1932

Abstract

Hepatorenal syndrome–acute kidney injury (HRS-AKI) occurs in the setting of advanced chronic liver disease, portal hypertension, and ascites. HRS-AKI is found in ∼20% of patients presenting to the hospital with AKI, but it may coexist with other causes of AKI and/or with preexisting chronic kidney disease, thereby making the diagnosis challenging. Novel biomarkers such as urinary neutrophil gelatinase–associated lipocalin may be useful. While HRS-AKI is a functional form of AKI related to circulatory and neurohormonal dysfunction, there is increasing recognition of the importance of systemic inflammation and the renal microenvironment. Early diagnosis and initiation of HRS-AKI-specific treatment can improve outcomes. The mainstay of therapy is a vasoconstrictor (terlipressin or norepinephrine) combined with albumin, which achieves resolution of HRS in 40–50% of cases. Liver transplantation is the only option for patients failing to respond to medical therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050223-112947
2025-01-27
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-050223-112947.html?itemId=/content/journals/10.1146/annurev-med-050223-112947&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Desai AP, Knapp SM, Orman ES, et al. 2020.. Changing epidemiology and outcomes of acute kidney injury in hospitalized patients with cirrhosis—a US population-based study. . J. Hepatol. 73::109299
    [Google Scholar]
  2. 2.
    Patidar KR, Belcher JM, Regner KR, et al. 2023.. Incidence and outcomes of acute kidney injury including hepatorenal syndrome in hospitalized patients with cirrhosis in the US. . J. Hepatol. 79::140817
    [Google Scholar]
  3. 3.
    Nadim MK, Garcia-Tsao G. 2023.. Acute kidney injury in patients with cirrhosis. . N. Engl. J. Med. 388::73345
    [Google Scholar]
  4. 4.
    Macedo E, Bouchard J, Soroko SH, et al. 2010.. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. . Crit. Care 14::R82
    [Google Scholar]
  5. 5.
    Verna EC, Connelly C, Dove LM, et al. 2020.. Center-related bias in MELD scores within a liver transplant UNOS region: a call for standardization. . Transplantation 104::1396402
    [Google Scholar]
  6. 6.
    Markwardt D, Holdt L, Steib C, et al. 2017.. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. . Hepatology 66::123241
    [Google Scholar]
  7. 7.
    Slack AJ, McPhail MJ, Ostermann M, et al. 2013.. Predicting the development of acute kidney injury in liver cirrhosis—an analysis of glomerular filtration rate, proteinuria and kidney injury biomarkers. . Aliment. Pharmacol. Ther. 37::98997
    [Google Scholar]
  8. 8.
    Singapura P, Ma TW, Sarmast N, et al. 2021.. Estimating glomerular filtration rate in cirrhosis using creatinine-based and cystatin C–based equations: systematic review and meta-analysis. . Liver Transpl. 27::153852
    [Google Scholar]
  9. 9.
    Francoz C, Nadim MK, Baron A, et al. 2014.. Glomerular filtration rate equations for liver–kidney transplantation in patients with cirrhosis: validation of current recommendations. . Hepatology 59::151421
    [Google Scholar]
  10. 10.
    Inker LA, Eneanya ND, Coresh J, et al. 2021.. New creatinine- and cystatin C–based equations to estimate GFR without race. . N. Engl. J. Med. 385::173749
    [Google Scholar]
  11. 11.
    Delgado C, Baweja M, Crews DC, et al. 2021.. A unifying approach for GFR estimation: recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. . J. Am. Soc. Nephrol. 32::29943015
    [Google Scholar]
  12. 12.
    Panchal S, Serper M, Bittermann T, et al. 2022.. Impact of race-adjusted glomerular filtration rate estimation on eligibility for simultaneous liver–kidney transplantation. . Liver Transplant. 28::95968
    [Google Scholar]
  13. 13.
    Nadim MK, Kellum JA, Davenport A, et al. 2012.. Hepatorenal syndrome: the 8th International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. . Crit. Care 16::R23
    [Google Scholar]
  14. 14.
