1932

Abstract

RASopathies are a group of clinically overlapping autosomal dominant disorders caused primarily by mutations in genes that reside along the canonical Ras–mitogen-activated protein kinase signaling cascade. Though individually rare, collectively, these disorders constitute one of the largest families of congenital disorders worldwide, particularly for infantile hypertrophic cardiomyopathy. Significantly, despite almost five decades of RASopathy research, therapeutic options remain limited and focused primarily on treating symptoms rather than disease etiology. Targeting the genes causal to these disorders, and the nodal pathways critical for their regulation, however, has been challenging. In this review, we highlight these challenges, particularly with respect to congenital heart defects and cardiac diseases and discuss limitations and future directions for approaches to new therapeutic strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042823-013552
2025-01-27
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-042823-013552.html?itemId=/content/journals/10.1146/annurev-med-042823-013552&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hebron KE, Hernandez ER, Yohe ME. 2022.. The RASopathies: from pathogenetics to therapeutics. . Dis. Model. Mech. 15::dmm049107
    [Google Scholar]
  2. 2.
    Calcagni G, Limongelli G, D'Ambrosio A, et al. 2017.. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results. . Int. J. Cardiol. 245::9298
    [Google Scholar]
  3. 3.
    Delogu AB, Limongelli G, Versacci P, et al. 2022.. The heart in RASopathies. . Am. J. Med. Genet. C Semin. Med. Genet. 190::44051
    [Google Scholar]
  4. 4.
    Albakri A. 2019.. RASopathy-associated cardiomyopathy. . Internal Med. Care 3:. https://doi.org/10.15761/IMC.1000134
    [Google Scholar]
  5. 5.
    Rauen KA. 2022.. Defining RASopathy. . Dis. Model Mech. 15::dmm049344
    [Google Scholar]
  6. 6.
    Aoki Y, Niihori T, Inoue S, Matsubara Y. 2016.. Recent advances in RASopathies. . J. Hum. Genet. 61::3339
    [Google Scholar]
  7. 7.
    Tidyman WE, Rauen KA. 2016.. Pathogenetics of the RASopathies. . Hum. Mol. Genet. 25::R12332
    [Google Scholar]
  8. 8.
    Leoni C, Blandino R, Delogu AB, et al. 2022.. Genotype-cardiac phenotype correlations in a large single-center cohort of patients affected by RASopathies: clinical implications and literature review. . Am. J. Med. Genet. A 188::43145
    [Google Scholar]
  9. 9.
    Gelb BD, Yohe ME, Wolf C, Andelfinger G. 2022.. New prospectives on treatment opportunities in RASopathies. . Am. J. Med. Genet. C Semin. Med. Genet. 190::54160
    [Google Scholar]
  10. 10.
    Lioncino M, Monda E, Verrillo F, et al. 2022.. Hypertrophic cardiomyopathy in RASopathies: diagnosis, clinical characteristics, prognostic implications, and management. . Heart Fail. Clin. 18::1929
    [Google Scholar]
  11. 11.
    Calcagni G, Gagliostro G, Limongelli G, et al. 2020.. Atypical cardiac defects in patients with RASopathies: updated data on CARNET study. . Birth Defects Res. 112::72531
    [Google Scholar]
  12. 12.
    Delogu AB, Blandino R, Leoni C, Tartaglia M, Zampino G. 2023.. RASopathies and sigmoid-shaped ventricular septum morphology: evidence of a previously unappreciated cardiac phenotype. . Pediatr. Res. 93::75254
    [Google Scholar]
  13. 13.
    Limongelli G, Pacileo G, Marino B, et al. 2007.. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. . Am. J. Cardiol. 100::73641
    [Google Scholar]
  14. 14.
    Maron BJ, Towbin JA, Thiene G, et al. 2006.. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. . Circulation 113::180716
    [Google Scholar]
  15. 15.
    Elliott P, Andersson B, Arbustini E, et al. 2008.. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. . Eur. Heart J. 29::27076
    [Google Scholar]
  16. 16.
    Cerrato F, Pacileo G, Limongelli G, et al. 2008.. A standard echocardiographic and tissue Doppler study of morphological and functional findings in children with hypertrophic cardiomyopathy compared to those with left ventricular hypertrophy in the setting of Noonan and LEOPARD syndromes. . Cardiol. Young 18::57580
    [Google Scholar]
  17. 17.
    Kaltenecker E, Schleihauf J, Meierhofer C, et al. 2019.. Long-term outcomes of childhood onset Noonan compared to sarcomere hypertrophic cardiomyopathy. . Cardiovasc. Diagn. Ther. 9::S299309
    [Google Scholar]
  18. 18.
