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Abstract

Ketamine is the prototype for a new generation of glutamate-based antide-
pressants that rapidly alleviate depression within hours of treatment. Over
the past decade, there has been replicated evidence demonstrating the rapid
and potent antidepressant effects of ketamine in treatment-resistant depres-
sion. Moreover, preclinical and biomarker studies have begun to elucidate
the mechanism underlying the rapid antidepressant effects of ketamine, of-
fering a new window into the biology of depression and identifying a plethora
of potential treatment targets. This article discusses the efficacy, safety, and
tolerability of ketamine, summarizes the neurobiology of depression, reviews
the mechanisms underlying the rapid antidepressant effects of ketamine, and
discusses the prospects for next-generation rapid-acting antidepressants.
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N-methyl-D-aspartate

INTRODUCTION

Major depressive disorder (MDD) is a leading cause of disability throughout the world (1). In the
United States, the estimated lifetime prevalence is ∼17% (2). More than 20 different antidepressant
medications, all of which target monoaminergic systems, are currently available. However, the
efficacy of these medications is limited, with a substantial proportion of patients failing to achieve
a sustained remission (3). Moreover, the full clinical benefit of these traditional antidepressants
is only achieved following weeks to months of treatment (4). Therefore, there is a clear and
urgent need for rapid-acting antidepressants with robust efficacy in patients who are refractory to
traditional antidepressants.

Ketamine is the prototype for a new generation of antidepressants that rapidly alleviate MDD
symptoms and display efficacy in patients who are refractory to currently available treatments.
Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist
used for induction and maintenance of anesthesia. Approximately 15 years ago, we found that
low (subanesthetic) doses of this drug administered intravenously began to reduce depression
symptoms within 4 h of administration in severely treatment-resistant depressed patients (5). This
finding has since been replicated in multiple controlled studies by several research groups (6, 7).
These rapid and potent antidepressant effects were also demonstrated in patient groups known
to respond poorly to current antidepressants, such as patients diagnosed with bipolar disorder
and patients with depressive symptoms that did not respond to electroconvulsive therapy (8, 9).
In this review, we briefly discuss the efficacy, safety, and tolerability of ketamine in depressed
patients. We then review the neurobiology of depression and describe the mechanisms believed to
underlie the rapid antidepressant effects of ketamine. Recently discovered effects of ketamine on
molecular pathways involved in synaptogenesis and on brain circuitry critical to affective regulation
are summarized. Clinical biomarkers related to the rapid antidepressant effects of ketamine are
presented. We conclude by considering the potential implications of ketamine and other rapid-
acting antidepressants for the treatment of mood disorders.

THE RAPID ANTIDEPRESSANT EFFECTS OF KETAMINE

In the late 1980s, we and other groups revisited the psychopharmacology of ketamine to link
NMDA receptor dysfunction to schizophrenia symptomatology (10, 11) and enhanced NMDA
receptor function to alcoholism (12). By the mid-1990s, we had extended this conceptual
approach to depression (5). Although we were aware of prior evidence implicating NMDA
receptors in the pathophysiology and treatment of depression (13), we were surprised to observe
that antidepressant effects emerged so rapidly following the administration of a single ketamine
dose and persisted for so long (5). The antidepressant effects tend to emerge 1–2 h after the
acute perceptual disturbances of ketamine have abated and can persist for two weeks or longer in
some patients even though the plasma redistribution half-life is approximately 4 min and overall
terminal plasma half-life is 1–3 h (14).

To date, five placebo-controlled studies have replicated the rapid antidepressant effects of
ketamine in MDD and in bipolar depression (5, 7, 8, 15, 16). These studies infused 0.5 mg/kg
of ketamine intravenously over 40 min. The antidepressant effects were evident within 4 h of
treatment and sustained for 3–7 days, with a response rate of approximately 40–60% at 24 h post
treatment. Although ketamine was generally well tolerated, mild to moderate transient adverse
effects were observed. In particular, ketamine induced transient perceptual disturbances, disso-
ciation, euphoria, dysphoria, and/or anxiety during infusion. Physical adverse effects included
nausea, dizziness, and minimal increases in blood pressure and heart rate. These adverse effects
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abate within an hour of stopping ketamine infusion and are gone completely within two hours.
Numerous open-label and case series have reported comparable efficacy, safety, and tolerability
following a single infusion of ketamine (17). A limitation of early placebo-controlled ketamine
trials is the functional unblinding of treatment status due to the acute side effects of ketamine.
This limitation has been partially mitigated in a recent controlled trial that demonstrated robust
rapid antidepressant effects of ketamine compared to midazolam (an anesthetic benzodiazepine)
as an active comparator, which optimized blinding to treatment status (6).

