1932

Abstract

The human microbiome is a sensor and modulator of physiology and homeostasis. Remarkable tractability underpins the promise of therapeutic manipulation of the microbiome. However, the definition of a normal or healthy microbiome has been elusive. This is in part due to the underrepresentation of minority groups and major global regions in microbiome studies to date. We review studies of the microbiome in different populations and highlight a commonality among health-associated microbiome signatures along with major drivers of variation. We also provide an overview of microbiome-associated therapeutic interventions for some widespread, widely studied diseases. We discuss sources of bias and the challenges associated with defining population-specific microbiome reference bases. We propose a roadmap for defining normal microbiome references that can be used for population-customized microbiome therapeutics and diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-051223-031809
2025-01-27
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-051223-031809.html?itemId=/content/journals/10.1146/annurev-med-051223-031809&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fan Y, Pedersen O. 2021.. Gut microbiota in human metabolic health and disease. . Nat. Rev. Microbiol. 19::5571
    [Google Scholar]
  2. 2.
    Mayer EA, Nance K, Chen S. 2022.. The gut–brain axis. . Annu. Rev. Med. 73::43953
    [Google Scholar]
  3. 3.
    Ruff WE, Greiling TM, Kriegel MA. 2020.. Host–microbiota interactions in immune-mediated diseases. . Nat. Rev. Microbiol. 18::52138
    [Google Scholar]
  4. 4.
    Duvallet C, Gibbons SM, Gurry T, et al. 2017.. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. . Nat. Commun. 8::1784
    [Google Scholar]
  5. 5.
    Ghosh TS, Shanahan F, O'Toole PW. 2022.. Toward an improved definition of a healthy microbiome for healthy aging. . Nat. Aging 2::105469
    [Google Scholar]
  6. 6.
    Ghosh TS, Shanahan F, O'Toole PW. 2022.. The gut microbiome as a modulator of healthy ageing. . Nat. Rev. Gastroenterol. Hepatol. 19::56584
    [Google Scholar]
  7. 7.
    Gupta VK, Kim M, Bakshi U, et al. 2020.. A predictive index for health status using species-level gut microbiome profiling. . Nat. Commun. 11::4635
    [Google Scholar]
  8. 8.
    Pasolli E, Schiffer L, Manghi P, et al. 2017.. Accessible, curated metagenomic data through ExperimentHub. . Nat. Methods 14::102324
    [Google Scholar]
  9. 9.
    Wang B, Yao M, Lv L, et al. 2017.. The human microbiota in health and disease. . Engineering 3::7182
    [Google Scholar]
  10. 10.
    He Y, Wu W, Zheng HM, et al. 2018.. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. . Nat. Med. 24::153235
    [Google Scholar]
  11. 11.
    Ghosh TS, Das M, Jeffery IB, O'Toole PW. 2020.. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. . eLife 9::e50240
    [Google Scholar]
  12. 12.
    Nagata N, Nishijima S, Miyoshi-Akiyama T, et al. 2022.. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. . Gastroenterology 163::103852
    [Google Scholar]
  13. 13.
    Ghosh TS, Rampelli S, Jeffery IB, et al. 2020.. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. . Gut 69::121828
    [Google Scholar]
  14. 14.
    Shanahan F, Ghosh TS, O'Toole PW. 2021.. The healthy microbiome—what is the definition of a healthy gut microbiome?. Gastroenterology 160::48394
    [Google Scholar]
  15. 15.
    Shanahan F, Ghosh TS, Molloy MG, O'Toole PW. 2022.. The nonindustrialised microbiome in a modern world. . Clin. Sci. 136::168390
    [Google Scholar]
  16. 16.
    Sonnenburg ED, Sonnenburg JL. 2019.. The ancestral and industrialized gut microbiota and implications for human health. . Nat. Rev. Microbiol. 17::38390
    [Google Scholar]
  17. 17.
    Carmody RN, Sarkar A, Reese AT. 2021.. Gut microbiota through an evolutionary lens. . Science 372::46263
    [Google Scholar]
  18. 18.
    Raygoza Garay JA, Turpin W, Lee SH, et al. 2023.. Gut microbiome composition is associated with future onset of Crohn's disease in healthy first-degree relatives. . Gastroenterology 165::67081
    [Google Scholar]
  19. 19.
    Ferreiro AL, Choi J, Ryou J, et al. 2023.. Gut microbiome composition may be an indicator of preclinical Alzheimer's disease. . Sci. Transl. Med. 15::eabo2984
    [Google Scholar]
  20. 20.
