Arthropod-borne viruses (arboviruses) have a long history of emerging to infect humans, but during recent decades, they have been spreading more widely and affecting larger populations. This is due to several factors, including increased air travel and uncontrolled mosquito vector populations. Emergence can involve simple spillover from enzootic (wildlife) cycles, as in the case of West Nile virus accompanying geographic expansion into the Americas; secondary amplification in domesticated animals, as seen with Japanese encephalitis, Venezuelan equine encephalitis, and Rift Valley fever viruses; and urbanization, in which humans become the amplification hosts and peridomestic mosquitoes, mainly mediate human-to-human transmission. Dengue, yellow fever, chikungunya, and Zika viruses have undergone such urban emergence. We focus mainly on the latter two, which are recent arrivals in the Western Hemisphere. We also discuss a few other viruses with the potential to emerge through all of these mechanisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Weaver SC, Reisen WK. 1.  2010. Present and future arboviral threats. Antivir. Res. 85:328–45 [Google Scholar]
  2. Simon-Loriere E, Faye O, Prot M. 2.  et al. 2017. Autochthonous Japanese encephalitis with yellow fever coinfection in Africa. N. Engl. J. Med. 376:1483–85 [Google Scholar]
  3. Haddow AD, Schuh AJ, Yasuda CY. 3.  et al. 2012. Genetic characterization of zika virus strains: geographic expansion of the Asian lineage. PLOS Negl. Trop. Dis. 6:e1477 [Google Scholar]
  4. Powers AM, Brault AC, Tesh RB, Weaver SC. 4.  2000. Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gene. Virol. 81:471–79 [Google Scholar]
  5. Bryant JE, Holmes EC, Barrett AD. 5.  2007. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLOS Pathog 3:e75 [Google Scholar]
  6. Smithburn KC. 6.  1954. Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of Malaya and Borneo. Am. J. Hyg. 59:157–63 [Google Scholar]
  7. Marchette NJ, Garcia R, Rudnick A. 7.  1969. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg 18411–15 [Google Scholar]
  8. Halstead SB. 8.  2015. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg. Infect. Dis. 21:4557–61 [Google Scholar]
  9. Grard G, Caron M, Mombo IM. 9.  et al. 2014. Zika virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus?. PLOS Negl. Trop. Dis. 8:e2681 [Google Scholar]
  10. Leroy EM, Nkoghe D, Ollomo B. 10.  et al. 2009. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007. Emerg. Infect. Dis. 15:591–93 [Google Scholar]
  11. Duffy MR, Chen TH, Hancock WT. 11.  et al. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360:2536–43 [Google Scholar]
  12. Musso D, Gubler DJ. 12.  2016. Zika virus. Clin. Microbiol. Rev. 29:487–524 [Google Scholar]
  13. Weaver SC, Forrester NL. 13.  2015. Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120:32–39 [Google Scholar]
  14. Nunes MR, Faria NR, de Vasconcelos JM. 14.  et al. 2015. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med 13:102 [Google Scholar]
  15. Coffey LL, Forrester N, Tsetsarkin K. 15.  et al. 2013. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol 8:155–76 [Google Scholar]
  16. Foy BD, Kobylinski KC, Chilson Foy JL. 16.  et al. 2011. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 17:880–82 [Google Scholar]
  17. Barzon L, Pacenti M, Franchin E. 17.  et al. 2016. Infection dynamics in a traveller with persistent shedding of Zika virus RNA in semen for six months after returning from Haiti to Italy, January 2016. Euro Surveill. 21:321–4 [Google Scholar]
  18. Weaver SC, Lecuit M. 18.  2015. Chikungunya virus and the global spread of a mosquito-borne disease. N. Engl. J. Med. 372:1231–39 [Google Scholar]
  19. Brasil P, Pereira JP Jr., Raja Gabaglia C. 19.  et al. 2016. Zika virus infection in pregnant women in Rio de Janeiro—preliminary report. N. Engl. J. Med. 375:242321–34 [Google Scholar]
  20. Oehler E, Watrin L, Larre P. 20.  et al. 2014. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro Surveill. 19:91–3 [Google Scholar]
  21. Wielanek AC, Monredon JD, Amrani ME. 21.  et al. 2007. Guillain-Barre syndrome complicating a Chikungunya virus infection. Neurology 69:2105–7 [Google Scholar]
  22. Gallian P, Cabie A, Richard P. 22.  et al. 2017. Zika virus in asymptomatic blood donors in Martinique. Blood 129:263–66 [Google Scholar]
