1932

Abstract

Drug-resistant epilepsy (DRE) is defined as failure to achieve sustained seizure control with adequate trials of two appropriate antiseizure medications (ASMs). DRE affects one-third of patients with epilepsy and is associated with significant morbidity and mortality. Newer ASMs provide pharmacological therapy that is better tolerated but not necessarily more effective than older ASMs. Resective brain surgery is the gold standard to treat DRE and achieve seizure freedom, with laser ablation offering an alternative with less morbidity but lower effectiveness. For patients who are not candidates for resection or ablation, multiple neuromodulation options can reduce seizure burden. These neuromodulation devices have shown comparable effectiveness in randomized clinical trials, but the results vary in open-label follow-up cohorts, as do the risks of complications and associated costs. Dietary therapies can help, particularly in pediatric genetic epilepsies. Innovative genetic therapy approaches are being pursued, offering the promise of precision medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050522-034458
2025-01-27
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-050522-034458.html?itemId=/content/journals/10.1146/annurev-med-050522-034458&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Koh HK, Kobau R, Whittemore VH, et al. 2014.. Toward an integrated public health approach for epilepsy in the 21st century. . Prev. Chronic Dis. 11::E146
    [Google Scholar]
  2. 2.
    Kwan P, Arzimanoglou A, Berg AT, et al. 2010.. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. . Epilepsia 51::106977
    [Google Scholar]
  3. 3.
    Winslow J, Hu B, Tesar G, Jehi L. 2020.. Longitudinal trajectory of quality of life and psychological outcomes following epilepsy surgery. . Epilepsy Behav. 111::107283
    [Google Scholar]
  4. 4.
    Begley C, Wagner RG, Abraham A, et al. 2022.. The global cost of epilepsy: a systematic review and extrapolation. . Epilepsia 63::892903
    [Google Scholar]
  5. 5.
    Dabla S, Puri I, Dash D, et al. 2018.. Predictors of seizure-related injuries in an epilepsy cohort from North India. . J. Epilepsy Res. 8::2732
    [Google Scholar]
  6. 6.
    Shorvon S, Tomson T. 2011.. Sudden unexpected death in epilepsy. . Lancet 378::202838
    [Google Scholar]
  7. 7.
    Diemar SS, Sejling A-S, Eiken P, et al. 2019.. An explorative literature review of the multifactorial causes of osteoporosis in epilepsy. . Epilepsy Behav. 100::106511
    [Google Scholar]
  8. 8.
    Shmuely S, van der Lende M, Lamberts RJ, et al. 2017.. The heart of epilepsy: current views and future concepts. . Seizure 44::17683
    [Google Scholar]
  9. 9.
    Josephson CB, Wiebe S, Delgado-Garcia G, et al. 2021.. Association of enzyme-inducing antiseizure drug use with long-term cardiovascular disease. . JAMA Neurol. 78::136774
    [Google Scholar]
  10. 10.
    Lai Q, Shen C, Zheng Y, et al. 2017.. Effects of antiepileptic drugs on the carotid artery intima-media thickness in epileptic patients. . J. Clin. Neurol. 13::37179
    [Google Scholar]
  11. 11.
    Chen Z, Brodie MJ, Liew D, Kwan P. 2018.. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. . JAMA Neurol. 75::27986
    [Google Scholar]
  12. 12.
    Kwan P, Brodie MJ. 2000.. Early identification of refractory epilepsy. . N. Engl. J. Med. 342::31419
    [Google Scholar]
  13. 13.
    Jehi L, Jetté N, Kwon C-S, et al. Timing of referral to evaluate for epilepsy surgery: Expert Consensus Recommendations from the Surgical Therapies Commission of the International League Against Epilepsy. . Epilepsia 63::2491506
    [Google Scholar]
  14. 14.
    Chen Y, Li W, Lu C, et al. 2024.. Efficacy, tolerability and safety of add-on third-generation antiseizure medications in treating focal seizures worldwide: a network meta-analysis of randomised, placebo-controlled trials. . eClinicalMedicine 70::102513
    [Google Scholar]
  15. 15.
    Lowerison MW, Josephson CB, Jetté N, et al. 2019.. Association of levels of specialized care with risk of premature mortality in patients with epilepsy. . JAMA Neurol. 76::135258
    [Google Scholar]
  16. 16.