Unfortunately, relatively little is known about the long-term safety and efficacy of repeated
ketamine dosing, which appears to extend the benefits of single ketamine infusions. Published
open-label case reports suggest that repeated ketamine infusions may safely extend the benefits
of ketamine for several months (18), and unpublished clinical observations suggest that these
benefits may be extended for a year or more (19). The limited pilot data currently available are
consistent with this view in suggesting that up to six infusions of low-dose ketamine administered
once, twice, or three times per week are efficacious in maintaining and prolonging treatment
response (20–24). A larger controlled study of repeated ketamine administration was recently
completed (NCT01627782), and the results will be available in the coming months. Other studies
reported rapid antidepressant effects following a single administration of various routes and doses
of ketamine, including 0.2 mg/kg intravenous bolus (25), 50 mg intranasal (26), and 0.5 mg/kg or
0.25 mg/kg intramuscular injection (27). In depressed patients, ketamine has antisuicidal proper-
ties with rapid reduction in suicidal ideation within hours of a single infusion (25, 28–31). However,
the durability and generalizability of this observation to nondepressed populations remain to be
determined. To date, there are few clinical predictors of the antidepressant effects of ketamine. In-
creased response to ketamine has been described in patients with a family history of alcoholism (32,
33), a finding that could be related to the enhanced NMDA receptor function in this population
(34).

SYNAPTIC HOMEOSTASIS AND THE NEUROBIOLOGY
OF DEPRESSION

This review focuses on mechanisms of synaptic plasticity that link the neurobiology of depression
to the therapeutic effects of ketamine. The term synaptic plasticity applies to the mechanisms
through which neural circuits regulate their excitability and connectivity, particularly in the con-
text of adaptation, e.g., processes of development, learning, coping with stress, and aging (35).
These phenomena are accomplished by regulating synaptic strength [e.g., changing the num-
ber of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] and synaptic
number (e.g., altering dendritic spine density and shape). Of note, synaptic and extrasynaptic
NMDA receptors [see sidebar, N-Methyl-D-Aspartate (NMDA) Receptors] have opposing ef-
fects on synaptic plasticity, promoting or reducing synaptic strength, respectively (36). Synaptic
plasticity can be “local,” such as long-term potentiation, or “global,” such as homeostatic plasticity
(37). The latter is of particular relevance to clinical depression, which is associated with reduced
prefrontal synaptic connectivity (see below). A major form of homeostatic plasticity is “synaptic
scaling,” which regulates the overall strength of neuronal synaptic connectivity. For example, a
prolonged increase in neuronal activities produces a downscaling in overall synaptic strength (38).
Among many other mechanisms (37), synaptic scaling is regulated by inflammatory cytokines
(e.g., tumor necrosis factor) (39) and by neurotrophins [e.g., brain-derived neurotrophic factor
(BDNF)] (40); alteration in both factors has been associated with depression (41, 42).

Over the past two decades, convergent evidence has highlighted the role of synaptic homeo-
stasis in the pathophysiology and treatment of depression (43, 44). In particular, prolonged stress
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N-METHYL-D-ASPARTATE (NMDA) RECEPTORS

NMDA receptors are glutamate ion channel receptors that allow the passage of Ca2+ and Na+ into the cell and K+

out of the cell. NMDA receptor activation requires coactivation of the glutamate and glycine sites of the receptor, as
well as membrane depolarization to remove Mg2+ from the receptor’s channel. Each NMDA receptor is composed
of four subunits. To date, seven subunit types have been identified (GluN1, GluN2A, GluN2B, GluN2C, GluN2D,
GluN3A, GluN3B). NMDA receptor functions vary according to their subunit composition and subcellular location.
They are typically located in the synapse or in the peri- or extrasynaptic space.

