Ketamine is the prototype for a new generation of glutamate-based antidepressants that rapidly alleviate depression within hours of treatment. Over the past decade, there has been replicated evidence demonstrating the rapid and potent antidepressant effects of ketamine in treatment-resistant depression. Moreover, preclinical and biomarker studies have begun to elucidate the mechanism underlying the rapid antidepressant effects of ketamine, offering a new window into the biology of depression and identifying a plethora of potential treatment targets. This article discusses the efficacy, safety, and tolerability of ketamine, summarizes the neurobiology of depression, reviews the mechanisms underlying the rapid antidepressant effects of ketamine, and discusses the prospects for next-generation rapid-acting antidepressants.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Collins PY, Patel V, Joestl SS. 1.  et al. 2011. Grand challenges in global mental health. Nature 475:27–30 [Google Scholar]
  2. Kessler RC, Berglund P, Demler O. 2.  et al. 2005. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62:593–602 [Google Scholar]
  3. Rush AJ, Trivedi MH, Wisniewski SR. 3.  et al. 2006. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163:1905–17 [Google Scholar]
  4. Katz MM, Tekell JL, Bowden CL. 4.  et al. 2004. Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 29:566–79 [Google Scholar]
  5. Berman RM, Cappiello A, Anand A. 5.  et al. 2000. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47:351–54 [Google Scholar]
  6. Murrough JW, Iosifescu DV, Chang LC. 6.  et al. 2013. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am. J. Psychiatry 170:1134–42 [Google Scholar]
  7. Zarate CA Jr, Singh JB, Carlson PJ. 7.  et al. 2006. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63:856–64 [Google Scholar]
  8. Diazgranados N, Ibrahim L, Brutsche NE. 8.  et al. 2010. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch. Gen. Psychiatry 67:793–802 [Google Scholar]
  9. Ibrahim L, Diazgranados N, Luckenbaugh DA. 9.  et al. 2011. Rapid decrease in depressive symptoms with an N-methyl-D-aspartate antagonist in ECT-resistant major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 35:1155–59 [Google Scholar]
  10. Krystal JH, Karper LP, Seibyl JP. 10.  et al. 1994. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51:199–214 [Google Scholar]
  11. Domino EF, Chodoff P, Corssen G. 11.  1965. Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin. Pharmacol. Ther. 6:279–91 [Google Scholar]
  12. Krystal JH, Petrakis IL, Limoncelli D. 12.  et al. 2003. Altered NMDA glutamate receptor antagonist response in recovering ethanol-dependent patients. Neuropsychopharmacology 28:2020–28 [Google Scholar]
  13. Skolnick P, Layer RT, Popik P. 13.  et al. 1996. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26 [Google Scholar]
  14. Mion G, Villevieille T. 14.  2013. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci. Ther. 19:370–80 [Google Scholar]
  15. Valentine GW, Mason GF, Gomez R. 15.  et al. 2011. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [1H]-MRS. Psychiatry Res. 191:122–27 [Google Scholar]
  16. Zarate CA Jr, Brutsche NE, Ibrahim L. 16.  et al. 2012. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol. Psychiatry 71:939–46 [Google Scholar]
  17. Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ. 17.  2012. Ketamine for depression: Where do we go from here. Biol. Psychiatry 72:537–47 [Google Scholar]
  18. Blier P, Zigman D, Blier J. 18.  2012. On the safety and benefits of repeated intravenous injections of ketamine for depression. Biol. Psychiatry 72:e11–12 [Google Scholar]
  19. Szymkowicz SM, Finnegan N, Dale RM. 19.  2013. A 12-month naturalistic observation of three patients receiving repeat intravenous ketamine infusions for their treatment-resistant depression. J. Affect Disord. 147:416–20 [Google Scholar]
  20. Murrough JW, Perez AM, Pillemer S. 20.  et al. 2013. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol. Psychiatry 74:250–56 [Google Scholar]
