The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or decreased functionality, can occur during aging and during neurodegeneration, and the resulting inflammation is thought to contribute to neurodegenerative diseases. This review highlights recent advances in our understanding of the influence of innate immunity on neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dugger BN, Dickson DW. 1.  2017. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9:7a028035 [Google Scholar]
  2. Goedert M, Masuda-Suzukake M, Falcon B. 2.  2017. Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain 140:266–78 [Google Scholar]
  3. Selkoe DJ, Hardy J. 3.  2016. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8:6595–608 [Google Scholar]
  4. Wyss-Coray T. 4.  2016. Ageing, neurodegeneration and brain rejuvenation. Nature 539:7628180–86 [Google Scholar]
  5. Martin P, Wimo A, Guerchet M. 5.  et al. 2015. World Alzheimer report 2015: the global impact of dementia Alzheimer's Disease Int (ADI), London: http://www.alz.co.uk/worldreport2015 [Google Scholar]
  6. Masters CL, Bateman R, Blennow K. 6.  et al. 2015. Alzheimer's disease. Nat. Rev. Dis. Primers 1:15056 [Google Scholar]
  7. Massano J, Bhatia KP. 7.  2012. Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harb. Perspect. Med. 2:6a008870–70 [Google Scholar]
  8. Kalia LV, Lang AE. 8.  2015. Parkinson's disease. Lancet 386:9996896–912 [Google Scholar]
  9. Sibilla C, Bertolotti A. 9.  2017. Prion properties of SOD1 in amyotrophic lateral sclerosis and potential therapy. Cold Spring Harb. Perspect. Biol. 9:10a024141 [Google Scholar]
  10. Bates GP, Dorsey R, Gusella JF. 10.  et al. 2015. Huntington disease. Nat. Rev. Dis. Primers 1:15005 [Google Scholar]
  11. Waisman A, Ginhoux F, Greter M, Bruttger J. 11.  2015. Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36:10625–36 [Google Scholar]
  12. Lavin Y, Winter D, Blecher-Gonen R. 12.  et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:61312–26 [Google Scholar]
  13. Ginhoux F, Greter M, Leboeuf M. 13.  et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:6005841–45 [Google Scholar]
  14. Ajami B, Bennett JL, Krieger C. 14.  et al. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:121538–43 [Google Scholar]
  15. Stevens B, Allen NJ, Vazquez LE. 15.  et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:61164–78 [Google Scholar]
  16. Paolicelli RC, Bolasco G, Pagani F. 16.  et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:60481456–58 [Google Scholar]
  17. Fourgeaud L, Través PG, Tufail Y. 17.  et al. 2016. TAM receptors regulate multiple features of microglial physiology. Nature 532:7598240–44 [Google Scholar]
  18. Parkhurst CN, Yang G, Ninan I. 18.  et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:71596–609 [Google Scholar]
  19. Colonna M, Butovsky O. 19.  2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35:441–68 [Google Scholar]
  20. Srinivasan K, Friedman BA, Larson JL. 20.  et al. 2016. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7:11295 [Google Scholar]
  21. Heneka MT, Kummer MP, Latz E. 21.  2014. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14:7463–77 [Google Scholar]
  22. Crotti A, Glass CK. 22.  2015. The choreography of neuroinflammation in Huntington's disease. Trends Immunol 36:6364–73 [Google Scholar]
  23. Davalos D, Grutzendler J, Yang G. 23.  et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:6752–58 [Google Scholar]
  24. Freeman L, Guo H, David CN. 24.  et al. 2017. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214:51351–70 [Google Scholar]
  25. Kigerl KA, de Rivero Vaccari JP, Dietrich WD. 25.  et al. 2014. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 258:5–16 [Google Scholar]
  26. De Nardo D. 26.  2015. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 74:2181–89 [Google Scholar]
  27. Latz E, Xiao TS, Stutz A. 27.  2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13:6397–411 [Google Scholar]
  28. Cox DJ, Field RH, Williams DG. 28.  et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63:5812–25 [Google Scholar]
  29. Yan SD, Chen X, Fu J. 29.  et al. 1996. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382:6593685–91 [Google Scholar]
  30. Deane R, Singh I, Sagare AP. 30.  et al. 2012. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Investig. 122:41377–92 [Google Scholar]
  31. El Khoury JB, Moore KJ, Means TK. 31.  et al. 2003. CD36 mediates the innate host response to beta-amyloid. J. Exp. Med. 197:121657–66 [Google Scholar]
  32. Stewart CR, Stuart LM, Wilkinson K. 32.  et al. 2010. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11:2155–61 [Google Scholar]
  33. Sheedy FJ, Grebe A, Rayner KJ. 33.  et al. 2013. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14:8812–20 [Google Scholar]
  34. Halle A, Hornung V, Petzold GC. 34.  et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9:8857–65 [Google Scholar]
  35. Heneka MT, Kummer MP, Stutz A. 35.  et al. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:7434674–78 [Google Scholar]
  36. Saresella M, La Rosa F, Piancone F. 36.  et al. 2016. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Mol. Neurodegener. 11:23–17 [Google Scholar]
  37. Dempsey C, Rubio Araiz A, Bryson KJ. 37.  et al. 2017. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun. 61:306–16 [Google Scholar]
  38. Tan M-S, Tan L, Jiang T. 38.  et al. 2014. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Disease 5:8e1382–12 [Google Scholar]
  39. Kaushal V, Dye R, Pakavathkumar P. 39.  et al. 2015. Neuronal NLRP1 inflammasome activation of Caspase-1 co-ordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 22:101676–86 [Google Scholar]
  40. Shaftel SS, Griffin WST, O'Banion MK. 40.  2008. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflamm. 5:7 [Google Scholar]