Convergent evidence shows opposing effects of synaptic and extrasynaptic NMDA receptors. Synaptic NMDA
receptors promote synaptic formation and neuronal survival. In contrast, extrasynaptic NMDA receptor activation
promotes synaptic atrophy and neuronal death by altering nuclear calcium. This deregulates target gene expres-
sion, leading to mitochondrial dysfunction, reduced dendritic length and arborization, and synaptic loss. Distinct
features of synaptic and extrasynaptic NMDA receptors may facilitate the development of extrasynaptic NMDA
receptor modulators. For example, extrasynaptic NMDA receptors are enriched with GluN2B subunits and are
predominantly coactivated by glycine, whereas synaptic NMDA receptors predominantly contain GluN2A and are
coactivated primarily by D-serine.

mTORC1:
mammalian target of
rapamycin complex 1

and depression have been associated with neuronal atrophy and overall synaptic depression in the
prefrontal cortex (PFC) and the hippocampus (45–47), while other brain regions such as the
amygdala and nucleus accumbens show changes consistent with neuronal hypertrophy and synap-
tic potentiation (48, 49). These synaptic changes are believed to result from stress-induced altered
glutamate release and astroglial loss leading to neurotrophic factor deficits and to sustained in-
crease in extracellular glutamate. The excess glutamate precipitates excitotoxicity, altered synaptic
strength, reduced dendritic spine density, dendritic retraction, and reduced dendritic branching
in the PFC (44, 50) (Figure 1). It has been proposed that downregulation of PFC activity leads to
gain of function in other brain regions negatively controlled by the PFC, such as the amygdala, a
brain region associated with increased anxiety and hypothalamic-pituitary-adrenal axis reactivity
(51).

In this model, prefrontal synaptic deficits and the subsequent neuronal dysconnectivity are
critical to the progress and treatment of depression. Molecular studies have started to identify
signaling pathways implicated in the observed stress-related synaptic dysfunction. It has been found
that synaptic deficits are precipitated by reduction in neurotrophic factors such as BDNF (41) and
by inhibition of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway (52).
Inhibition of mTORC1 signaling or reduction of BDNF leads to depressive-like behavior and
blocks the effect of antidepressants in animal models of depression (41, 52). Enhancing mTORC1
signaling or increasing BDNF produces antidepressant effects in preclinical studies (41, 52). In
humans, reduced central and peripheral BDNF levels were found in depressed patients (41, 53),
and a functional variant of BDNF polymorphism (Val66Met) has been related to depression,
especially in males (54).

Together these data posit that enhancement of BDNF and mTORC1 signaling leading to
prefrontal synaptic formation (synaptogenesis), and reversal of stress- and depression-induced
neuronal atrophy and synaptic dysconnectivity, are required for efficacious antidepressant
treatment. Traditional antidepressants, targeting monoaminergic systems, were found to increase
BDNF and synaptogenesis (41, 44). However, these effects were only evident following chronic
treatment, which is in line with the delayed antidepressant response to these drugs in humans.
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Figure 1
A schematic representation of the proposed neurobiological model of depression. In this model, prolonged
stress and depression alter prefrontal glutamate release and reduce glutamate uptake, leading to increased
extracellular glutamate and excitotoxicity. High levels of extracellular glutamate precipitate neuronal atrophy
through dendritic retraction, reduced dendritic arborization, decreased spine density, and reduced synaptic
strength. An example of the effect of prolonged stress on dendritic arborization and length in rats is shown
on the right.

Therefore, it is proposed that rapid-acting antidepressants would need to directly target the
induction of mTORC1 signaling, the increase of BDNF levels, and the ultimate enhancement of
prefrontal synaptogenesis.