  21. Diamond PR, Farmery AD, Atkinson S. 21.  et al. 2014. Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J. Psychopharmacol. 28:536–44 [Google Scholar]
  22. Rasmussen KG, Lineberry TW, Galardy CW. 22.  et al. 2013. Serial infusions of low-dose ketamine for major depression. J. Psychopharmacol. 27:444–50 [Google Scholar]
  23. Shiroma PR, Johns B, Kuskowski M. 23.  et al. 2014. Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. J. Affect Disord. 155:123–29 [Google Scholar]
  24. Segmiller F, Ruther T, Linhardt A. 24.  et al. 2013. Repeated S-ketamine infusions in therapy resistant depression: a case series. J. Clin. Pharmacol. 53:996–98 [Google Scholar]
  25. Larkin GL, Beautrais AL. 25.  2011. A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int. J. Neuropsychopharmacol. 14:1127–31 [Google Scholar]
  26. Lapidus KA, Levitch CF, Perez AM. 26.  et al. 2014. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol. Psychiatry 76970–76
  27. Chilukuri H, Reddy NP, Pathapati RM. 27.  et al. 2014. Acute antidepressant effects of intramuscular versus intravenous ketamine. Indian J. Psychol. Med. 36:71–76 [Google Scholar]
  28. Price RB, Iosifescu DV, Murrough JW. 28.  et al. 2014. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress. Anxiety 31:335–43 [Google Scholar]
  29. Price RB, Nock MK, Charney DS, Mathew SJ. 29.  2009. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol. Psychiatry 66:522–26 [Google Scholar]
  30. DiazGranados N, Ibrahim LA, Brutsche NE. 30.  et al. 2010. Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J. Clin. Psychiatry 71:1605–11 [Google Scholar]
  31. Thakurta RG, Das R, Bhattacharya AK. 31.  et al. 2012. Rapid response with ketamine on suicidal cognition in resistant depression. Indian J. Psychol. Med. 34:170–75 [Google Scholar]
  32. Luckenbaugh DA, Ibrahim L, Brutsche N. 32.  et al. 2012. Family history of alcohol dependence and antidepressant response to an N-methyl-D-aspartate antagonist in bipolar depression. Bipolar Disord. 14:880–87 [Google Scholar]
  33. Phelps LE, Brutsche N, Moral JR. 33.  et al. 2009. Family history of alcohol dependence and initial antidepressant response to an N-methyl-D-aspartate antagonist. Biol. Psychiatry 65:181–84 [Google Scholar]
  34. Petrakis IL, Limoncelli D, Gueorguieva R. 34.  et al. 2004. Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism. Am. J. Psychiatry 161:1776–82 [Google Scholar]
  35. Citri A, Malenka RC. 35.  2008. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41 [Google Scholar]
  36. Hardingham GE, Bading H. 36.  2010. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11:682–96 [Google Scholar]
  37. Turrigiano G.37.  2012. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4:a005736 [Google Scholar]
  38. Turrigiano G.38.  2011. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34:89–103 [Google Scholar]
  39. Beattie EC, Stellwagen D, Morishita W. 39.  et al. 2002. Control of synaptic strength by glial TNFalpha. Science 295:2282–85 [Google Scholar]
  40. Rutherford LC, Nelson SB, Turrigiano GG. 40.  1998. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21:521–30 [Google Scholar]
  41. Duman RS, Monteggia LM. 41.  2006. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59:1116–27 [Google Scholar]
  42. Dantzer R, O'Connor JC, Freund GG. 42.  et al. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9:46–56 [Google Scholar]
  43. Duman RS, Aghajanian GK. 43.  2012. Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72 [Google Scholar]
  44. Popoli M, Yan Z, McEwen BS, Sanacora G. 44.  2012. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13:22–37 [Google Scholar]
  45. Kang HJ, Voleti B, Hajszan T. 45.  et al. 2012. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 18:1413–17 [Google Scholar]
  46. Bessa JM, Ferreira D, Melo I. 46.  et al. 2009. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry 14:764–73 [Google Scholar]
  47. Yuen EY, Wei J, Liu W. 47.  et al. 2012. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73:962–77 [Google Scholar]
  48. Bessa JM, Morais M, Marques F. 48.  et al. 2013. Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Transl. Psychiatry 3:e266 [Google Scholar]