    Perillo EF, Canciello G, Borrelli F, et al. 2023.. Diagnosis and clinical implication of left ventricular aneurysm in hypertrophic cardiomyopathy. . Diagnostics 13::1848
    [Google Scholar]
  19. 19.
    Lynch A, Tatangelo M, Ahuja S, et al. 2023.. Risk of sudden death in patients with RASopathy hypertrophic cardiomyopathy. . J. Am. Coll. Cardiol. 81::103545
    [Google Scholar]
  20. 20.
    Colquitt JL, Noonan JA. 2014.. Cardiac findings in Noonan syndrome on long-term follow-up. . Congenit. Heart Dis. 9::14450
    [Google Scholar]
  21. 21.
    Dhandapany PS, Razzaque MA, Muthusami U, et al. 2014.. RAF1 mutations in childhood-onset dilated cardiomyopathy. . Nat. Genet. 46::63539
    [Google Scholar]
  22. 22.
    Aljeaid D, Sanchez AI, Wakefield E, et al. 2019.. Prevalence of pathogenic and likely pathogenic variants in the RASopathy genes in patients who have had panel testing for cardiomyopathy. . Am. J. Med. Genet. A 179::60814
    [Google Scholar]
  23. 23.
    Baban A, Olivini N, Lepri FR, et al. 2019.. SOS1 mutations in Noonan syndrome: cardiomyopathies and not only congenital heart defects! Report of six patients including two novel variants and literature review. . Am. J. Med. Genet. A 179::208390
    [Google Scholar]
  24. 24.
    Cowan JR, Salyer L, Wright NT, et al. 2020.. SOS1 gain-of-function variants in dilated cardiomyopathy. . Circ. Genom. Precis. Med. 13::e002892
    [Google Scholar]
  25. 25.
    Lin AE, Alexander ME, Colan SD, et al. 2011.. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: a Ras/MAPK pathway syndrome. . Am. J. Med. Genet. A 155a::486507
    [Google Scholar]
  26. 26.
    Levin MD, Saitta SC, Gripp KW, et al. 2018.. Nonreentrant atrial tachycardia occurs independently of hypertrophic cardiomyopathy in RASopathy patients. . Am. J. Med. Genet. A 176::171122
    [Google Scholar]
  27. 27.
    Meisner JK, Bradley DJ, Russell MW. 2021.. Molecular management of multifocal atrial tachycardia in Noonan's Syndrome with MEK1/2 inhibitor trametinib. . Circ. Genom. Precis. Med. 14::e003327
    [Google Scholar]
  28. 28.
    Hagino M, Ota C, Onoki T, Iwasawa S. 2022.. Male infant with Noonan syndrome with RAF-1 gene mutation who survived hypertrophic cardiomyopathy-induced fatal heart failure and uncontrollable arrhythmias. . BMJ Case Rep. 15::e250342
    [Google Scholar]
  29. 29.
    Writing Committee Members, Ommen SR, Mital S, et al. 2020.. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. . Circulation 142::e558631
    [Google Scholar]
  30. 30.
    Calcagni G, Digilio MC, Marino B, Tartaglia M. 2019.. Pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: the multifaceted consequences of PTPN11 mutations. . Orphanet J. Rare Dis. 14::163
    [Google Scholar]
  31. 31.
    Sarkozy A, Digilio MC, Dallapiccola B. 2008.. Leopard syndrome. . Orphanet J. Rare Dis. 3::13
    [Google Scholar]
  32. 32.
    Kontaridis MI, Swanson KD, David FS, et al. 2006.. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. . J. Biol. Chem. 281::678592
    [Google Scholar]
  33. 33.
    Marin TM, Keith K, Davies B, et al. 2011.. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. . J. Clin. Investig. 121::102643
    [Google Scholar]
  34. 34.
    Hernández-Porras I, Fabbiano S, Schuhmacher AJ, et al. 2014.. K-RasV14I recapitulates Noonan syndrome in mice. . PNAS 111::16395400
    [Google Scholar]
  35. 35.
    Chen PC, Wakimoto H, Conner D, et al. 2010.. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation. . J. Clin. Investig. 120::435365
    [Google Scholar]
  36. 36.
    Wu X, Simpson J, Hong JH, et al. 2011.. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation. . J. Clin. Investig. 121::100925
    [Google Scholar]
  37. 37.