  41. Adamczak SE, de Rivero Vaccari JP, Dale G. 41.  et al. 2014. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cereb. Blood Flow Metab. 34:4621–29 [Google Scholar]
  42. Denes A, Coutts G, Lénárt N. 42.  et al. 2015. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. PNAS 112:134050–55 [Google Scholar]
  43. Kim C, Ho D-H, Suk J-E. 43.  et al. 2013. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4:1562–12 [Google Scholar]
  44. Daniele SG, Beraud D, Davenport C. 44.  et al. 2015. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci. Signal. 8:376ra45 [Google Scholar]
  45. Gustot A, Gallea JI, Sarroukh R. 45.  et al. 2015. Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem. J. 471:3323–33 [Google Scholar]
  46. Fellner L, Irschick R, Schanda K. 46.  et al. 2012. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61:3349–60 [Google Scholar]
  47. Noelker C, Morel L, Lescot T. 47.  et al. 2013. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci. Rep. 3:1393 [Google Scholar]
  48. Codolo G, Plotegher N, Pozzobon T. 48.  et al. 2013. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLOS ONE 8:1e55375–12 [Google Scholar]
  49. Gustin A, Kirchmeyer M, Koncina E, Felten P. 49.  2015. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLOS ONE 10:6e0130624 [Google Scholar]
  50. Zhou Y, Lu M, Du R-H. 50.  et al. 2016. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol. Neurodegener. 11:28–43 [Google Scholar]
  51. Yan Y, Jiang W, Liu L. 51.  et al. 2015. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:1–262–73 [Google Scholar]
  52. Zhao W, Beers DR, Bell S. 52.  et al. 2015. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 273:24–35 [Google Scholar]
  53. Meissner F, Molawi K, Zychlinsky A. 53.  2010. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. PNAS 107:2913046–50 [Google Scholar]
  54. Maier A, Deigendesch N, Müller K. 54.  et al. 2015. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis—a pilot study. PLOS ONE 10:10e0139684 [Google Scholar]
  55. Crotti A, Benner C, Kerman BE. 55.  et al. 2014. Mutant huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 17:4513–21 [Google Scholar]
  56. Zilka N, Kazmerova Z, Jadhav S. 56.  et al. 2012. Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J. Neuroinflamm. 9:47–58 [Google Scholar]
  57. Block ML, Zecca L, Hong J-S. 57.  2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8:157–69 [Google Scholar]
  58. Heneka MT, Carson MJ, Khoury El J. 58.  et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol 14:4388–405 [Google Scholar]
  59. Guillot-Sestier M-V, Doty KR, Town T. 59.  2015. Innate immunity fights Alzheimer's disease. Trends Neurosci 38:11674–81 [Google Scholar]
  60. Hickman SE, Allison EK, El Khoury J. 60.  2008. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci. 28:338354–60 [Google Scholar]
  61. Hong S, Beja-Glasser VF, Nfonoyim BM. 61.  et al. 2016. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:6286712–16 [Google Scholar]
  62. Colonna M, Wang Y. 62.  2016. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 17:4201–7 [Google Scholar]
  63. Turnbull IR, Gilfillan S, Cella M. 63.  et al. 2006. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177:63520–24 [Google Scholar]
  64. Hamerman JA, Jarjoura JR, Humphrey MB. 64.  et al. 2006. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177:42051–55 [Google Scholar]
  65. Bin Zhang, Gaiteri C, Bodea L-G. 65.  et al. 2013. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153:3707–20 [Google Scholar]
  66. Jiang T, Tan L, Zhu X-C. 66.  et al. 2014. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer's disease. Neuropsychopharmacology 39:132949–62 [Google Scholar]
  67. Jay TR, Miller CM, Cheng PJ. 67.  et al. 2015. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212:3287–95 [Google Scholar]
  68. Wang Y, Cella M, Mallinson K. 68.  et al. 2015. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160:61061–71 [Google Scholar]
  69. Condello C, Yuan P, Schain A, Grutzendler J. 69.  2015. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6:6176–28 [Google Scholar]
  70. Atagi Y, Liu C-C, Painter MM. 70.  et al. 2015. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290:4326043–50 [Google Scholar]
  71. Bailey CC, DeVaux LB, Farzan M. 71.  2015. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J. Biol. Chem. 290:4326033–42 [Google Scholar]
  72. Mosher KI, Wyss-Coray T. 72.  2014. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 88:4594–604 [Google Scholar]
  73. Perry VH, Holmes C. 73.  2014. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10:4217–24 [Google Scholar]
  74. Netea MG, Joosten LAB, Latz E. 74.  et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:6284aaf1098–98 [Google Scholar]
  75. Tang Y, Li T, Li J. 75.  et al. 2014. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson's disease. Cell Death Differ 21:3369–80 [Google Scholar]
  76. Gjoneska E, Pfenning AR, Mathys H. 76.  et al. 2015. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518:7539365–69 [Google Scholar]
  77. Cunningham C. 77.  2013. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:171–90 [Google Scholar]
  78. Erny D, Hrabě de Angelis AL, Jaitin D. 78.  et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:7965–77 [Google Scholar]
  79. Braniste V, Al-Asmakh M, Kowal C. 79.  et al. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6:263ra158–58 [Google Scholar]
  80. Lee-Kirsch MA. 80.  2017. The type I interferonopathies. Annu. Rev. Med. 68:297–315 [Google Scholar]
  81. Baruch K, Deczkowska A, David E. 81.  et al. 2014. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:620589–93 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error