1932

Abstract

Acid-related disorders represent a significant global health burden. Pharmacological treatment of these conditions has at times been challenged and limited by incomplete effectiveness, antibiotic resistance, adverse medication effects and/or interactions, and disease recurrence. Since the early 1990s, the mainstay of treatment has been proton pump inhibitors (PPIs). Recently, the US Food and Drug Administration issued a clearance for vonoprazan, a potassium-competitive acid blocker (PCAB). PCABs are a new class of acid-suppressing agents that may overcome some of these challenges. The aim of this review is to evaluate and compare the emerging long-term risks of PPI and PCAB therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050223-112834
2025-01-27
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-050223-112834.html?itemId=/content/journals/10.1146/annurev-med-050223-112834&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chen Y-C, Malfertheiner P, Yu H-T, et al. 2024.. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. . Gastroenterology 166::60519. https://doi.org/10.1053/j.gastro.2023.12.022
    [Google Scholar]
  2. 2.
    Dirac MA, Safiri S, Tsoi D, et al. 2020.. The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. . Lancet Gastroenterol. Hepatol. 5:(6):56181. https://doi.org/10.1016/S2468-1253(19)30408-X
    [Google Scholar]
  3. 3.
    FDA (US Food Drug Adm.). 2023.. New drug therapy approvals 2022: advancing health through innovation. . FDA. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2022
    [Google Scholar]
  4. 4.
    Inatomi N, Matsukawa J, Sakurai Y, Otake K. 2016.. Potassium-competitive acid blockers: advanced therapeutic option for acid-related diseases. . Pharmacol. Ther. 168::1222. https://doi.org/10.1016/j.pharmthera.2016.08.001
    [Google Scholar]
  5. 5.
    Lundell L. 2015.. The physiological background behind and course of development of the first proton pump inhibitor. . Scand. J. Gastroenterol. 50:(6):68084. https://doi.org/10.3109/00365521.2015.1013981
    [Google Scholar]
  6. 6.
    CMS MPIE (Cent. Medicare Medicaid Serv. Medicaid Program Integr. Educ.). 2015.. Proton pump inhibitors: U.S. Food and Drug Administration-approved indications and dosages for use in adults. Dosing Table, CMS MPIE, Baltimore, MD:. https://www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-Materials/Downloads/ppi-adult-dosingchart11-14.pdf
    [Google Scholar]
  7. 7.
    Haastrup PF, Jarbøl DE, Thompson W, et al. 2021.. When does proton pump inhibitor treatment become long term? A scoping review. . BMJ Open Gastroenterol. 8:(1):e000563. https://doi.org/10.1136/bmjgast-2020-000563
    [Google Scholar]
  8. 8.
    Rückert-Eheberg I-M, Nolde M, Ahn N, et al. 2022.. Who gets prescriptions for proton pump inhibitors and why? A drug-utilization study with claims data in Bavaria, Germany, 2010–2018. . Eur. J. Clin. Pharmacol. 78:(4):65767. https://doi.org/10.1007/s00228-021-03257-z
    [Google Scholar]
  9. 9.
    Haastrup P, Paulsen MS, Zwisler JE, et al. 2014.. Rapidly increasing prescribing of proton pump inhibitors in primary care despite interventions: a nationwide observational study. . Eur. J. Gen. Pract. 20:(4):29093. https://doi.org/10.3109/13814788.2014.905535
    [Google Scholar]
  10. 10.
    Schoenfeld AJ, Grady D. 2016.. Adverse effects associated with proton pump inhibitors. . JAMA Intern. Med. 176:(2):17274. https://doi.org/10.1001/jamainternmed.2015.7927
    [Google Scholar]
  11. 11.
    Wong ZY, Koh JH, Muthiah M, et al. 2024.. Proton pump inhibitors increases longitudinal risk of mortality, decompensation, and infection in cirrhosis: a meta-analysis. . Dig. Dis. Sci. 69:(1):28997. https://doi.org/10.1007/s10620-023-08150-6
    [Google Scholar]
  12. 12.