  23. Nitatpattana N, Kanjanopas K, Yoksan S. 23.  et al. 2014. Long-term persistence of Chikungunya virus neutralizing antibodies in human populations of North Eastern Thailand. Virol. J. 11:183 [Google Scholar]
  24. Brasil P, Calvet GA, Siqueira AM. 24.  et al. 2016. Zika virus outbreak in Rio de Janeiro, Brazil: clinical characterization, epidemiological and virological aspects. PLOS Negl. Trop. Dis. 10:e0004636 [Google Scholar]
  25. Parra B, Lizarazo J, Jimenez-Arango JA. 25.  et al. 2016. Guillain-Barre syndrome associated with Zika virus infection in Colombia. N. Engl. J. Med. 375:1513–23 [Google Scholar]
  26. Martines RB, Bhatnagar J, de Oliveira Ramos AM. 26.  et al. 2016. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388:898–904 [Google Scholar]
  27. Oliveira Melo AS, Malinger G, Ximenes R. 27.  et al. 2016. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?. Ultrasound Obstet. Gynecol. 47:6–7 [Google Scholar]
  28. Miranda-Filho Dde B, Martelli CM, Ximenes RA. 28.  et al. 2016. Initial description of the presumed congenital Zika syndrome. Am. J. Public Health 106:598–600 [Google Scholar]
  29. Cauchemez S, Besnard M, Bompard P. 29.  et al. 2016. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387:2125–32 [Google Scholar]
  30. Johansson MA, Mier-y-Teran-Romero L, Reefhuis J. 30.  et al. 2016. Zika and the risk of microcephaly. N. Engl. J. Med. 375:1–4 [Google Scholar]
  31. Honein MA, Dawson AL, Petersen EE. 31.  et al. 2017. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 317:59–68 [Google Scholar]
  32. Tang H, Hammack C, Ogden SC. 32.  et al. 2016. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–90 [Google Scholar]
  33. Mlakar J, Korva M, Tul N. 33.  et al. 2016. Zika virus associated with microcephaly. N. Engl. J. Med. 374:10951–58 [Google Scholar]
  34. Culjat M, Darling SE, Nerurkar VR. 34.  et al. 2016. Clinical and imaging findings in an infant with Zika embryopathy. Clin. Infect. Dis 63:805–11 [Google Scholar]
  35. Miner JJ, Diamond MS. 35.  2017. Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134–42 [Google Scholar]
  36. Hamel R, Dejarnac O, Wichit S. 36.  et al. 2015. Biology of Zika virus infection in human skin cells. J. Virol. 89:8880–96 [Google Scholar]
  37. Mansuy JM, Suberbielle E, Chapuy-Regaud S. 37.  et al. 2016. Zika virus in semen and spermatozoa. Lancet Infect. Dis. 16:1106–7 [Google Scholar]
  38. Cao-Lormeau VM, Blake A, Mons S. 38.  et al. 2016. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:100271531–39 [Google Scholar]
  39. Li H, Saucedo-Cuevas L, Shresta S, Gleeson JG. 39.  2016. The neurobiology of Zika virus. Neuron 92:949–58 [Google Scholar]
  40. Tabata T, Petitt M, Puerta-Guardo H. 40.  et al. 2016. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 20:155–66 [Google Scholar]
  41. Sheridan MA, Yunusov D, Balaraman V. 41.  et al. 2017. Vulnerability of primitive human placental trophoblast to Zika virus. PNAS 114:E1587–96 [Google Scholar]
  42. Simoni MK, Jurado KA, Abrahams VM. 42.  et al. 2017. Zika virus infection of Hofbauer cells. Am. J. Reprod. Immunol. 77:21–4 [Google Scholar]
  43. Nowakowski TJ, Pollen AA, Di Lullo E. 43.  et al. 2016. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18:591–96 [Google Scholar]
  44. Hochedez P, Jaureguiberry S, Debruyne M. 44.  et al. 2006. Chikungunya infection in travelers. Emerg. Infect. Dis. 12:1565–67 [Google Scholar]
  45. Taubitz W, Cramer JP, Kapaun A. 45.  et al. 2007. Chikungunya fever in travelers: clinical presentation and course. Clin. Infect. Dis. 45:e1–4 [Google Scholar]
  46. Borgherini G, Poubeau P, Staikowsky F. 46.  et al. 2007. Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin. Infect. Dis. 44:1401–7 [Google Scholar]
  47. Rodriguez-Morales AJ, Cardona-Ospina JA, Fernanda Urbano-Garzon S, Sebastian Hurtado-Zapata J. 47.  2016. Prevalence of post-Chikungunya infection chronic inflammatory arthritis: a systematic review and meta-analysis. Arthritis Care Res 68:1849–58 [Google Scholar]
  48. Schilte C, Staikowsky F, Couderc T. 48.  et al. 2013. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLOS Negl. Trop. Dis. 7:e2137 [Google Scholar]
  49. Manimunda SP, Mavalankar D, Bandyopadhyay T, Sugunan AP. 49.  2011. Chikungunya epidemic-related mortality. Epidemiol. Infect. 139:1410–12 [Google Scholar]