    Wiebe S, Blume WT, Girvin JP, et al. 2001.. A randomized, controlled trial of surgery for temporal-lobe epilepsy. . N. Engl. J. Med. 345::31118
    [Google Scholar]
  17. 17.
    Dwivedi R, Ramanujam B, Chandra PS, et al. 2017.. Surgery for drug-resistant epilepsy in children. . N. Engl. J. Med. 377::163947
    [Google Scholar]
  18. 18.
    Simasathien T, Vadera S, Najm I, et al. 2013.. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. . Ann. Neurol. 73::64654
    [Google Scholar]
  19. 19.
    de Tisi J, Bell GS, Peacock JL, et al. 2011.. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. . Lancet 378::138895
    [Google Scholar]
  20. 20.
    Hsieh JK, Pucci FG, Sundar SJ, et al. 2023.. Beyond seizure freedom: dissecting long-term seizure control after surgical resection for drug-resistant epilepsy. . Epilepsia 64::10313
    [Google Scholar]
  21. 21.
    Choi H, Sell RL, Lenert L, et al. 2008.. Epilepsy surgery for pharmacoresistant temporal lobe epilepsy: a decision analysis. . JAMA 300::2497505
    [Google Scholar]
  22. 22.
    Jehi L, Morita-Sherman M, Love TE, et al. 2021.. Comparative effectiveness of stereotactic electroencephalography versus subdural grids in epilepsy surgery. . Ann. Neurol. 90::92739
    [Google Scholar]
  23. 23.
    Jehi L, Yardi R, Chagin K, et al. 2015.. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis. . Lancet Neurol. 14::28390
    [Google Scholar]
  24. 24.
    Busch RM, Hogue O, Kattan MW, et al. 2018.. Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy. . Neurology 91::e214452
    [Google Scholar]
  25. 25.
    Busch RM, Hogue O, Miller M, et al. 2021.. Nomograms to predict verbal memory decline after temporal lobe resection in adults with epilepsy. . Neurology 97::e26374
    [Google Scholar]
  26. 26.
    Doherty C, Nowacki AS, McAndrews MP, et al. 2021.. Predicting mood decline following temporal lobe epilepsy surgery in adults. . Epilepsia 62::45059
    [Google Scholar]
  27. 27.
    Fitzgerald Z, Morita-Sherman M, Hogue O, et al. 2021.. Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings. . Epilepsia 62::243950
    [Google Scholar]
  28. 28.
    Garcia CG, Chagin K, Kattan MW, et al. 2019.. Predicting seizure freedom after epilepsy surgery, a challenge in clinical practice. . Epilepsy Behav. 95::12430
    [Google Scholar]
  29. 29.
    Gleichgerrcht E, Keller SS, Drane DL, et al. 2020.. Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs: a machine learning study. . Ann. Neurol. 88::97083
    [Google Scholar]
  30. 30.
    Whiting AC, Morita-Sherman M, Li M, et al. 2021.. Automated analysis of cortical volume loss predicts seizure outcomes after frontal lobectomy. . Epilepsia 62::107484
    [Google Scholar]
  31. 31.
    Sinclair B, Cahill V, Seah J, et al. 2022.. Machine learning approaches for imaging-based prognostication of the outcome of surgery for mesial temporal lobe epilepsy. . Epilepsia 63::108192
    [Google Scholar]
  32. 32.
    Yossofzai O, Stone S, Madsen J, et al. 2023.. Seizure outcome of pediatric magnetic resonance-guided laser interstitial thermal therapy versus open surgery: a matched noninferiority cohort study. . Epilepsia 64::11426
    [Google Scholar]
  33. 33.
    Morita-Sherman M, Li M, Joseph B, et al. 2021.. Incorporation of quantitative MRI in a model to predict temporal lobe epilepsy surgery outcome. . Brain Commun. 3::fcab164
    [Google Scholar]
  34. 34.
    Hanczar B, Hua J, Sima C, et al. 2010.. Small-sample precision of ROC-related estimates. . Bioinformatics 26::82230
    [Google Scholar]
  35. 35.
    Sheikh S, Jehi L. 2024.. Predictive models of epilepsy outcomes. . Curr. Opin. Neurol. 37::11520
    [Google Scholar]
  36. 36.
    Hershberger CE, Louis S, Busch RM, et al. 2023.. Molecular subtypes of epilepsy associated with post-surgical seizure recurrence. . Brain Commun. 5::fcad251
    [Google Scholar]
  37. 37.
