  2. 2.  Tyzzer E 1916. Tumor immunity. J. Cancer Res. 1:125–56
    [Google Scholar]
  3. 3.  Coulie PG, Van den Eynde BJ, van der Bruggen P et al. 2014. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14:2135–46
    [Google Scholar]
  4. 4.  Wölfel T, Hauer M, Schneider J et al. 1995. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:52281281–84
    [Google Scholar]
  5. 5.  Lennerz V, Fatho M, Gentilini C et al. 2005. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. PNAS 102:4416013–18
    [Google Scholar]
  6. 6.  Houbiers JG, Nijman HW, van der Burg SH et al. 1993. In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur. J. Immunol. 23:2072–77
    [Google Scholar]
  7. 7.  Gjertsen M, Breivik J, Saeterdal I 1995. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:89871399–400
    [Google Scholar]
  8. 8.  Somasundaram R, Swoboda R, Caputo L et al. 2006. Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res 66:3287–93
    [Google Scholar]
  9. 9.  Cloosen S, Arnold J, Thio M et al. 2007. Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67:83919–26
    [Google Scholar]
  10. 10.  Hérin M, Lemoine C, Weynants P et al. 1987. Production of stable cytolytic T-cell clones directed against autologous human melanoma. Int. J. Cancer 39:3390–96
    [Google Scholar]
  11. 11.  De Plaen E, Lurquin C, Van Pel A et al. 1988. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. PNAS 85:72274–78
    [Google Scholar]
  12. 12.  Alexandrov LB, Nik-Zainal S, Wedge DC et al. 2013. Signatures of mutational processes in human cancer. Nature 500:7463415–21
    [Google Scholar]
  13. 13.  Akbani R, Akdemir KC, Aksoy BA et al. 2015. Genomic classification of cutaneous melanoma. Cell 161:71681–96
    [Google Scholar]
  14. 14.  Collisson EA, Campbell JD, Brooks AN et al. 2014. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:7511543–50
    [Google Scholar]
  15. 15.  Vormehr M, Diken M, Boegel S et al. 2016. Mutanome directed cancer immunotherapy. Curr. Opin. Immunol. 39:14–22
    [Google Scholar]
  16. 16.  Bosch GJ, Joosten AM, Kessler JH et al. 1996. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 88:93522–27
    [Google Scholar]
  17. 17.  Robbins PF, Lu Y-C, El-Gamil M et al. 2013. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19:6747–52
    [Google Scholar]
  18. 18.  Linnemann C, Van Buuren MM, Bies L et al. 2015. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21:181–85
    [Google Scholar]
  19. 19.  Tran E, Ahmadzadeh M, Lu Y-C et al. 2015. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350:62661387–90
    [Google Scholar]
  20. 20.  Giannakis M, Mu XJ, Shukla SA et al. 2016. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 15:4857–65
    [Google Scholar]
  21. 21.  Strickland KC, Howitt BE, Shukla SA et al. 2016. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7:121–12
    [Google Scholar]
  22. 22.  Matsushita H, Sato Y, Karasaki T et al. 2016. Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunol. Res. 4:5463–71
    [Google Scholar]
  23. 23.  Castle JC, Kreiter S, Diekmann J et al. 2012. Exploiting the mutanome for tumor vaccination. Cancer Res 72:51081–91
    [Google Scholar]
  24. 24.  Kreiter S, Vormehr M, van de Roemer N et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:7549692–96
    [Google Scholar]
  25. 25.  Matsushita H, Vesely MD, Koboldt DC et al. 2012. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:7385400–4
    [Google Scholar]
  26. 26.  Gubin MM, Zhang X, Schuster H et al. 2014. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:7528577–81
    [Google Scholar]
  27. 27.  Yadav M, Jhunjhunwala S, Phung QT et al. 2014. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:7528572–76
    [Google Scholar]
  28. 28.  Duan F, Duitama J, Al Seesi S et al. 2014. Genomic and bio-informatic profiling of mutational neo-epitopes reveals new rules to predict anti-cancer immunogenicity. J. Exp. Med. 211:112231–48
    [Google Scholar]
  29. 29.  Türeci O, Löwer M, Schrörs B et al. 2018. Challenges towards the realization of individualized cancer vaccines. Nat. Biomed. Eng. 2:566–69
    [Google Scholar]
  30. 30.  Carreno BM, Magrini V, Becker-Hapak M et al. 2015. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:6236803–8
    [Google Scholar]
  31. 31.  Ott PA, Hu Z, Keskin DB et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:7662217–21
    [Google Scholar]
  32. 32.  Sahin U, Derhovanessian E, Miller M et al. 2017. Individualized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:7662222–26
    [Google Scholar]
  33. 33.  Robert C, Schachter J, Long GV et al. 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372:262521–32
    [Google Scholar]
  34. 34.  Tran E, Turcotte S, Gros A et al. 2014. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:6184641–45
    [Google Scholar]
  35. 35.  Schumacher T, Bunse L, Pusch S et al. 2014. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:7514324–27
    [Google Scholar]
  36. 36.  Becattini S, Latorre D, Mele F et al. 2015. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 347:6220400–6
    [Google Scholar]
  37. 37.  Khodadoust MS, Olsson N, Wagar LE et al. 2017. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543:723–27
    [Google Scholar]
  38. 38.  Zhang N, Bevan MJ 2011. CD8+ T cells: foot soldiers of the immune system. Immunity 35:2161–68
    [Google Scholar]