    Angeli P, Gines P, Wong F, et al. 2015.. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. . J. Hepatol. 62::96874
    [Google Scholar]
  15. 15.
    Angeli P, Garcia-Tsao G, Nadim MK, Parikh CR. 2019.. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. . J. Hepatol. 71::81122
    [Google Scholar]
  16. 16.
    Nadim MK, Kellum JA, Forni L, et al. 2024.. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. . J. Hepatol. 81::16383
    [Google Scholar]
  17. 17.
    Bianchi NA, Stavart LL, Altarelli M, et al. 2021.. Association of oliguria with acute kidney injury diagnosis, severity assessment, and mortality among patients with critical illness. . JAMA Netw. Open 4::e2133094
    [Google Scholar]
  18. 18.
    Amathieu R, Al-Khafaji A, Sileanu FE, et al. 2017.. Significance of oliguria in critically ill patients with chronic liver disease. . Hepatology 66::1592600
    [Google Scholar]
  19. 19.
    Siew ED, Matheny ME. 2015.. Choice of reference serum creatinine in defining acute kidney injury. . Nephron 131::10712
    [Google Scholar]
  20. 20.
    Rosi S, Piano S, Frigo AC, et al. 2015.. New ICA criteria for the diagnosis of acute kidney injury in cirrhotic patients: Can we use an imputed value of serum creatinine?. Liver Int. 35::210814
    [Google Scholar]
  21. 21.
    KDIGO Acute Kidney Injury Work. Group. 2012.. KDIGO clinical practice guideline for acute kidney injury. . Kidney Int. 2:(Suppl.):1138
    [Google Scholar]
  22. 22.
    Patidar KR, Naved MA, Grama A, et al. 2022.. Acute kidney disease is common and associated with poor outcomes in patients with cirrhosis and acute kidney injury. . J. Hepatol. 77::10815
    [Google Scholar]
  23. 23.
    Tonon M, Rosi S, Gambino CG, et al. 2021.. Natural history of acute kidney disease in patients with cirrhosis. . J. Hepatol. 74::57883
    [Google Scholar]
  24. 24.
    Durand F, Kellum JA, Nadim MK. 2023.. Fluid resuscitation in patients with cirrhosis and sepsis: a multidisciplinary perspective. . J. Hepatol. 70::24046
    [Google Scholar]
  25. 25.
    Hoste EA, Maitland K, Brudney CS, et al. 2014.. Four phases of intravenous fluid therapy: a conceptual model. . Br. J. Anaesth. 113::74047
    [Google Scholar]
  26. 26.
    Nadim MK, Durand F, Kellum JA, et al. 2016.. Management of the critically ill patient with cirrhosis: a multidisciplinary perspective. . J. Hepatol. 64::71735
    [Google Scholar]
  27. 27.
    Safirstein R, Levitt MF. 1991.. A hepatorenal depressor reflex: a possible clue to the pathogenesis of the hepatorenal syndrome. . Hepatology 14::73435
    [Google Scholar]
  28. 28.
    Mandorfer M, Hecking M. 2019.. The renaissance of cholemic nephropathy: a likely underestimated cause of renal dysfunction in liver disease. . Hepatology 69::185860
    [Google Scholar]
  29. 29.
    Kamimura H, Watanabe T, Sugano T, et al. 2017.. A case of hepatorenal syndrome and abdominal compartment syndrome with high renal congestion. . Am. J. Case Rep. 18::10004
    [Google Scholar]
  30. 30.
    Acevedo J, Fernandez J, Prado V, et al. 2013.. Relative adrenal insufficiency in decompensated cirrhosis: relationship to short-term risk of severe sepsis, hepatorenal syndrome, and death. . Hepatology 58::175765
    [Google Scholar]
  31. 31.
    Bolognesi M, Di Pascoli M, Verardo A, Gatta A. 2014.. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. . World J. Gastroenterol. 20::255563
    [Google Scholar]
  32. 32.