    Salosensaari A, Laitinen V, Havulinna AS, et al. 2021.. Taxonomic signatures of cause-specific mortality risk in human gut microbiome. . Nat. Commun. 12::2671
    [Google Scholar]
  21. 21.
    Thomas AM, Manghi P, Asnicar F, et al. 2019.. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. . Nat. Med. 25::66778
    [Google Scholar]
  22. 22.
    Le Bras A. 2018.. Targeting the gut to protect the heart. . Nat. Rev. Cardiol. 15::581
    [Google Scholar]
  23. 23.
    Stražar M, Temba GS, Vlamakis H, et al. 2021.. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. . Nat. Commun. 12::4845
    [Google Scholar]
  24. 24.
    Vangay P, Ward T, Lucas S, et al. 2023.. Industrialized human gut microbiota increases CD8+ T cells and mucus thickness in humanized mouse gut. . Gut Microbes 15::2266627
    [Google Scholar]
  25. 25.
    Ghosh TS, Valdes AM. 2023.. Evidence for clinical interventions targeting the gut microbiome in cardiometabolic disease. . BMJ 383::e075180
    [Google Scholar]
  26. 26.
    Depommier C, Everard A, Druart C, et al. 2019.. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. . Nat. Med. 25::1096103
    [Google Scholar]
  27. 27.
    Ma J, Liu Z, Gao X, et al. 2023.. Gut microbiota remodeling improves natural aging-related disorders through Akkermansia muciniphila and its derived acetic acid. . Pharmacol. Res. 189::106687
    [Google Scholar]
  28. 28.
    Armstrong HK, Bording-Jorgensen M, Santer DM, et al. 2023.. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. . Gastroenterology 164::22840
    [Google Scholar]
  29. 29.
    Zhernakova A, Kurilshikov A, Bonder MJ, et al. 2016.. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. . Science 352::56569
    [Google Scholar]
  30. 30.
    Falony G, Joossens M, Vieira-Silva S, et al. 2016.. Population-level analysis of gut microbiome variation. . Science 352::56064
    [Google Scholar]
  31. 31.
    Gacesa R, Kurilshikov A, Vich Vila A, et al. 2022.. Environmental factors shaping the gut microbiome in a Dutch population. . Nature 604::73239
    [Google Scholar]
  32. 32.
    McDonald D, Hyde E, Debelius JW, et al. 2018.. American Gut: an open platform for citizen science microbiome research. . mSystems 3::e00031-18
    [Google Scholar]
  33. 33.
    Dekkers KF, Sayols-Baixeras S, Baldanzi G, et al. 2022.. An online atlas of human plasma metabolite signatures of gut microbiome composition. . Nat. Commun. 13::5370
    [Google Scholar]
  34. 34.
    Dubey AK, Uppadhyaya N, Nilawe P, et al. 2018.. LogMPIE, pan-India profiling of the human gut microbiome using 16S rRNA sequencing. . Sci. Data 5::180232
    [Google Scholar]
  35. 35.
    Tamburini FB, Maghini D, Oduaran OH, et al. 2022.. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. . Nat. Commun. 13::926
    [Google Scholar]
  36. 36.
    Lu J, Zhang L, Zhai Q, et al. 2021.. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. . npj Biofilms Microbiomes 7::71
    [Google Scholar]
  37. 37.
    Keohane DM, Ghosh TS, Jeffery IB, et al. 2020.. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. . Nat. Med. 26::108995
    [Google Scholar]
  38. 38.
    Mobegi FM, Leong LE, Thompson F, et al. 2020.. Intestinal microbiology shapes population health impacts of diet and lifestyle risk exposures in Torres Strait Islander communities. . eLife 9::e58407
    [Google Scholar]
  39. 39.
    Carter MM, Olm MR, Merrill BD, et al. 2023.. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. . Cell 186::311124.e13
    [Google Scholar]
  40. 40.
    Schaan AP, Sarquis D, Cavalcante GC, et al. 2021.. The structure of Brazilian Amazonian gut microbiomes in the process of urbanisation. . npj Biofilms Microbiomes 7::65
    [Google Scholar]
  41. 41.
    Vangay P, Johnson AJ, Ward TL, et al. 2018.. US immigration westernizes the human gut microbiome. . Cell 175::96272.e10
    [Google Scholar]
  42. 42.
    de Goffau MC, Jallow AT, Sanyang C, et al. 2022.. Gut microbiomes from Gambian infants reveal the development of a non-industrialized Prevotella-based trophic network. . Nat. Microbiol. 7::13244
    [Google Scholar]
  43. 43.