    Xun X, Yin Q, Fu Y, et al. 2022.. Proton pump inhibitors and the risk of community-acquired pneumonia: an updated meta-analysis. . Ann. Pharmacother. 56:(5):52432. https://doi.org/10.1177/10600280211039240
    [Google Scholar]
  13. 13.
    Fitzpatrick D, Lannon R, Laird E, et al. 2023.. The association between proton pump inhibitors and hyperparathyroidism: a potential mechanism for increased fracture—results of a large observational cohort study. . Osteoporos. Int. 34:(11):191726. https://doi.org/10.1007/s00198-023-06867-8
    [Google Scholar]
  14. 14.
    Badiola N, Alcalde V, Pujol A, et al. 2013.. The proton-pump inhibitor lansoprazole enhances amyloid beta production. . PLOS ONE 8:(3):e58837. https://doi.org/10.1371/journal.pone.0058837
    [Google Scholar]
  15. 15.
    Gomm W, von Holt K, Thomé F, et al. 2016.. Association of proton pump inhibitors with risk of dementia: a pharmacoepidemiological claims data analysis. . JAMA Neurol. 73:(4):41016. https://doi.org/10.1001/jamaneurol.2015.4791
    [Google Scholar]
  16. 16.
    Soh Y, Lee DH, Won CW. 2020.. Association between vitamin B12 levels and cognitive function in the elderly Korean population. . Medicine 99:(30):e21371. https://doi.org/10.1097/MD.0000000000021371
    [Google Scholar]
  17. 17.
    Northuis CA, Bell EJ, Lutsey PL, et al. 2023.. Cumulative use of proton pump inhibitors and risk of dementia. . Neurology 101:(18):e177178. https://doi.org/10.1212/WNL.0000000000207747
    [Google Scholar]
  18. 18.
    Mehta RS, Kochar B, Zhou Z, et al. 2023.. Association of proton pump inhibitor use with incident dementia and cognitive decline in older adults: a prospective cohort study. . Gastroenterology 165:(3):56472.e1. https://doi.org/10.1053/j.gastro.2023.05.052
    [Google Scholar]
  19. 19.
    2019 Am. Geriatr. Soc. Beers Criteria® Update Expert Panel. 2019.. American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. . J. Am. Geriatr. Soc. 67:(4):67494. https://doi.org/10.1111/jgs.15767
    [Google Scholar]
  20. 20.
    Elias MF, Beiser A, Wolf PA, et al. 2000.. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. . Arch. Neurol. 57:(6):80813. https://doi.org/10.1001/archneur.57.6.808
    [Google Scholar]
  21. 21.
    Vestergaard P, Rejnmark L, Mosekilde L. 2006.. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. . Calcif. Tissue Int. 79:(2):7683. https://doi.org/10.1007/s00223-006-0021-7
    [Google Scholar]
  22. 22.
    Yang YX, Lewis JD, Epstein S, Metz DC. 2006.. Long-term proton pump inhibitor therapy and risk of hip fracture. . JAMA 296:(24):294753. https://doi.org/10.1001/jama.296.24.2947
    [Google Scholar]
  23. 23.
    Khalili H, Huang ES, Jacobson BC, et al. 2012.. Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: a prospective cohort study. . BMJ 344::e372. https://doi.org/10.1136/bmj.e372
    [Google Scholar]
  24. 24.
    FDA (US Food Drug Adm.). 2010.. FDA drug safety communication: possible increased risk of fractures of the hip, wrist, and spine with the use of proton pump inhibitors. . FDA. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fda-drug-safety-communication-possible-increased-risk-fractures-hip-wrist-and-spine-use-proton-pump
    [Google Scholar]
  25. 25.