  50. Torres JR, Falleiros-Arlant LH, Duenas L. 50.  et al. 2016. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int. J. Infect. Dis. 51:85–88 [Google Scholar]
  51. Gerardin P, Samperiz S, Ramful D. 51.  et al. 2014. Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLOS Negl. Trop. Dis. 8:e2996 [Google Scholar]
  52. Couderc T, Chretien F, Schilte C. 52.  et al. 2008. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLOS Pathog 4:e29 [Google Scholar]
  53. Assuncao-Miranda I, Cruz-Oliveira C, Da Poian AT. 53.  2013. Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. Biomed. Res. Int. 2013:973516 [Google Scholar]
  54. Silva LA, Dermody TS. 54.  2017. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J. Clin. Investig. 127:737–49 [Google Scholar]
  55. Couderc T, Lecuit M. 55.  2009. Focus on Chikungunya pathophysiology in human and animal models. Microbes Infect. Inst. Pasteur 11:1197–205 [Google Scholar]
  56. Pinheiro FP, Freitas RB, Travassos da Rosa JF. 56.  et al. 1981. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. Trop. Med. Hyg 30674–81 [Google Scholar]
  57. Halsey ES, Siles C, Guevara C. 57.  et al. 2013. Mayaro virus infection, Amazon Basin region, Peru, 2010–2013. Emerg. Infect. Dis. 19:1839–42 [Google Scholar]
  58. Tasso de Oliveira Mota M, Ribeiro MR, Vedovello D, Lacerda Nogueira M. 58.  2015. Mayaro virus: a neglected virus of the Americas. Future Virol 10:1109–22 [Google Scholar]
  59. ter Meulen J, Sakho M, Koulemou K. 59.  et al. 2004. Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J. Infect. Dis. 190:1821–27 [Google Scholar]
  60. Robertson SE, Hull BP, Tomori O. 60.  et al. 1996. Yellow fever: a decade of reemergence. JAMA 276:1157–62 [Google Scholar]
  61. Jentes ES, Poumerol G, Gershman MD. 61.  et al. 2011. The revised global yellow fever risk map and recommendations for vaccination, 2010: consensus of the informal WHO working group on geographic risk for yellow fever. Lancet Infect. Dis. 11:622–32 [Google Scholar]
  62. Simmons CP, Farrar JJ, Nguyen VV, Wills B. 62.  2012. Dengue. N. Engl. J. Med. 366:1423–32 [Google Scholar]
  63. 63. World Health Organization. 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, New Edition Geneva: World Health Organ.
  64. Anders KL, Nguyet NM, Chau NV. 64.  et al. 2011. Epidemiological factors associated with dengue shock syndrome and mortality in hospitalized dengue patients in Ho Chi Minh City, Vietnam. Am. J. Trop. Med. Hyg 84127–34 [Google Scholar]
  65. Nguyen TH, Nguyen TL, Lei HY. 65.  et al. 2005. Association between sex, nutritional status, severity of dengue hemorrhagic fever, and immune status in infants with dengue hemorrhagic fever. Am. J. Trop. Med. Hyg 72370–74 [Google Scholar]
  66. Khor CC, Chau TN, Pang J. 66.  et al. 2011. Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nat. Genet. 43:1139–41 [Google Scholar]
  67. Pinheiro FP, Travassos da Rosa AP, Travassos da Rosa JF. 67.  et al. 1981. Oropouche virus. I. A review of clinical, epidemiological, and ecological findings. Am. J. Trop. Med. Hyg 30149–60 [Google Scholar]
  68. Mouraao MP, Bastos MS, Gimaqu JB. 68.  et al. 2009. Oropouche fever outbreak, Manaus, Brazil, 2007–2008. Emerg. Infect. Dis. 15:2063–64 [Google Scholar]
  69. van den Berg B, Walgaard C, Drenthen J. 69.  et al. 2014. Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat. Rev. Neurol. 10:469–82 [Google Scholar]
  70. Lee TH, Wong JG, Leo YS. 70.  et al. 2016. Potential harm of prophylactic platelet transfusion in adult dengue patients. PLOS Negl. Trop. Dis. 10:e0004576 [Google Scholar]
  71. Couderc T, Khandoudi N, Grandadam M. 71.  et al. 2009. Prophylaxis and therapy for Chikungunya virus infection. J. Infect. Dis. 200:516–23 [Google Scholar]
  72. Mastrangelo E, Pezzullo M, De Burghgraeve T. 72.  et al. 2012. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J. Antimicrob. Chemother. 67:1884–94 [Google Scholar]
  73. Barrows NJ, Campos RK, Powell ST. 73.  et al. 2016. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 20:2259–70 [Google Scholar]
  74. Retallack H, Di Lullo E, Arias C. 74.  et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. PNAS 113:14408–13 [Google Scholar]
  75. Briggs GG, Freeman RK, Yaffe SJ. 75.  2008. Drugs in Pregnancy and Lactation New York: Lippincott Williams & Wilkins2144