    Louis S, Busch RM, Lal D, et al. 2022.. Genetic and molecular features of seizure-freedom following surgical resections for focal epilepsy: a pilot study. . Front. Neurol. 13::942643
    [Google Scholar]
  38. 38.
    Youngerman BE, Banu MA, Khan F, et al. 2023.. Long-term outcomes of mesial temporal laser interstitial thermal therapy for drug-resistant epilepsy and subsequent surgery for seizure recurrence: a multi-centre cohort study. . J. Neurol. Neurosurg. Psychiatry 94::87986
    [Google Scholar]
  39. 39.
    Kanner AM, Irving LT, Cajigas I, et al. 2022.. Long-term seizure and psychiatric outcomes following laser ablation of mesial temporal structures. . Epilepsia 63::81223
    [Google Scholar]
  40. 40.
    Drane DL, Willie JT, Pedersen NP, et al. 2021.. Superior verbal memory outcome after stereotactic laser amygdalohippocampotomy. . Front. Neurol. 12::779495
    [Google Scholar]
  41. 41.
    Wu C, Jermakowicz WJ, Chakravorti S, et al. 2019.. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. . Epilepsia 60::117183
    [Google Scholar]
  42. 42.
    Cajigas I, Kanner AM, Ribot R, et al. 2019.. Magnetic resonance–guided laser interstitial thermal therapy for mesial temporal epilepsy: a case series analysis of outcomes and complications at 2-year follow-up. . World Neurosurg. 126::e112129
    [Google Scholar]
  43. 43.
    Petito GT, Wharen RE, Feyissa AM, et al. 2018.. The impact of stereotactic laser ablation at a typical epilepsy center. . Epilepsy Behav. 78::3744
    [Google Scholar]
  44. 44.
    Ibrahim GM, Weil AG, Sedighim S, et al. 2018.. Presurgical hyperconnectivity of the ablation volume is associated with seizure-freedom after magnetic resonance-guided laser interstitial thermal therapy. . Seizure 61::8993
    [Google Scholar]
  45. 45.
    Gross RE, Stern MA, Willie JT, et al. 2018.. Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. . Ann. Neurol. 83::57587
    [Google Scholar]
  46. 46.
    Vakharia VN, Sparks RE, Li K, et al. 2019.. Multicenter validation of automated trajectories for selective laser amygdalohippocampectomy. . Epilepsia 60::194959
    [Google Scholar]
  47. 47.
    Yin D, Thompson JA, Drees C, et al. 2017.. Optic radiation tractography and visual field deficits in laser interstitial thermal therapy for amygdalohippocampectomy in patients with mesial temporal lobe epilepsy. . Stereotact. Funct. Neurosurg. 95::10713
    [Google Scholar]
  48. 48.
    Greenway MRF, Lucas JA, Feyissa AM, et al. 2017.. Neuropsychological outcomes following stereotactic laser amygdalohippocampectomy. . Epilepsy Behav. 75::5055
    [Google Scholar]
  49. 49.
    Kang JY, Wu C, Tracy J, et al. 2016.. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. . Epilepsia 57::32534
    [Google Scholar]
  50. 50.
    Le S, Ho AL, Fisher RS, et al. 2018.. Laser interstitial thermal therapy (LITT): seizure outcomes for refractory mesial temporal lobe epilepsy. . Epilepsy Behav. 89::3741
    [Google Scholar]
  51. 51.
    Tao JX, Wu S, Lacy M, et al. 2018.. Stereotactic EEG-guided laser interstitial thermal therapy for mesial temporal lobe epilepsy. . J. Neurol. Neurosurg. Psychiatry 89::54248
    [Google Scholar]
  52. 52.
    Youngerman BE, Oh JY, Anbarasan D, et al. 2018.. Laser ablation is effective for temporal lobe epilepsy with and without mesial temporal sclerosis if hippocampal seizure onsets are localized by stereoelectroencephalography. . Epilepsia 59::595606
    [Google Scholar]
  53. 53.
    Donos C, Breier J, Friedman E, et al. 2018.. Laser ablation for mesial temporal lobe epilepsy: surgical and cognitive outcomes with and without mesial temporal sclerosis. . Epilepsia 59::142132
    [Google Scholar]
  54. 54.