    Poly TN, Islam MM, Yang H-C, et al. 2019.. Proton pump inhibitors and risk of hip fracture: a meta-analysis of observational studies. . Osteoporos. Int. 30:(1):10314. https://doi.org/10.1007/s00198-018-4788-y
    [Google Scholar]
  26. 26.
    FDA (US Food Drug Adm.). 2011.. FDA drug safety communication: low magnesium levels can be associated with long-term use of proton pump inhibitor drugs (PPIs). . FDA. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-low-magnesium-levels-can-be-associated-long-term-use-proton-pump
    [Google Scholar]
  27. 27.
    Jackson MA, Goodrich JK, Maxan M-E, et al. 2016.. Proton pump inhibitors alter the composition of the gut microbiota. . Gut 65:(5):74956. https://doi.org/10.1136/gutjnl-2015-310861
    [Google Scholar]
  28. 28.
    Maier L, Pruteanu M, Kuhn M, et al. 2018.. Extensive impact of non-antibiotic drugs on human gut bacteria. . Nature 555:(7698):62328. https://doi.org/10.1038/nature25979
    [Google Scholar]
  29. 29.
    Imhann F, Bonder MJ, Vich Vila A, et al. 2016.. Proton pump inhibitors affect the gut microbiome. . Gut 65:(5):74048. https://doi.org/10.1136/gutjnl-2015-310376
    [Google Scholar]
  30. 30.
    Takagi T, Naito Y, Inoue R, et al. 2019.. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. . J. Gastroenterol. 54:(1):5363. https://doi.org/10.1007/s00535-018-1488-5
    [Google Scholar]
  31. 31.
    Seto CT, Jeraldo P, Orenstein R, et al. 2014.. Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility. . Microbiome 2::42. https://doi.org/10.1186/2049-2618-2-42
    [Google Scholar]
  32. 32.
    Mishiro T, Oka K, Kuroki Y, et al. 2018.. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. . J. Gastroenterol. Hepatol. 33:(5):105966. https://doi.org/10.1111/jgh.14040
    [Google Scholar]
  33. 33.
    Dial S, Alrasadi K, Manoukian C, et al. 2004.. Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case–control studies. . CMAJ 171:(1):3338. https://doi.org/10.1503/cmaj.1040876
    [Google Scholar]
  34. 34.
    Mullin JM, Valenzano MC, Whitby M, et al. 2008.. Esomeprazole induces upper gastrointestinal tract transmucosal permeability increase. . Aliment. Pharmacol. Ther. 28:(11–12):131725. https://doi.org/10.1111/j.1365-2036.2008.03824.x
    [Google Scholar]
  35. 35.
    Lo W-K, Chan WW. 2013.. Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis. . Clin. Gastroenterol. Hepatol. 11:(5):48390. https://doi.org/10.1016/j.cgh.2012.12.011
    [Google Scholar]
  36. 36.
    Shi Y-C, Cai S-T, Tian Y-P, et al. 2019.. Effects of proton pump inhibitors on the gastrointestinal microbiota in gastroesophageal reflux disease. . Genom. Proteom. Bioinform. 17:(1):5263. https://doi.org/10.1016/j.gpb.2018.12.004
    [Google Scholar]
  37. 37.
    Laheij RJF, Sturkenboom MCJM, Hassing RJ, et al. 2004.. Risk of community-acquired pneumonia and use of gastric acid–suppressive drugs. . JAMA 292:(16):195560. https://doi.org/10.1001/jama.292.16.1955
    [Google Scholar]
  38. 38.
    Rosen R, Hu L, Amirault J, et al. 2015.. 16S community profiling identifies proton pump inhibitor related differences in gastric, lung and oropharyngeal microflora. . J. Pediatr. 166:(4):91723. https://doi.org/10.1016/j.jpeds.2014.12.067
    [Google Scholar]
  39. 39.
    Maret-Ouda J, Panula J, Santoni G, et al. 2023.. Proton pump inhibitor use and risk of pneumonia: a self-controlled case series study. . J. Gastroenterol. 58:(8):73440. https://doi.org/10.1007/s00535-023-02007-5
    [Google Scholar]
  40. 40.