  39. 39.  Schoenberger SP, Toes RE, van der Voort EI et al. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:6684480–83
    [Google Scholar]
  40. 40.  Feau S, Garcia Z, Arens R et al. 2012. The CD4+ T-cell help signal is transmitted from APC to CD8+ T-cells via CD27-CD70 interactions. Nat. Commun. 3:948
    [Google Scholar]
  41. 41.  Williams MA, Tyznik AJ, Bevan MJ 2006. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:7095890–93
    [Google Scholar]
  42. 42.  Shedlock DJ 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300:5617337–39
    [Google Scholar]
  43. 43.  Janssen EM, Lemmens EE, Wolfe T et al. 2003. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:6925852–56
    [Google Scholar]
  44. 44.  Bos R, Sherman LA 2010. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70:218368–77
    [Google Scholar]
  45. 45.  Kaplan DH, Shankaran V, Dighe AS et al. 1998. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. PNAS 95:137556–61
    [Google Scholar]
  46. 46.  Hoof I, Peters B, Sidney J et al. 2009. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:11–13
    [Google Scholar]
  47. 47.  Vita R, Overton JA, Greenbaum JA et al. 2014. The Immune Epitope Database (IEDB) 3.0. Nucleic Acids Res 43:D1D405–12
    [Google Scholar]
  48. 48.  Van Rooij N, Van Buuren MM, Philips D et al. 2013. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31:32e439–42
    [Google Scholar]
  49. 49.  Johanns TM, Ward JP, Miller CA et al. 2016. Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol. Res. 4:121007–15
    [Google Scholar]
  50. 50.  Ghorani E, Rosenthal R, McGranahan N et al. 2018. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann. Oncol. 29:1271–79
    [Google Scholar]
  51. 51.  Harndahl M, Rasmussen M, Roder G et al. 2012. Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42:61405–16
    [Google Scholar]
  52. 52.  Rasmussen M, Fenoy E, Harndahl M et al. 2016. Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. J. Immunol. 197:41517–24
    [Google Scholar]
  53. 53.  van der Burg SH, Visseren MJ, Brandt RM et al. 1996. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156:93308–14
    [Google Scholar]
  54. 54.  Jørgensen KW, Rasmussen M, Buus S et al. 2014. NetMHCstab—predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141:118–26
    [Google Scholar]
  55. 55.  Calis JJA, Maybeno M, Greenbaum JA et al. 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput. Biol. 9:10e1003266
    [Google Scholar]
  56. 56.  Arnold PY, La Gruta NL, Miller T et al. 2002. The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. J. Immunol. 169:2739–49
    [Google Scholar]
  57. 57.  Schwanhäusser B, Busse D, Li N et al. 2011. Global quantification of mammalian gene expression control. Nature 473:7347337–42
    [Google Scholar]
  58. 58.  Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ et al. 2015. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell Proteom. 14:3658–73
    [Google Scholar]
  59. 59.  Christinck ER, Luscher MA, Barber BH et al. 1991. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352:633067–70
    [Google Scholar]
  60. 60.  Lethe B, van der Bruggen P, Brasseur F et al. 1997. MAGE-1 expression threshold for the lysis of melanoma cell lines by a specific cytotoxic T lymphocyte. Melanoma Res 7:Suppl. 2S83–88
    [Google Scholar]
  61. 61.  Kurts C, Miller JF, Subramaniam RM et al. 1998. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J. Exp. Med. 188:2409–14
    [Google Scholar]
  62. 62.  Abelin JG, Keskin DB, Sarkizova S et al. 2017. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:2315–26
    [Google Scholar]
  63. 63.  McGranahan N, Furness AJS, Rosenthal R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:62801463–69
    [Google Scholar]
  64. 64.  Balachandran VP, Łuksza M, Zhao JN et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:512–16
    [Google Scholar]
  65. 65.  Türeci O, Vormehr M, Diken M et al. 2016. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22:81885–96
    [Google Scholar]
  66. 66.  Moynihan KD, Opel CF, Szeto GL et al. 2016. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22:121402–10
    [Google Scholar]
  67. 67.  Keir ME, Butte MJ, Freeman GJ et al. 2008. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26:677–704
    [Google Scholar]
  68. 68.  Woller N, Gürlevik E, Fleischmann-Mundt B et al. 2015. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol. Ther. 10:1630–40
    [Google Scholar]
  69. 69.  Pauken KE, Sammons MA, Odorizzi PM et al. 2016. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:63161160–65
    [Google Scholar]
  70. 70.  Shukla SA, Rooney MS, Rajasagi M et al. 2015. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33:111152–58
    [Google Scholar]
  71. 71.  Zaretsky JM, Garcia-Diaz A, Shin DS et al. 2016. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375:9819–29
    [Google Scholar]
  72. 72.  D'Urso CM, Wang Z, Cao Y et al. 1991. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J. Clin. Investig. 87:1284–92
    [Google Scholar]
  73. 73.  Chen DS, Mellman I 2017. Elements of cancer immunity and the cancer-immune set point. Nature 541:7637321–30
    [Google Scholar]
/content/journals/10.1146/annurev-med-042617-101816
Loading
/content/journals/10.1146/annurev-med-042617-101816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error