The emergence of the CRISPR/Cas system of antiviral adaptive immunity in bacteria as a facile system for gene editing in mammalian cells may well lead to gene editing becoming a novel treatment for a range of human diseases, especially those caused by deleterious germline mutations. Another potential target for gene editing are DNA viruses that cause chronic pathogenic diseases that cannot be cured by using currently available drugs. We review the current state of this field and discuss the potential advantages and problems with using a gene editing approach as a treatment for diseases caused by DNA viruses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ishino Y, Shinagawa H, Makino K. 1.  et al. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:5429–33 [Google Scholar]
  2. Barrangou R, Fremaux C, Deveau H. 2.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  3. Marraffini LA. 3.  2015. CRISPR-Cas immunity in prokaryotes. Nature 526:55–61 [Google Scholar]
  4. Garneau JE, Dupuis ME, Villion M. 4.  et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71 [Google Scholar]
  5. Hsu PD, Lander ES, Zhang F. 5.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  6. Jinek M, Chylinski K, Fonfara I. 6.  et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  7. Mali P, Yang L, Esvelt KM. 7.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26 [Google Scholar]
  8. Cong L, Ran FA, Cox D. 8.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  9. Jinek M, East A, Cheng A. 9.  et al. 2013. RNA-programmed genome editing in human cells. eLife 2:e00471 [Google Scholar]
  10. Price AA, Grakoui A, Weiss DS. 10.  2016. Harnessing the prokaryotic adaptive immune system as a eukaryotic antiviral defense. Trends Microbiol 24:294–306 [Google Scholar]
  11. Swiech L, Heidenreich M, Banerjee A. 11.  et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33:102–6 [Google Scholar]
  12. Ran FA, Cong L, Yan WX. 12.  et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91 [Google Scholar]
  13. Friedland AE, Baral R, Singhal P. 13.  et al. 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257 [Google Scholar]
  14. Lisowski L, Dane AP, Chu K. 14.  et al. 2014. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506:382–86 [Google Scholar]
  15. Nault JC, Datta S, Imbeaud S. 15.  et al. 2015. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47:1187–93 [Google Scholar]
  16. Tong S, Revill P. 16.  2016. Overview of hepatitis B viral replication and genetic variability. J. Hepatol. 64:S4–S16 [Google Scholar]
  17. Seeger C, Sohn JA. 17.  2014. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3:e216 [Google Scholar]
  18. Kennedy EM, Kornepati AV, Cullen BR. 18.  2015. Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antivir. Res. 123:188–92 [Google Scholar]
  19. Ramanan V, Shlomai A, Cox DB. 19.  et al. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5:10833 [Google Scholar]
  20. Dong C, Qu L, Wang H. 20.  et al. 2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir. Res. 118:110–17 [Google Scholar]
  21. Zhen S, Hua L, Liu YH. 21.  et al. 2015. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22:404–12 [Google Scholar]
  22. Lin SR, Yang HC, Kuo YT. 22.  et al. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3:e186 [Google Scholar]
  23. McLaughlin-Drubin ME, Münger K. 23.  2009. Oncogenic activities of human papillomaviruses. Virus Res 143:195–208 [Google Scholar]
  24. Kennedy EM, Kornepati AV, Goldstein M. 24.  et al. 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 88:11965–72 [Google Scholar]
  25. Zhen S, Hua L, Takahashi Y. 25.  et al. 2014. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 450:1422–26 [Google Scholar]
  26. Yu L, Wang X, Zhu D. 26.  et al. 2015. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. Oncol. Targets Ther. 8:37–44 [Google Scholar]
  27. Hu Z, Yu L, Zhu D. 27.  et al. 2014. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed. Res. Int. 2014:612823 [Google Scholar]
  28. Nicoll MP, Proenca JT, Efstathiou S. 28.  2012. The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev. 36:684–705 [Google Scholar]
  29. Russell TA, Stefanovic T, Tscharke DC. 29.  2015. Engineering herpes simplex viruses by infection-transfection methods including recombination site targeting by CRISPR/Cas9 nucleases. J. Virol. Methods 213:18–25 [Google Scholar]
  30. Suenaga T, Kohyama M, Hirayasu K, Arase H. 30.  2014. Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol. Immunol. 58:513–22 [Google Scholar]
  31. Bi Y, Sun L, Gao D. 31.  et al. 2014. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLOS Pathog 10:e1004090 [Google Scholar]
  32. Roehm PC, Shekarabi M, Wollebo HS. 32.  et al. 2016. Inhibition of HSV-1 replication by gene editing strategy. Sci. Rep. 6:23146 [Google Scholar]
  33. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 33.  2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510 [Google Scholar]
  34. Hu W, Kaminski R, Yang F. 34.  et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:11461–66 [Google Scholar]
  35. Liao HK, Gu Y, Diaz A. 35.  et al. 2015. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 6:6413 [Google Scholar]
  36. Kaminski R, Chen Y, Fischer T. 36.  et al. 2016. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 6:22555 [Google Scholar]
  37. Zhu W, Lei R, Le Duff Y. 37.  et al. 2015. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22 [Google Scholar]
  38. Blankson JN, Siliciano JD, Siliciano RF. 38.  2014. Finding a cure for human immunodeficiency virus-1 infection. Infect. Dis. Clin. North Am. 28:633–50 [Google Scholar]
  39. Wang Z, Pan Q, Gendron P. 39.  et al. 2016. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15:481–89 [Google Scholar]
  40. Wang G, Zhao N, Berkhout B, Das AT. 40.  2016. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol. Ther. 24:522–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error