    Othman F, Crooks CJ, Card TR. 2016.. Community acquired pneumonia incidence before and after proton pump inhibitor prescription: population based study. . BMJ 355::i5813. https://doi.org/10.1136/bmj.i5813
    [Google Scholar]
  41. 41.
    Li T, Xie Y, Al-Aly Z. 2018.. The association of proton pump inhibitors and chronic kidney disease: cause or confounding?. Curr. Opin. Nephrol. Hypertens. 27:(3):18287. https://doi.org/10.1097/MNH.0000000000000406
    [Google Scholar]
  42. 42.
    Xie Y, Bowe B, Li T, et al. 2016.. Proton pump inhibitors and risk of incident CKD and progression to ESRD. . J. Am. Soc. Nephrol. 27:(10):315363. https://doi.org/10.1681/ASN.2015121377
    [Google Scholar]
  43. 43.
    dos Santos AS, de Menezes ST, Silva IR, et al. 2023.. Kidney function decline associated with proton pump inhibitors: results from the ELSA-Brasil cohort. . BMC Nephrol. 24:(1):285. https://doi.org/10.1186/s12882-023-03300-4
    [Google Scholar]
  44. 44.
    Antoniou T, Macdonald EM, Hollands S, et al. 2015.. Proton pump inhibitors and the risk of acute kidney injury in older patients: a population-based cohort study. . CMAJ Open 3:(2):E16671. https://doi.org/10.9778/cmajo.20140074
    [Google Scholar]
  45. 45.
    Nochaiwong S, Ruengorn C, Awiphan R, et al. 2018.. The association between proton pump inhibitor use and the risk of adverse kidney outcomes: a systematic review and meta-analysis. . Nephrol. Dial. Transplant. 33:(2):33142. https://doi.org/10.1093/ndt/gfw470
    [Google Scholar]
  46. 46.
    Moayyedi P, Eikelboom JW, Bosch J, et al. 2019.. Safety of proton pump inhibitors based on a large, multi-year, randomized trial of patients receiving rivaroxaban or aspirin. . Gastroenterology 157:(3):68291.e2. https://doi.org/10.1053/j.gastro.2019.05.056
    [Google Scholar]
  47. 47.
    Sierra F, Suarez M, Rey M, Vela MF. 2007.. Systematic review: proton pump inhibitor-associated acute interstitial nephritis. . Aliment. Pharmacol. Ther. 26:(4):54553. https://doi.org/10.1111/j.1365-2036.2007.03407.x
    [Google Scholar]
  48. 48.
    Valluri A, Hetherington L, Mcquarrie E, et al. 2015.. Acute tubulointerstitial nephritis in Scotland. . QJM Int. J. Med. 108:(7):52732. https://doi.org/10.1093/qjmed/hcu236
    [Google Scholar]
  49. 49.
    Hart E, Dunn TE, Feuerstein S, Jacobs DM. 2019.. Proton pump inhibitors and risk of acute and chronic kidney disease: a retrospective cohort study. . Pharmacotherapy 39:(4):44353. https://doi.org/10.1002/phar.2235
    [Google Scholar]
  50. 50.
    Geevasinga N, Coleman PL, Webster AC, Roger SD. 2006.. Proton pump inhibitors and acute interstitial nephritis. . Clin. Gastroenterol. Hepatol. 4:(5):597604. https://doi.org/10.1016/j.cgh.2005.11.004
    [Google Scholar]
  51. 51.
    Simpson IJ, Marshall MR, Pilmore H, et al. 2006.. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. . Nephrology 11:(5):38185. https://doi.org/10.1111/j.1440-1797.2006.00651.x
    [Google Scholar]
  52. 52.