    Cuevas-Navarro A, Wagner M, Van R, et al. 2023.. RAS-dependent RAF-MAPK hyperactivation by pathogenic RIT1 is a therapeutic target in Noonan syndrome–associated cardiac hypertrophy. . Sci. Adv. 9::eadf4766
    [Google Scholar]
  38. 38.
    Andelfinger G, Marquis C, Raboisson MJ, et al. 2019.. Hypertrophic cardiomyopathy in Noonan syndrome treated by MEK-inhibition. . J. Am. Coll. Cardiol. 73::223739
    [Google Scholar]
  39. 39.
    Geddes GC, Parent JJ, Lander J, et al. 2023.. MEK inhibition improves cardiomyopathy in Costello syndrome. . J. Am. Coll. Cardiol. 81::143941
    [Google Scholar]
  40. 40.
    Nakhaei-Rad S, Haghighi F, Bazgir F, et al. 2023.. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. . Commun. Biol. 6::657
    [Google Scholar]
  41. 41.
    Jaffré F, Miller CL, Schänzer A, et al. 2019.. Inducible pluripotent stem cell-derived cardiomyocytes reveal aberrant extracellular regulated kinase 5 and mitogen-activated protein kinase kinase 1/2 signaling concomitantly promote hypertrophic cardiomyopathy in RAF1-associated Noonan syndrome. . Circulation 140::20724
    [Google Scholar]
  42. 42.
    Wang J, Chandrasekhar V, Abbadessa G, et al. 2017.. In vivo efficacy of the AKT inhibitor ARQ 092 in Noonan Syndrome with multiple lentigines-associated hypertrophic cardiomyopathy. . PLOS ONE 12::e0178905
    [Google Scholar]
  43. 43.
    Hanna N, Montagner A, Lee WH, et al. 2006.. Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. . FEBS Lett. 580::247782
    [Google Scholar]
  44. 44.
    Yi JS, Huang Y, Kwaczala AT, et al. 2016.. Low-dose dasatinib rescues cardiac function in Noonan syndrome. . JCI Insight 1::e90220
    [Google Scholar]
  45. 45.
    Hahn A, Lauriol J, Thul J, et al. 2015.. Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: palliative treatment with a rapamycin analog. . Am. J. Med. Genet. A 167a::74451
    [Google Scholar]
  46. 46.
    Cotterill AM, McKenna WJ, Brady AF, et al. 1996.. The short-term effects of growth hormone therapy on height velocity and cardiac ventricular wall thickness in children with Noonan's syndrome. . J. Clin. Endocrinol. Metab. 81::229197
    [Google Scholar]
  47. 47.
    Jorge AAL, Edouard T, Maghnie M, et al. 2022.. Outcomes in growth hormone-treated Noonan syndrome children: impact of PTPN11 mutation status. . Endocr. Connect 11::e210615
    [Google Scholar]
  48. 48.
    Boleti O, Norrish G, Field E, et al. 2024.. Natural history and outcomes in paediatric RASopathy-associated hypertrophic cardiomyopathy. . ESC Heart Fail. 11::92336
    [Google Scholar]
  49. 49.
    Moran AM, Colan SD. 1998.. Verapamil therapy in infants with hypertrophic cardiomyopathy. . Cardiol. Young 8::31019
    [Google Scholar]
  50. 50.
    O'Connor MJ, Miller K, Shaddy RE, et al. 2018.. Disopyramide use in infants and children with hypertrophic cardiomyopathy. . Cardiol. Young 28::53035
    [Google Scholar]
  51. 51.
    Desai MY, Owens A, Wolski K, et al. 2023.. Mavacamten in patients with hypertrophic cardiomyopathy referred for septal reduction: week 56 results from the VALOR-HCM randomized clinical trial. . JAMA Cardiol. 8::96877
    [Google Scholar]
  52. 52.
    Desai MY, Owens A, Geske JB, et al. 2023.. Dose-blinded myosin inhibition in patients with obstructive hypertrophic cardiomyopathy referred for septal reduction therapy: outcomes through 32 weeks. . Circulation 147::85063
    [Google Scholar]
  53. 53.
    Stagi S, Ferrari V, Ferrari M, et al. 2022.. Inside the Noonan “universe”: literature review on growth, GH/IGF axis and rhGH treatment: facts and concerns. . Front. Endocrinol. 13::951331
    [Google Scholar]
  54. 54.
    Linglart L, Gelb BD. 2020.. Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. . Am. J. Med. Genet. C Semin. Med. Genet. 184::7380
    [Google Scholar]
  55. 55.