    Jermakowicz WJ, Kanner AM, Sur S, et al. 2017.. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. . Epilepsia 58::80110
    [Google Scholar]
  55. 55.
    Kang JY, Pickard AA, Bronder J, et al. 2021.. Magnetic resonance-guided laser interstitial thermal therapy: correlations with seizure outcome. . Epilepsia 62::108591
    [Google Scholar]
  56. 56.
    Esmaeili B, Hakimian S, Ko AL, et al. 2023.. Epilepsy-related mortality after laser interstitial thermal therapy in patients with drug-resistant epilepsy. . Neurology 101::e135963
    [Google Scholar]
  57. 57.
    Ryvlin P, Rheims S, Hirsch LJ, et al. 2021.. Neuromodulation in epilepsy: state-of-the-art approved therapies. . Lancet Neurol. 20::103847
    [Google Scholar]
  58. 58.
    Fisher B, DesMarteau JA, Koontz EH, et al. 2020.. Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers. . Front. Neurol. 11::610379
    [Google Scholar]
  59. 59.
    Fisher R, Salanova V, Witt T, et al. 2010.. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. . Epilepsia 51::899908
    [Google Scholar]
  60. 60.
    Morrell MJ. 2011.. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. . Neurology 77::1295304
    [Google Scholar]
  61. 61.
    Heck CN, King-Stephens D, Massey AD, et al. 2014.. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. . Epilepsia 55::43241
    [Google Scholar]
  62. 62.
    Ben-Menachem E, Manon-Espaillat R, Ristanovic R, et al. 1994.. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. . Epilepsia 35::61626
    [Google Scholar]
  63. 63.
    Vagus Nerve Stimul. Study Group. 1995.. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. . Neurology 45::22430
    [Google Scholar]
  64. 64.
    Klinkenberg S, Aalbers MW, Vles JS, et al. 2012.. Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. . Dev. Med. Child Neurol. 54::85561
    [Google Scholar]
  65. 65.
    Touma L, Dansereau B, Chan AY, et al. 2022.. Neurostimulation in people with drug-resistant epilepsy: systematic review and meta-analysis from the ILAE Surgical Therapies Commission. . Epilepsia 63::131429
    [Google Scholar]
  66. 66.
    Morris GL III, Gloss D, Buchhalter J, et al. 2013.. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. . Neurology 81::145359
    [Google Scholar]
  67. 67.
    Salanova V, Sperling MR, Gross RE, et al. 2021.. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. . Epilepsia 62::130617
    [Google Scholar]
  68. 68.
    Nair DR, Laxer KD, Weber PB, et al. 2020.. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. . Neurology 95::e124456
    [Google Scholar]
  69. 69.
    Kossoff E, Cervenka M. 2020.. Ketogenic dietary therapy controversies for its second century. . Epilepsy Curr. 20::12529
    [Google Scholar]
  70. 70.
    Manral M, Dwivedi R, Gulati S, et al. 2023.. Safety, efficacy, and tolerability of modified Atkins diet in persons with drug-resistant epilepsy: a randomized controlled trial. . Neurology 100::e137685
    [Google Scholar]
  71. 71.
    Martin-McGill KJ, Bresnahan R, Levy RG, Cooper PN. 2020.. Ketogenic diets for drug-resistant epilepsy. . Cochrane Database Syst. Rev. 6::CD001903
    [Google Scholar]
  72. 72.
    Kim JA, Yoon JR, Lee EJ, et al. 2016.. Efficacy of the classic ketogenic and the modified Atkins diets in refractory childhood epilepsy. . Epilepsia 57::5158
    [Google Scholar]
  73. 73.
    Kverneland M, Molteberg E, Iversen PO, et al. 2018.. Effect of modified Atkins diet in adults with drug-resistant focal epilepsy: a randomized clinical trial. . Epilepsia 59::156776
    [Google Scholar]
  74. 74.
    Sondhi V, Agarwala A, Pandey RM, et al. 2020.. Efficacy of ketogenic diet, modified Atkins diet, and low glycemic index therapy diet among children with drug-resistant epilepsy: a randomized clinical trial. . JAMA Pediatr. 174::94451
    [Google Scholar]
  75. 75.
    Boison D. 2017.. New insights into the mechanisms of the ketogenic diet. . Curr. Opin. Neurol. 30::18792
    [Google Scholar]
  76. 76.