    Dent J, Kahrilas PJ, Hatlebakk J, et al. 2008.. A randomized, comparative trial of a potassium-competitive acid blocker (AZD0865) and esomeprazole for the treatment of patients with nonerosive reflux disease. . Am. J. Gastroenterol. 103:(1):2026. https://doi.org/10.1111/j.1572-0241.2007.01544.x
    [Google Scholar]
  53. 53.
    Kahrilas PJ, Dent J, Lauritsen K, et al. 2007.. A randomized, comparative study of three doses of AZD0865 and esomeprazole for healing of reflux esophagitis. . Clin. Gastroenterol. Hepatol. 5:(12):138591. https://doi.org/10.1016/j.cgh.2007.08.014
    [Google Scholar]
  54. 54.
    Matsukawa J, Hori Y, Nishida H, et al. 2011.. A comparative study on the modes of action of TAK-438, a novel potassium-competitive acid blocker, and lansoprazole in primary cultured rabbit gastric glands. . Biochem. Pharmacol. 81:(9):114551. https://doi.org/10.1016/j.bcp.2011.02.009
    [Google Scholar]
  55. 55.
    Shin JM, Sachs G. 2002.. Restoration of acid secretion following treatment with proton pump inhibitors. . Gastroenterology 123:(5):158897. https://doi.org/10.1053/gast.2002.36593
    [Google Scholar]
  56. 56.
    Shin JM, Inatomi N, Munson K, et al. 2011.. Characterization of a novel potassium-competitive acid blocker of the gastric H,K-ATPase, 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438). . J. Pharmacol. Exp. Ther. 339:(2):41220. https://doi.org/10.1124/jpet.111.185314
    [Google Scholar]
  57. 57.
    Jenkins H, Sakurai Y, Nishimura A, et al. 2015.. Randomised clinical trial: safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses of TAK-438 (vonoprazan), a novel potassium-competitive acid blocker, in healthy male subjects. . Aliment. Pharmacol. Ther. 41:(7):63648. https://doi.org/10.1111/apt.13121
    [Google Scholar]
  58. 58.
    Scott DR, Munson KB, Marcus EA, et al. 2015.. The binding selectivity of vonoprazan (TAK-438) to the gastric H+,K+-ATPase. . Aliment. Pharmacol. Ther. 42:(11–12):131526. https://doi.org/10.1111/apt.13414
    [Google Scholar]
  59. 59.
    Stewart J. 2024.. Voquezna FDA approval history. . Drugs.com. https://www.drugs.com/history/voquezna.html
    [Google Scholar]
  60. 60.
    Laine L, DeVault K, Katz P, et al. 2023.. Vonoprazan versus lansoprazole for healing and maintenance of healing of erosive esophagitis: a randomized trial. . Gastroenterology 164:(1):6171. https://doi.org/10.1053/j.gastro.2022.09.041
    [Google Scholar]
  61. 61.
    Maruyama M, Tanaka N, Kubota D, et al. 2017.. Vonoprazan-based regimen is more useful than PPI-based one as a first-line Helicobacter pylori eradication: a randomized controlled trial. . Can. J. Gastroenterol. Hepatol. 2017::4385161. https://doi.org/10.1155/2017/4385161
    [Google Scholar]
  62. 62.
    Choi YJ, Lee YC, Kim JM, et al. 2022.. Triple therapy-based on tegoprazan, a new potassium-competitive acid blocker, for first-line treatment of Helicobacter pylori infection: a randomized, double-blind, phase III, clinical trial. . Gut Liver 16:(4):53546. https://doi.org/10.5009/gnl220055
    [Google Scholar]
  63. 63.
    Bunchorntavakul C, Buranathawornsom A. 2021.. Randomized clinical trial: 7-day vonoprazan-based versus 14-day omeprazole-based triple therapy for Helicobacter pylori. . J. Gastroenterol. Hepatol. 36:(12):330813. https://doi.org/10.1111/jgh.15700
    [Google Scholar]
  64. 64.