  49. Vyas A, Pillai AG, Chattarji S. 49.  2004. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128:667–73 [Google Scholar]
  50. Krystal JH, Sanacora G, Duman RS. 50.  2013. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol. Psychiatry 73:1133–41 [Google Scholar]
  51. Savitz J, Drevets WC. 51.  2009. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci. Biobehav. Rev. 33:699–771 [Google Scholar]
  52. Ota KT, Liu RJ, Voleti B. 52.  et al. 2014. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat. Med. 20:531–35 [Google Scholar]
  53. Sen S, Duman R, Sanacora G. 53.  2008. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry 64:527–32 [Google Scholar]
  54. Verhagen M, van der Meij A, van Deurzen PA. 54.  et al. 2010. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol. Psychiatry 15:260–71 [Google Scholar]
  55. Autry AE, Adachi M, Nosyreva E. 55.  et al. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95 [Google Scholar]
  56. Li N, Lee B, Liu RJ. 56.  et al. 2010. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–64 [Google Scholar]
  57. Liu RJ, Lee FS, Li XY. 57.  et al. 2012. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol. Psychiatry 71:996–1005 [Google Scholar]
  58. Li N, Liu RJ, Dwyer JM. 58.  et al. 2011. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69:754–61 [Google Scholar]
  59. Abekawa T, Honda M, Ito K, Koyama T. 59.  2003. Effects of NRA0045, a novel potent antagonist at dopamine D4, 5-HT2A, and alpha1 adrenaline receptors, and NRA0160, a selective D4 receptor antagonist, on phencyclidine-induced behavior and glutamate release in rats. Psychopharmacology 169:247–56 [Google Scholar]
  60. Moghaddam B, Adams B, Verma A, Daly D. 60.  1997. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17:2921–27 [Google Scholar]
  61. Moghaddam B, Adams BW. 61.  1998. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–52 [Google Scholar]
  62. Lorrain DS, Baccei CS, Bristow LJ. 62.  et al. 2003. Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706 [Google Scholar]
  63. Bonaventure P, Aluisio L, Shoblock J. 63.  et al. 2011. Pharmacological blockade of serotonin 5-HT(7) receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission. PLOS ONE 6:e20210 [Google Scholar]
  64. Lopez-Gil X, Babot Z, Amargos-Bosch M. 64.  et al. 2007. Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–97 [Google Scholar]
  65. Chowdhury GM, Behar KL, Cho W. 65.  et al. 2012. 1H-[13C]-nuclear magnetic resonance spectroscopy measures of ketamine's effect on amino acid neurotransmitter metabolism. Biol. Psychiatry 71:1022–25 [Google Scholar]
  66. Koike H, Iijima M, Chaki S. 66.  2011. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav. Brain Res. 224:107–11 [Google Scholar]
  67. Maeng S, Zarate CA Jr, Du J. 67.  et al. 2008. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 63:349–52 [Google Scholar]
  68. Dwyer JM, Lepack AE, Duman RS. 68.  2011. mTOR activation is required for the antidepressant effects of mGluR2/3 blockade. Int. J. Neuropsychopharmacology 15:429–34 [Google Scholar]
  69. Furey ML, Drevets WC. 69.  2006. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch. Gen. Psychiatry 63:1121–29 [Google Scholar]
  70. Voleti B, Navarria A, Liu RJ. 70.  et al. 2013. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol. Psychiatry 74:742–49 [Google Scholar]
  71. Salvadore G, Cornwell BR, Colon-Rosario V. 71.  et al. 2009. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol. Psychiatry 65:289–95 [Google Scholar]
  72. Salvadore G, Cornwell BR, Sambataro F. 72.  et al. 2010. Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35:1415–22 [Google Scholar]
  73. Cornwell BR, Salvadore G, Furey M. 73.  et al. 2012. Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biol. Psychiatry 72:555–61 [Google Scholar]
  74. Duncan WC, Sarasso S, Ferrarelli F. 74.  et al. 2013. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int. J. Neuropsychopharmacology 16:301–11 [Google Scholar]
  75. Salvadore G, van der Veen JW, Zhang Y. 75.  et al. 2011. An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int. J. Neuropsychopharmacology 15:1063–72 [Google Scholar]