    Wu H, Rakisheva A, Ponnusamy A, Chinnadurai R. 2024.. Hepatocardiorenal syndrome in liver cirrhosis: recognition of a new entity?. World J. Gastroenterol. 31::2
    [Google Scholar]
  33. 33.
    Kazory A, Ronco C. 2019.. Hepatorenal syndrome or hepatocardiorenal syndrome: revisiting basic concepts in view of emerging data. . Cardiorenal Med. 9::17
    [Google Scholar]
  34. 34.
    Nazar A, Guevara M, Sitges M, et al. 2013.. LEFT ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. . J. Hepatol. 58::5157
    [Google Scholar]
  35. 35.
    Krag A, Bendtsen F, Henriksen JH, Møller S. 2010.. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. . Gut 59::10510
    [Google Scholar]
  36. 36.
    Ruiz-del-Arbol L, Urman J, Fernandez J, et al. 2003.. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. . Hepatology 38::121018
    [Google Scholar]
  37. 37.
    Wiest R, Lawson M, Geuking M. 2014.. Pathological bacterial translocation in liver cirrhosis. . J. Hepatol. 60::197209
    [Google Scholar]
  38. 38.
    Peng JL, Techasatian W, Hato T, Liangpunsakul S. 2020.. Role of endotoxemia in causing renal dysfunction in cirrhosis. . J. Investig. Med. 68::2629
    [Google Scholar]
  39. 39.
    Claria J, Stauber RE, Coenraad MJ, et al. 2016.. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. . Hepatology 64::124964
    [Google Scholar]
  40. 40.
    Sole C, Sola E, Huelin P, et al. 2019.. Characterization of inflammatory response in hepatorenal syndrome: relationship with kidney outcome and survival. . Liver Int. 39::124655
    [Google Scholar]
  41. 41.
    Koppel MH, Coburn JW, Mims MM, et al. 1969.. Transplantation of cadaveric kidneys from patients with hepatorenal syndrome. Evidence for the functionalnature of renal failure in advanced liver disease. . N. Engl. J. Med. 280::136771
    [Google Scholar]
  42. 42.
    Fernandez-Seara J, Prieto J, Quiroga J, et al. 1989.. Systemic and regional hemodynamics in patients with liver cirrhosis and ascites with and without functional renal failure. . Gastroenterology 97::130412
    [Google Scholar]
  43. 43.
    Brito-Azevedo A, Perez RM, Maranhao PA, et al. 2019.. Organ dysfunction in cirrhosis: a mechanism involving the microcirculation. . Eur. J. Gastroenterol. Hepatol. 31::61825
    [Google Scholar]
  44. 44.
    Adebayo D, Morabito V, Davenport A, Jalan R. 2015.. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. . Kidney Int. 87::50915
    [Google Scholar]
  45. 45.
    Trawale JM, Paradis V, Rautou PE, et al. 2010.. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. . Liver Int. 30::72532
    [Google Scholar]
  46. 46.
    Arroyo V, Angeli P, Moreau R, et al. 2021.. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. . J. Hepatol. 74::67085
    [Google Scholar]
  47. 47.
    Tariq R, Hadi Y, Chahal K, et al. 2020.. Incidence, mortality and predictors of acute kidney injury in patients with cirrhosis: a systematic review and meta-analysis. . J. Clin. Transl. Hepatol. 8::13542
    [Google Scholar]
  48. 48.
    Zang H, Liu F, Liu H, et al. 2016.. Incidence, risk factors and outcomes of acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) of underlying cirrhosis. . Hepatol. Int. 10::80718
    [Google Scholar]
  49. 49.
    O'Leary JG, Levitsky J, Wong F, et al. 2016.. Protecting the kidney in liver transplant candidates: practice-based recommendations from the American Society of Transplantation Liver and Intestine Community of Practice. . Am. J. Transplant. 16::251631
    [Google Scholar]
  50. 50.