    Martin VM, Virkud YV, Dahan E, et al. 2022.. Longitudinal disease-associated gut microbiome differences in infants with food protein-induced allergic proctocolitis. . Microbiome 10::154
    [Google Scholar]
  44. 44.
    Kostic AD, Gevers D, Siljander H, et al. 2015.. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. . Cell Host Microbe 17::26073
    [Google Scholar]
  45. 45.
    Quin C, Gibson DL. 2020.. Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. . Gut Microbes 11::114371
    [Google Scholar]
  46. 46.
    Yatsunenko T, Rey F, Manary M, et al. 2012.. Human gut microbiome viewed across age and geography. . Nature 486::22227
    [Google Scholar]
  47. 47.
    Lokmer A, Aflalo S, Amougou N, et al. 2020.. Response of the human gut and saliva microbiome to urbanization in Cameroon. . Sci. Rep. 10::2856
    [Google Scholar]
  48. 48.
    Kolodziejczyk AA, Zheng D, Elinav E. 2019.. Diet–microbiota interactions and personalized nutrition. . Nat. Rev. Microbiol. 17::74253
    [Google Scholar]
  49. 49.
    Hildebrand F, Gossmann TI, Frioux C, et al. 2021.. Dispersal strategies shape persistence and evolution of human gut bacteria. . Cell Host Microbe 29::116776.e9
    [Google Scholar]
  50. 50.
    Ticinesi A, Milani C, Lauretani F, et al. 2017.. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. . Sci. Rep. 7::11102
    [Google Scholar]
  51. 51.
    Vich Vila A, Collij V, Sanna S, et al. 2020.. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. . Nat. Commun. 11::362
    [Google Scholar]
  52. 52.
    Maier L, Pruteanu M, Kuhn M, et al. 2018.. Extensive impact of non-antibiotic drugs on human gut bacteria. . Nature 555::62328
    [Google Scholar]
  53. 53.
    López-Otín C, Blasco MA, Partridge L, et al. 2023.. Hallmarks of aging: an expanding universe. . Cell 186::24378
    [Google Scholar]
  54. 54.
    Nash AK, Auchtung TA, Wong MC, et al. 2017.. The gut mycobiome of the Human Microbiome Project healthy cohort. . Microbiome 5::153
    [Google Scholar]
  55. 55.
    Szóstak N, Handschuh L, Samelak-Czajka A, et al. 2023.. Host factors associated with gut mycobiome structure. . mSystems 8::e00986-22
    [Google Scholar]
  56. 56.
    Kabwe MH, Vikram S, Mulaudzi K, et al. 2020.. The gut mycobiota of rural and urban individuals is shaped by geography. . BMC Microbiol. 20::257
    [Google Scholar]
  57. 57.
    Sun Y, Zuo T, Cheung CP, et al. 2021.. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. . Gastroenterology 160::27286.e11
    [Google Scholar]
  58. 58.
    Zhang F, Aschenbrenner D, Yoo JY, Zuo T. 2022.. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. . Lancet Microbe 3::e96983
    [Google Scholar]
  59. 59.
    Rao C, Coyte KZ, Bainter W, et al. 2021.. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. . Nature 591::63338
    [Google Scholar]
  60. 60.
    Zuo T, Wong SH, Cheung CP, et al. 2018.. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. . Nat. Commun. 9::3663
    [Google Scholar]
  61. 61.
    Liang G, Bushman FD. 2021.. The human virome: assembly, composition and host interactions. . Nat. Rev. Microbiol. 19::51427
    [Google Scholar]
  62. 62.
    Zuo T, Sun Y, Wan T, et al. 2020.. Human-gut-DNA virome variations across geography, ethnicity, and urbanization. . Cell Host Microbe 28::74151.e4
    [Google Scholar]
  63. 63.
    Cao Z, Sugimura N, Burgermeister E, et al. 2022.. The gut virome: a new microbiome component in health and disease. . eBioMedicine 81::104113
    [Google Scholar]
  64. 64.
    Dutilh BE, Cassman N, McNair K, et al. 2014.. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. . Nat. Commun. 5::4498
    [Google Scholar]
  65. 65.
    Pasolli E, Asnicar F, Manara S, et al. 2019.. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. . Cell 176::64962.e20
    [Google Scholar]
  66. 66.
    Van Rossum T, Ferretti P, Maistrenko OM, Bork P. 2020.. Diversity within species: interpreting strains in microbiomes. . Nat. Rev. Microbiol. 18::491506
    [Google Scholar]
  67. 67.