  76. Machado-Vieira R, Yuan P, Brutsche N. 76.  et al. 2009. Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist. J. Clin. Psychiatry 70:1662–66 [Google Scholar]
  77. Rybakowski JK, Permoda-Osip A, Skibinska M. 77.  et al. 2013. Single ketamine infusion in bipolar depression resistant to antidepressants: Are neurotrophins involved?. Hum. Psychopharmacol. 28:87–90 [Google Scholar]
  78. Haile CN, Murrough JW, Iosifescu DV. 78.  et al. 2014. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int. J. Neuropsychopharmacology 17:331–36 [Google Scholar]
  79. Zarate CA Jr, Brutsche N, Laje G. 79.  et al. 2012. Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression. Biol. Psychiatry 72:331–38 [Google Scholar]
  80. Sos P, Klirova M, Novak T. 80.  et al. 2013. Relationship of ketamine's antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol. Lett. 34:287–93 [Google Scholar]
  81. Permoda-Osip A, Dorszewska J, Bartkowska-Sniatkowska A. 81.  et al. 2013. Vitamin B12 level may be related to the efficacy of single ketamine infusion in bipolar depression. Pharmacopsychiatry 46:227–28 [Google Scholar]
  82. Anand A, Charney DS, Oren DA. 82.  et al. 2000. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch. Gen. Psychiatry 57:270–76 [Google Scholar]
  83. Deakin JF, Lees J, McKie S. 83.  et al. 2008. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch. Gen. Psychiatry 65:154–64 [Google Scholar]
  84. Krystal JH, Mathew SJ, D'Souza DC. 84.  et al. 2010. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 24:669–93 [Google Scholar]
  85. Krystal JH, Abi-Saab W, Perry E. 85.  et al. 2005. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology 179:303–9 [Google Scholar]
  86. Luckenbaugh DA, Niciu MJ, Ionescu DF. 86.  et al. 2014. Do the dissociative side effects of ketamine mediate its antidepressant effects. J. Affect. Disord. 159:56–61 [Google Scholar]
  87. Hyder F, Rothman DL, Bennett MR. 87.  2013. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA 110:3549–54 [Google Scholar]
  88. Breier A, Malhotra AK, Pinals DA. 88.  et al. 1997. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am. J. Psychiatry 154:805–11 [Google Scholar]
  89. Vollenweider FX, Leenders KL, Oye I. 89.  et al. 1997. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur. Neuropsychopharmacology 7:25–38 [Google Scholar]
  90. Vollenweider FX, Leenders KL, Scharfetter C. 90.  et al. 1997. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur. Neuropsychopharmacology 7:9–24 [Google Scholar]
  91. Rowland LM, Bustillo JR, Mullins PG. 91.  et al. 2005. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am. J. Psychiatry 162:394–96 [Google Scholar]
  92. Stone JM, Dietrich C, Edden R. 92.  et al. 2012. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol. Psychiatry 17:664–65 [Google Scholar]
  93. Taylor MJ, Tiangga ER, Ni Mhuircheartaigh R, Cowen P. 93.  2011. Lack of effect of ketamine on cortical glutamate and glutamine in healthy volunteers: a proton magnetic resonance spectroscopy study. J. Psychopharmacol. 26:733–37 [Google Scholar]
  94. Yang S, Hu J, Kou Z, Yang Y. 94.  2008. Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T. Magn. Reson. Med. 59:236–44 [Google Scholar]
  95. Morgan CJ, Curran HV. 95. Independent Scientific Committee on Drugs 2012. Ketamine use: a review. Addiction 107:27–38 [Google Scholar]
  96. Feder A, Parides MK, Murrough JW. 96.  et al. 2014. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:681–88 [Google Scholar]
  97. Rodriguez CI, Kegeles LS, Levinson A. 97.  et al. 2013. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 38:2475–83 [Google Scholar]
  98. Bloch MH, Wasylink S, Landeros-Weisenberger A. 98.  et al. 2012. Effects of ketamine in treatment-refractory obsessive-compulsive disorder. Biol. Psychiatry 72:964–70 [Google Scholar]
  99. Dakwar E, Levin F, Foltin RW. 99.  et al. 2014. The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. Biol. Psychiatry 76:40–46 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error