    Biggins SW, Angeli P, Garcia-Tsao G, et al. 2021.. Diagnosis, evaluation, and management of ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: 2021 practice guidance by the American Association for the Study of Liver Diseases. . Hepatology 74::101448
    [Google Scholar]
  51. 51.
    Eur. Assoc. Study Liver. 2018.. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. . J. Hepatol. 69::40660
    [Google Scholar]
  52. 52.
    Fernandez J, Angeli P, Trebicka J, et al. 2020.. Efficacy of albumin treatment for patients with cirrhosis and infections unrelated to spontaneous bacterial peritonitis. . Clin. Gastroenterol. Hepatol. 18::96373.e14
    [Google Scholar]
  53. 53.
    Leão GS, Neto GJ, Jotz RF, et al. 2019.. Albumin for cirrhotic patients with extraperitoneal infections: a meta-analysis. . J. Gastroenterol. Hepatol. 34::207176
    [Google Scholar]
  54. 54.
    China L, Freemantle N, Forrest E, et al. 2021.. A randomized trial of albumin infusions in hospitalized patients with cirrhosis. . N. Engl. J. Med. 384::80817
    [Google Scholar]
  55. 55.
    Solà E, Solé C, Simón-Talero M, et al. 2018.. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial. . J. Hepatol. 69::125059
    [Google Scholar]
  56. 56.
    Caraceni P, Riggio O, Angeli P, et al. 2018.. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. . Lancet 391::241729
    [Google Scholar]
  57. 57.
    Khemichian S, Francoz C, Nadim MK. 2021.. Advances in management of hepatorenal syndrome. . Curr. Opin. Nephrol. Hypertens. 30::5016
    [Google Scholar]
  58. 58.
    Díaz-Gómez JL, Mayo PH, Koenig SJ. 2021.. Point-of-care ultrasonography. . N. Engl. J. Med. 385::1593602
    [Google Scholar]
  59. 59.
    Kaptein EM, Oo Z, Kaptein MJ. 2023.. Hepatorenal syndrome misdiagnosis may be reduced using inferior vena cava ultrasound to assess intravascular volume and guide management. . Ren. Fail. 45::2185468
    [Google Scholar]
  60. 60.
    Velez JCQ, Petkovich B, Karakala N, Huggins JT. 2019.. Point-of-care echocardiography unveils misclassification of acute kidney injury as hepatorenal syndrome. . Am. J. Nephrol. 50::20411
    [Google Scholar]
  61. 61.
    Olson JC, Subramanian RM. 2024.. Comparative efficacy of terlipressin and norepinephrine for treatment of hepatorenal syndrome–acute kidney injury: a systematic review and meta-analysis. . PLOS ONE 19::e0296690
    [Google Scholar]
  62. 62.
    Pitre T, Kiflen M, Helmeczi W, et al. 2022.. The comparative effectiveness of vasoactive treatments for hepatorenal syndrome: a systematic review and network meta-analysis. . Crit. Care Med. 50::141929
    [Google Scholar]
  63. 63.
    Best LM, Freeman SC, Sutton AJ, et al. 2019.. Treatment for hepatorenal syndrome in people with decompensated liver cirrhosis: a network meta-analysis. . Cochrane Database Syst. Rev. 9::CD013103
    [Google Scholar]
  64. 64.
    Boyer TD, Sanyal AJ, Wong F, et al. 2016.. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. . Gastroenterology 150::157989.e2
    [Google Scholar]
  65. 65.
    Sanyal AJ, Boyer T, Garcia-Tsao G, et al. 2008.. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. . Gastroenterology 134::136068
    [Google Scholar]
  66. 66.
    Wong F, Pappas SC, Curry MP, et al. 2021.. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. . N. Engl. J. Med. 384::81828
    [Google Scholar]
  67. 67.
    Cavallin M, Piano S, Romano A, et al. 2016.. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: a randomized controlled study. . Hepatology 63::98392
    [Google Scholar]
  68. 68.