  76. Taylor R, Kotian P, Warren T. 76.  et al. 2016. BCX4430—a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J. Infect. Public Health 9:220–26 [Google Scholar]
  77. Julander JG, Siddharthan V, Evans J. 77.  et al. 2017. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antivir. Res. 137:14–22 [Google Scholar]
  78. Eyer L, Zouharova D, Sirmarova J. 78.  et al. 2017. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antivir. Res. 142:63–67 [Google Scholar]
  79. Karlas A, Berre S, Couderc T. 79.  et al. 2016. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat. Commun. 7:11320 [Google Scholar]
  80. Savidis G, McDougall WM, Meraner P. 80.  et al. 2016. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16:232–46 [Google Scholar]
  81. Zhang R, Miner JJ, Gorman MJ. 81.  et al. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–68 [Google Scholar]
  82. Barrett AD. 82.  2017. Yellow fever live attenuated vaccine: a very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine 355951–55 [Google Scholar]
  83. Chang LJ, Dowd KA, Mendoza FH. 83.  et al. 2014. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 384:2046–52 [Google Scholar]
  84. Ramsauer K, Schwameis M, Firbas C. 84.  et al. 2015. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis. 15:519–27 [Google Scholar]
  85. Roy CJ, Adams AP, Wang E. 85.  et al. 2014. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J. Infect. Dis. 209:1891–99 [Google Scholar]
  86. Erasmus JH, Auguste AJ, Kaelber JT. 86.  et al. 2017. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat. Med. 23:192–99 [Google Scholar]
  87. Dowd KA, Ko SY, Morabito KM. 87.  et al. 2016. Rapid development of a DNA vaccine for Zika virus. Science 354:237–40 [Google Scholar]
  88. Abbink P, Larocca RA, De La Barrera RA. 88.  et al. 2016. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353:1129–32 [Google Scholar]
  89. Richner JM, Himansu S, Dowd KA. 89.  et al. 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 168:1114–25 [Google Scholar]
  90. Shan C, Muruato AE, Nunes BT. 90.  et al. 2017. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 23:6763–67 [Google Scholar]
  91. Forshey BM, Guevara C, Laguna-Torres VA. 91.  et al. 2010. Arboviral etiologies of acute febrile illnesses in Western South America, 2000–2007. PLOS Negl. Trop. Dis. 4:e787 [Google Scholar]
  92. Capeding MR, Chua MN, Hadinegoro SR. 92.  et al. 2013. Dengue and other common causes of acute febrile illness in Asia: an active surveillance study in children. PLOS Negl. Trop. Dis. 7:e2331 [Google Scholar]
  93. Weaver SC, Osorio JE, Livengood JA. 93.  et al. 2012. Chikungunya virus and prospects for a vaccine. Expert Rev. Vaccines 11:1087–101 [Google Scholar]
  94. Wilder-Smith A, Monath TP. 94.  2017. Responding to the threat of urban yellow fever outbreaks. Lancet Infect. Dis. 17:248–50 [Google Scholar]
  95. Gubler D, Vasilakis N. 95.  2016. The arboviruses—quo vadis?. Arboviruses: Molecular Biology, Evolution and Control D Gubler, N Vasilakis 1–6 Norwich, UK: Caister Acad. [Google Scholar]
  96. Vasilakis N, Weaver SC. 96.  2017. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 22:30–35 [Google Scholar]
  97. Wise de Valdez MR, Nimmo D, Betz J. 97.  et al. 2011. Genetic elimination of dengue vector mosquitoes. PNAS 108:4772–75 [Google Scholar]
  98. Ritchie SA, Townsend M, Paton CJ. 98.  et al. 2015. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLOS Negl. Trop. Dis. 9:e0003930 [Google Scholar]
  99. Nguyen TH, Nguyen HL, Nguyen TY. 99.  et al. 2015. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites Vectors 8:563 [Google Scholar]
  100. Callaway E. 100.  2016. Rio fights Zika with biggest release yet of bacteria-infected mosquitoes. Nature 539:17–18 [Google Scholar]
  101. Aliota MT, Peinado SA, Velez ID, Osorio JE. 101.  2016. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci. Rep. 6:28792 [Google Scholar]
  102. Aliota MT, Walker EC, Uribe Yepes A. 102.  et al. 2016. The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLOS Negl. Trop. Dis. 10:e0004677 [Google Scholar]
  103. Barrera R, Acevedo V, Felix GE. 103.  et al. 2016. Impact of autocidal gravid ovitraps on chikungunya virus incidence in Aedes aegypti (Diptera: Culicidae) in areas with and without traps. J. Med. Entomol 54387–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error