    Tett A, Huang KD, Asnicar F, et al. 2019.. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. . Cell Host Microbe 26::66679.e7
    [Google Scholar]
  68. 68.
    De Filippis F, Pasolli E, Ercolini D. 2020.. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. . Curr. Biol. 30::493243.e4
    [Google Scholar]
  69. 69.
    Karcher N, Pasolli E, Asnicar F, et al. 2020.. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. . Genome Biol. 21::138
    [Google Scholar]
  70. 70.
    Karcher N, Nigro E, Punčochář M, et al. 2021.. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. . Genome Biol. 22::209
    [Google Scholar]
  71. 71.
    Kaper JB, Nataro JP, Mobley HLT. 2004.. Pathogenic Escherichia coli. . Nat. Rev. Microbiol. 2::12340
    [Google Scholar]
  72. 72.
    Casterline BW, Hecht AL, Choi VM, Bubeck Wardenburg J. 2017.. The Bacteroides fragilis pathogenicity island links virulence and strain competition. . Gut Microbes 8::37483
    [Google Scholar]
  73. 73.
    Zepeda-Rivera M, Minot SS, Bouzek H, et al. 2024.. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. . Nature 628::42432
    [Google Scholar]
  74. 74.
    Abdill RJ, Adamowicz EM, Blekhman R. 2022.. Public human microbiome data are dominated by highly developed countries. . PLOS Biol. 20::e3001536
    [Google Scholar]
  75. 75.
    Abdill RJ, Graham SP, Rubinetti V, et al. 2023.. Integration of 168,000 samples reveals global patterns of the human gut microbiome. . bioRxiv 560955:. https://doi.org/10.1101/2023.10.11.560955
    [Google Scholar]
  76. 76.
    Dai D, Zhu J, Sun C, et al. 2022.. GMrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison. . Nucleic Acids Res. 50::D77784
    [Google Scholar]
  77. 77.
    Brito IL, Gurry T, Zhao S, et al. 2019.. Transmission of human-associated microbiota along family and social networks. . Nat. Microbiol. 4::96471
    [Google Scholar]
  78. 78.
    Barratt MJ, Nuzhat S, Ahsan K, et al. 2022.. Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. . Sci. Transl. Med. 14::eabk1107
    [Google Scholar]
  79. 79.
    Feng Q, Liang S, Jia H, et al. 2015.. Gut microbiome development along the colorectal adenoma-carcinoma sequence. . Nat. Commun. 6::6528
    [Google Scholar]
  80. 80.
    Kartal E, Schmidt TSB, Molina-Montes E, et al. 2022.. A faecal microbiota signature with high specificity for pancreatic cancer. . Gut 71::135972
    [Google Scholar]
  81. 81.
    Heintz-Buschart A, May P, Laczny C, et al. 2016.. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. . Nat. Microbiol. 2::16180
    [Google Scholar]
  82. 82.
    Ghosh TS, Arnoux J, O'Toole PW. 2020.. Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. . Gut Microbes 12::1822729
    [Google Scholar]
  83. 83.
    Cirstea M, Radisavljevic N, Finlay BB. 2018.. Good bug, bad bug: breaking through microbial stereotypes. . Cell Host Microbe 23::1013
    [Google Scholar]
  84. 84.
    Abdelsalam NA, Hegazy SM, Aziz RK. 2023.. The curious case of Prevotella copri. . Gut Microbes 15::2249152
    [Google Scholar]
  85. 85.
    Liang X, Fu Y, Cao W-T, et al. 2022.. Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis. . Transl. Neurodegener. 11::49
    [Google Scholar]
  86. 86.
    van Nood E, Vrieze A, Nieuwdorp M, et al. 2013.. Duodenal infusion of donor feces for recurrent Clostridium difficile. . N. Engl. J. Med. 368::40715
    [Google Scholar]
  87. 87.
    El-Salhy M, Casen C, Valeur J, et al. 2021.. Responses to faecal microbiota transplantation in female and male patients with irritable bowel syndrome. . World J. Gastroenterol. 27::221937
    [Google Scholar]
  88. 88.
    Holvoet T, Joossens M, Vasquez-Castellanos JF, et al. 2021.. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial. . Gastroenterology 160::14557.e8
    [Google Scholar]
  89. 89.
    Ntemiri A, Ghosh TS, Gheller ME, et al. 2020.. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. . Nutrients 12::2800
    [Google Scholar]
/content/journals/10.1146/annurev-med-051223-031809
Loading
/content/journals/10.1146/annurev-med-051223-031809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error