    Malik A, Malik MI, Qureshi S, Nadir A. 2024.. Efficacy and safety of terlipressin and albumin versus noradrenaline and albumin in adult patients with hepatorenal syndrome: a systematic review and meta-analysis. . Ann. Hepatol. 29::101495
    [Google Scholar]
  69. 69.
    Arora V, Maiwall R, Rajan V, et al. 2020.. Terlipressin is superior to noradrenaline in the management of acute kidney injury in acute on chronic liver failure. . Hepatology 71::60010
    [Google Scholar]
  70. 70.
    Gonzalez SA, Chirikov VV, Wang WJ, et al. 2023.. Terlipressin versus midodrine plus octreotide for hepatorenal syndrome–acute kidney injury: a propensity score–matched comparison. . Clin. Transl. Gastroenterol. 14::e00627
    [Google Scholar]
  71. 71.
    Cavallin M, Kamath PS, Merli M, et al. 2015.. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. . Hepatology 62::56774
    [Google Scholar]
  72. 72.
    Velez JC, Kadian M, Taburyanskaya M, et al. 2015.. Hepatorenal acute kidney injury and the importance of raising mean arterial pressure. . Nephron 131::191201
    [Google Scholar]
  73. 73.
    Velez JCQ, Karakala N, Tayebi K, et al. 2023.. Responsiveness to vasoconstrictor therapy in hepatorenal syndrome type 1. . Kidney360 4::e44856
    [Google Scholar]
  74. 74.
    Moore K, Jamil K, Verleger K, et al. 2020.. Real-world treatment patterns and outcomes using terlipressin in 203 patients with the hepatorenal syndrome. . Aliment. Pharmacol. Ther. 52::35158
    [Google Scholar]
  75. 75.
    Maddukuri G, Cai CX, Munigala S, et al. 2014.. Targeting an early and substantial increase in mean arterial pressure is critical in the management of type 1 hepatorenal syndrome: a combined retrospective and pilot study. . Dig. Dis. Sci. 59::47181
    [Google Scholar]
  76. 76.
    Boyer TD, Sanyal AJ, Garcia-Tsao G, et al. 2011.. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. . J. Hepatol. 55::31521
    [Google Scholar]
  77. 77.
    Pichler RH, Swenson ER, Leary PJ, Paine CH. 2022.. Terlipressin: hopes fulfilled or dashed?. Clin. J. Am. Soc. Nephrol. 17::14042
    [Google Scholar]
  78. 78.
    Piano S, Gambino C, Vettore E, et al. 2021.. Response to terlipressin and albumin is associated with improved liver transplant outcomes in patients with hepatorenal syndrome. . Hepatology 73::190919
    [Google Scholar]
  79. 79.
    Velez JCQ, Wong F, Reddy KR, et al. 2023.. The effect of terlipressin on renal replacement therapy in patients with hepatorenal syndrome. . Kidney360 4::103038
    [Google Scholar]
  80. 80.
    Nadim MK, DiNorcia J, Ji L, et al. 2017.. Inequity in organ allocation for patients awaiting liver transplantation: rationale for uncapping the model for end-stage liver disease. . J. Hepatol. 67::51725
    [Google Scholar]
  81. 81.
    Shah SV, Nadim MK. 2024.. KRT in patients with AKI and cirrhosis. . Clin. J. Am. Soc. Nephrol. 19::91416
    [Google Scholar]
  82. 82.
    Lee EW, Eghtesad B, Garcia-Tsao G, et al. 2024.. AASLD Practice Guidance on the use of TIPS, variceal embolization, and retrograde transvenous obliteration in the management of variceal hemorrhage. . Hepatology 79::22450
    [Google Scholar]
  83. 83.
    Ponzo P, Campion D, Rizzo M, et al. 2022.. Transjugular intrahepatic porto-systemic shunt in cirrhotic patients with hepatorenal syndrome–chronic kidney disease: impact on renal function. . Dig. Liver Dis. 54::11018
    [Google Scholar]
  84. 84.