    Murakami K, Sakurai Y, Shiino M, et al. 2016.. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a phase III, randomised, double-blind study. . Gut 65:(9):143946. https://doi.org/10.1136/gutjnl-2015-311304
    [Google Scholar]
  65. 65.
    Chey WD, Mégraud F, Laine L, et al. 2022.. Vonoprazan triple and dual therapy for Helicobacter pylori infection in the United States and Europe: randomized clinical trial. . Gastroenterology 163:(3):60819. https://doi.org/10.1053/j.gastro.2022.05.055
    [Google Scholar]
  66. 66.
    Simadibrata DM, Syam AF, Lee YY. 2022.. A comparison of efficacy and safety of potassium-competitive acid blocker and proton pump inhibitor in gastric acid-related diseases: a systematic review and meta-analysis. . J. Gastroenterol. Hepatol. 37:(12):221728. https://doi.org/10.1111/jgh.16017
    [Google Scholar]
  67. 67.
    Echizen H. 2016.. The first-in-class potassium-competitive acid blocker, vonoprazan fumarate: pharmacokinetic and pharmacodynamic considerations. . Clin. Pharmacokinet. 55:(4):40918. https://doi.org/10.1007/s40262-015-0326-7
    [Google Scholar]
  68. 68.
    Okamoto M, Wakunami Y, Hashimoto K. 2022.. Severe hypomagnesemia associated with the long-term use of the potassium-competitive acid blocker vonoprazan. . Intern. Med. 61:(1):11922. https://doi.org/10.2169/internalmedicine.7325-21
    [Google Scholar]
  69. 69.
    Aiba M, Tsutsumi Y, Nagai J, et al. 2022.. Convulsive seizure due to hypomagnesemia caused by short-term vonoprazan intake. . Intern. Med. 61:(2):23740. https://doi.org/10.2169/internalmedicine.7758-21
    [Google Scholar]
  70. 70.
    Abuduwaili M, Boda T, Ito M, et al. 2022.. Serum gastrin and pepsinogen levels after administration of acid secretion inhibitors for ulcers due to endoscopic submucosal dissection in patients with early gastric cancer. . Gastroenterol. Res. Pract. 2022::2830227. https://doi.org/10.1155/2022/2830227
    [Google Scholar]
  71. 71.
    Nikou GC, Angelopoulos TP. 2012.. Current concepts on gastric carcinoid tumors. . Gastroenterol. Res. Pract. 2012::287825. https://doi.org/10.1155/2012/287825
    [Google Scholar]
  72. 72.
    Mizokami Y, Oda K, Funao N, et al. 2018.. Vonoprazan prevents ulcer recurrence during long-term NSAID therapy: randomised, lansoprazole-controlled non-inferiority and single-blind extension study. . Gut 67:(6):104251. https://doi.org/10.1136/gutjnl-2017-314010
    [Google Scholar]
  73. 73.
    Parsons ME, Keeling DJ. 2005.. Novel approaches to the pharmacological blockade of gastric acid secretion. . Expert Opin. Investig. Drugs 14:(4):41121. https://doi.org/10.1517/13543784.14.4.411
    [Google Scholar]
  74. 74.
    Sakurai Y, Nishimura A, Kennedy G, et al. 2015.. Safety, tolerability, pharmacokinetics, and pharmacodynamics of single rising TAK-438 (vonoprazan) doses in healthy male Japanese/non-Japanese subjects. . Clin. Transl. Gastroenterol. 6:(6):e94. https://doi.org/10.1038/ctg.2015.18
    [Google Scholar]
  75. 75.
    Ishida M, Tsuchiya M, Naito J, et al. 2022.. Vonoprazan-associated nephrotoxicity: extensive real-world evidence from spontaneous adverse drug reaction reports. . Kidney Int. 102:(3):66668. https://doi.org/10.1016/j.kint.2022.06.007
    [Google Scholar]
/content/journals/10.1146/annurev-med-050223-112834
Loading
/content/journals/10.1146/annurev-med-050223-112834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error