    Hemmati P, Dearani JA, Daly RC, et al. 2019.. Early outcomes of cardiac surgery in patients with Noonan syndrome. . Semin. Thorac. Cardiovasc. Surg. 31::50713
    [Google Scholar]
  56. 56.
    Chen S, Chen L, Jiang Y, et al. 2022.. Early outcomes of septal myectomy for obstructive hypertrophic cardiomyopathy in children with Noonan syndrome. . Semin. Thorac. Cardiovasc. Surg. 34::65565
    [Google Scholar]
  57. 57.
    McCallen LM, Ameduri RK, Denfield SW, et al. 2019.. Cardiac transplantation in children with Noonan syndrome. . Pediatr. Transplant. 23::e13535
    [Google Scholar]
  58. 58.
    Hernández-Porras I, Jiménez-Catalán B, Schuhmacher AJ, Guerra C. 2015.. The impact of the genetic background in the Noonan syndrome phenotype induced by K-RasV14I. . Rare Dis. 3::e1045169
    [Google Scholar]
  59. 59.
    Nakamura T, Colbert M, Krenz M, et al. 2007.. Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. . J. Clin. Investig. 117::212332
    [Google Scholar]
  60. 60.
    Krenz M, Gulick J, Osinska HE, Colbert MC, Molkentin JD, Robbins J. 2008.. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. . PNAS 105::1893035
    [Google Scholar]
  61. 61.
    Easton DF, Ponder MA, Huson SM, Ponder BA. 1993.. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. . Am. J. Hum. Genet. 53::30513
    [Google Scholar]
  62. 62.
    Araki T, Chan G, Newbigging S, et al. 2009.. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. . PNAS 106::473641
    [Google Scholar]
  63. 63.
    Wu X, Yin J, Simpson J, Kim KH, Gu S, et al. 2012.. Increased BRAF heterodimerization is the common pathogenic mechanism for Noonan syndrome-associated RAF1 mutants. . Mol. Cell. Biol. 32::387290
    [Google Scholar]
  64. 64.
    Li W, Cui Y, Kushner SA, et al. 2005.. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. . Curr. Biol. 15::196167
    [Google Scholar]
  65. 65.
    Acosta MT, Kardel PG, Walsh KS, et al. 2011.. Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study. . Pediatr. Neurol. 45::24145
    [Google Scholar]
  66. 66.
    Mainberger F, Jung NH, Zenker M, et al. 2013.. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. . BMC Neurol. 13::131
    [Google Scholar]
  67. 67.
    Izumiya Y, Araki S, Usuku H, et al. 2012.. Chronic C-type natriuretic peptide infusion attenuates angiotensin II-induced myocardial superoxide production and cardiac remodeling. . Int. J. Vasc. Med. 2012::246058
    [Google Scholar]
  68. 68.
    Wang Y, de Waard MC, Sterner-Kock A, et al. 2007.. Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. . Eur. J. Heart Fail. 9::54857
    [Google Scholar]
  69. 69.
    Soeki T, Kishimoto I, Okumura H, et al. 2005.. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. . J. Am. Coll. Cardiol. 45::60816
    [Google Scholar]
  70. 70.
    Obata H, Yanagawa B, Tanaka K, et al. 2007.. CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. . Biochem. Biophys. Res. Commun. 356::6066
    [Google Scholar]
  71. 71.
    Nakagawa Y, Nishikimi T. 2022.. CNP, the third natriuretic peptide: its biology and significance to the cardiovascular system. . Biology 11::986
    [Google Scholar]
  72. 72.
    Kontaridis MI, Chennappan S. 2022.. Mitochondria and the future of RASopathies: the emergence of bioenergetics. . J. Clin. Investig. 132:(8):e157560
    [Google Scholar]
  73. 73.
    Dard L, Hubert C, Esteves P, et al. 2022.. HRAS germline mutations impair LKB1/AMPK signaling and mitochondrial homeostasis in Costello syndrome models. . J. Clin. Investig. 132:(8):e131053
    [Google Scholar]
  74. 74.
    Leoni C, Flex E. 2018.. Costello Syndrome: the challenge of hypoglycemia and failure to thrive. . eBioMedicine 27::56
    [Google Scholar]
  75. 75.
    Frangoul H, Altshuler D, Cappellini MD, et al. 2021.. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. . N. Engl. J. Med. 384::25260
    [Google Scholar]
  76. 76.
    Srivastava RAK. 2023.. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing. . Nutr. Metab. Cardiovasc. Dis. 33::231725
    [Google Scholar]
/content/journals/10.1146/annurev-med-042823-013552
Loading
/content/journals/10.1146/annurev-med-042823-013552
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error