    Gonzalez-Garay AG, Serralde-Zúñiga AE, Velasco Hidalgo L, et al. 2024.. Transjugular intrahepatic portosystemic shunts for adults with hepatorenal syndrome. Cochrane Database. Syst. Rev. 1::CD011039
    [Google Scholar]
  85. 85.
    Ripoll C, Platzer S, Franken P, et al. 2023.. Liver-HERO: hepatorenal syndrome–acute kidney injury (HRS-AKI) treatment with transjugular intrahepatic portosystemic shunt in patients with cirrhosis—a randomized controlled trial. . Trials 24::258
    [Google Scholar]
  86. 86.
    Nadim MK, Sung RS, Davis CL, et al. 2012.. Simultaneous liver-kidney transplantation summit: current state and future directions. . Am. J. Transplant. 12::29018
    [Google Scholar]
  87. 87.
    Formica RN, Aeder M, Boyle G, et al. 2016.. Simultaneous liver-kidney allocation policy: a proposal to optimize appropriate utilization of scarce resources. . Am. J. Transplant. 16::75866
    [Google Scholar]
  88. 88.
    Levitsky J, Asrani SK, Abecassis M, et al. 2019.. External validation of a pretransplant biomarker model (REVERSE) predictive of renal recovery after liver transplantation. . Hepatology 70::134959
    [Google Scholar]
  89. 89.
    Levitsky J, Asrani SK, Klintmalm G, et al. 2020.. Discovery and validation of a biomarker model (PRESERVE) predictive of renal outcomes after liver transplantation. . Hepatology 71::177586
    [Google Scholar]
  90. 90.
    Francoz C, Nadim MK, Durand F. 2016.. Kidney biomarkers in cirrhosis. . J. Hepatol. 65::80924
    [Google Scholar]
  91. 91.
    Asrani SK, Shankar N, da Graca B, et al. 2022.. Role of novel kidney biomarkers in patients with cirrhosis and after liver transplantation. . Liver Transplant. 28::46682
    [Google Scholar]
  92. 92.
    Belcher JM, Garcia-Tsao G, Sanyal AJ, et al. 2014.. Urinary biomarkers and progression of AKI in patients with cirrhosis. . Clin. J. Am. Soc. Nephrol. 9::185767
    [Google Scholar]
  93. 93.
    Belcher JM, Sanyal AJ, Peixoto AJ, et al. 2014.. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. . Hepatology 60::62232
    [Google Scholar]
  94. 94.
    Huelin P, Sola E, Elia C, et al. 2019.. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis: a prospective study. . Hepatology 70::31933
    [Google Scholar]
  95. 95.
    Gambino C, Piano S, Stenico M, et al. 2023.. Diagnostic and prognostic performance of urinary neutrophil gelatinase–associated lipocalin in patients with cirrhosis and acute kidney injury. . Hepatology 77::163038
    [Google Scholar]
  96. 96.
    Allegretti AS, Parada XV, Endres P, et al. 2021.. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: a prospective study. . Clin. Transl. Gastroenterol. 12::e00359
    [Google Scholar]
  97. 97.
    Lei L, Li LP, Zeng Z, et al. 2018.. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. . Sci. Rep. 8::7962
    [Google Scholar]
  98. 98.
    Bagger Y, Ravis WR, Harris G, Bukofzer S. 2023.. OCE-205, a novel, selective vasopressin receptor mixed agonist-antagonist: safety, tolerability, and pharmacokinetics/pharmacodynamics from a phase 1 study in healthy volunteers. . Clin. Drug Investig. 43::70917
    [Google Scholar]
  99. 99.
    Gifford FJ, Dunne PDJ, Weir G, et al. 2020.. A phase 2 randomised controlled trial of serelaxin to lower portal pressure in cirrhosis (STOPP). . Trials 21::260
    [Google Scholar]
/content/journals/10.1146/annurev-med-050223-112947
Loading
/content/journals/10.1146/annurev-med-050223-112947
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error