    Poff AM, Rho JM, D'Agostino DP. 2019.. Ketone administration for seizure disorders: history and rationale for ketone esters and metabolic alternatives. . Front. Neurosci. 13::1041
    [Google Scholar]
  77. 77.
    Styr B, Gonen N, Zarhin D, et al. 2019.. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. . Neuron 102::100924.e8
    [Google Scholar]
  78. 78.
    Mora-Jimenez L, Valencia M, Sanchez-Carpintero R, et al. 2021.. Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations. . Mol. Ther. Nucleic Acids 25::585602
    [Google Scholar]
  79. 79.
    Repudi S, Kustanovich I, Abu-Swai S, et al. 2021.. Neonatal neuronal WWOX gene therapy rescues Wwox null phenotypes. . EMBO Mol. Med. 13::e14599
    [Google Scholar]
  80. 80.
    Colasante G, Qiu Y, Massimino L, et al. 2020.. In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. . Brain 143::891905
    [Google Scholar]
  81. 81.
    Li H, Yang Y, Hong W, et al. 2020.. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. . Signal Transduct. Target. Ther. 5::1
    [Google Scholar]
  82. 82.
    Liao H-K, Hatanaka F, Araoka T, et al. 2017.. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. . Cell 171::1495507.e15
    [Google Scholar]
  83. 83.
    Colasante G, Lignani G, Brusco S, et al. 2020.. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. . Mol. Ther. 28::23553
    [Google Scholar]
  84. 84.
    Han Z, Chen C, Christiansen A, et al. 2020.. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. . Sci. Transl. Med. 12::eaaz6100
    [Google Scholar]
  85. 85.
    Lenk GM, Jafar-Nejad P, Hill SF, et al. 2020.. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. . Ann. Neurol. 87::33946
    [Google Scholar]
  86. 86.
    Lim KH, Han Z, Jeon HY, et al. 2020.. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. . Nat. Commun. 11::3501
    [Google Scholar]
  87. 87.
    Li M, Jancovski N, Jafar-Nejad P, et al. 2020.. Antisense oligonucleotide therapy for SCN2A gain-of-function epilepsy. . bioRxiv 289900. https://doi.org/10.1101/2020.09.09.289900
    [Google Scholar]
  88. 88.
    Ahonen S, Nitschke S, Grossman TR, et al. 2021.. Gys1 antisense therapy rescues neuropathological bases of murine Lafora disease. . Brain 144::298593
    [Google Scholar]
  89. 89.
    Finkel RS, Mercuri E, Darras BT, et al. 2017.. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. . N. Engl. J. Med. 377::172332
    [Google Scholar]
  90. 90.
    Mercuri E, Darras BT, Chiriboga CA, et al. 2018.. Nusinersen versus sham control in later-onset spinal muscular atrophy. . N. Engl. J. Med. 378::62535
    [Google Scholar]
  91. 91.
    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, et al. 2019.. Targeting huntingtin expression in patients with Huntington's disease. . N. Engl. J. Med. 380::230716
    [Google Scholar]
  92. 92.
    Miller TM, Pestronk A, David W, et al. 2013.. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. . Lancet Neurol. 12::43542
    [Google Scholar]
  93. 93.
    Bennett CF, Krainer AR, Cleveland DW. 2019.. Antisense oligonucleotide therapies for neurodegenerative diseases. . Annu. Rev. Neurosci. 42::385406
    [Google Scholar]
  94. 94.
    Finkel RS, Chiriboga CA, Vajsar J, et al. 2016.. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. . Lancet 388::301726
    [Google Scholar]
  95. 95.
    Nagata T, Dwyer CA, Yoshida-Tanaka K, et al. 2021.. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. . Nat. Biotechnol. 39::152936
    [Google Scholar]
  96. 96.
    Rai G, Sharma S, Bhasin J, et al. 2024.. Nanotechnological advances in the treatment of epilepsy: a comprehensive review. . Nanotechnology 35::152002
    [Google Scholar]
  97. 97.
    Gleichgerrcht E, Munsell BC, Alhusaini S, et al. 2021.. Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: a worldwide ENIGMA-Epilepsy study. . NeuroImage Clin. 31::102765
    [Google Scholar]
  98. 98.
    Bergey GK, Morrell MJ, Mizrahi EM, et al. 2015.. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. . Neurology 84::81017
    [Google Scholar]
/content/journals/10.1146/annurev-med-050522-034458
Loading
/content/journals/10.1146/annurev-med-050522-034458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error