Synaptogenesis and the Rapid Antidepressant Effects of Ketamine

The actions of ketamine are unique in the sense that the antidepressant response emerges after
the acute symptoms produced by ketamine abate and after the drug has been metabolized, i.e., the
antidepressant effects emerge as a reaction to the acute effects. Recent animal studies have begun
to elucidate downstream effects of ketamine that may underlie the beneficial effects in depressed
patients. In brief, ketamine’s antagonism of the glutamatergic NMDA receptor is the first step
in a cascade of events that includes rapid increases in presynaptic glutamate release, enhanced
regional activity in excitatory networks, and ultimately marked changes in synaptic plasticity and
connectivity. More specifically, a series of recent studies in rodents has demonstrated that low-dose
ketamine administration rapidly triggers three consecutive events: first, a presynaptic disinhibition
of glutamatergic neurons, which leads to a glutamate surge; second, an increased activation of the
AMPA glutamate receptor, combined with the blockade of extrasynaptic NMDA receptors; and
third, a postsynaptic activation of neuroplasticity-related signaling pathways involving BDNF and
mTORC1, which results in overall synaptogenesis and synaptic potentiation (55–57). Among other
postsynaptic signaling pathways (43), the ketamine-induced synaptogenesis involves the inhibition
of the eukaryotic elongation factor 2 (eEF2) kinase, leading to reduced eEF2 phosphorylation and
subsequently increased BDNF translation (55). Together, these acute effects of ketamine treatment
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Figure 2
Prefrontal synaptic connectivity during normal mood, during depression, and after remission of depression. In euthymic individuals,
stimulus and circuit activities maintain and regulate synaptic strength. Following prolonged stress and depression, an overall synaptic
dysconnectivity is observed along with significant reduction in glutamate neurotransmission, excitatory amino acid transporters
(EAATs), BDNF expression and release, and mTORC1 signaling. Ketamine’s rapid restoration of prefrontal synaptic connectivity is
believed to result from the following consecutive events. (1) Blockade of NMDA receptors located on inhibitory GABAergic
interneurons, leading to a stimulus-independent widespread prefrontal glutamate surge. (2) Activation of AMPA receptors combined
with blockade of extrasynaptic NMDA receptors. (3) Increased BDNF release and activation of mTORC1 signaling, which in turn
increases protein synthesis and AMPA cycling. Abbreviations: , activate; , block; , decrease; AMPA, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived neurotrophic factor; GABA, γ-aminobutyric acid; mTORC1, mammalian
target of rapamycin complex 1.
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rapidly oppose the stress-induced prefrontal neuronal atrophy and synaptic dysconnectivity (58)
(Figure 2).

In rodents, microdialysis and electrophysiological studies consistently indicate that low doses of
ketamine and other NMDA receptor antagonists induce a “glutamate surge” in the PFC (59–64).
This glutamate surge has been confirmed by 13C magnetic resonance spectroscopy (MRS) studies
suggesting an increase in glutamate/glutamine cycling, as reflected by the 13C incorporation into
glutamate following injection of a subanesthetic dose of ketamine (65). At anesthetic doses of
ketamine, there are no increases and may even be decreases in extracellular glutamate and in
glutamate cycling (60, 65). Of interest, synaptogenesis and the antidepressant effects of ketamine
are also limited to subanesthetic doses (56). Hence, there is a dose-response parallel between the
glutamate surge, synaptogenesis, and the antidepressant effects of ketamine.

Further evidence supporting the crucial role of the surge of glutamate neurotransmission in
ketamine’s effect comes from a well-replicated finding in rodents demonstrating that AMPA re-
ceptor activation is required for the antidepressant effects of ketamine (55, 56, 66, 67). Moreover,
we have found that blocking group II metabotropic receptors exerts mTORC1-dependent rapid
antidepressant-like effects in a fashion similar to ketamine (68), presumably by precipitating a
glutamate surge. Finally, scopolamine, an anticholinergic drug that was recently found to have
rapid antidepressant effects in depressed patients (69), also precipitates a prefrontal glutamate
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glutamine

surge, increases mTORC1 signaling, and promotes neurogenesis (70). Similar to those of
ketamine, these rapid antidepressant effects were mTORC1 and synaptogenesis dependent and
were blocked by an AMPA receptor antagonist (70). Taken together, these preclinical data
identified novel therapeutic targets for rapid induction of antidepressant-like effects. However,
additional studies are needed to investigate the safety and optimal dosing of repeated ketamine
administration, as well as other maintenance strategies, to extend the antidepressant effects
following single ketamine administration.

CLINICAL BIOMARKERS AND THE RAPID ANTIDEPRESSANT
EFFECTS OF KETAMINE

Several biological measures have been utilized in clinical studies to characterize treatment response
and to gain insight into neural substrates underlying ketamine’s rapid antidepressant effects. These
biomarkers can be generally clustered in three categories: (a) biomarkers of synaptic strength and
prefrontal excitability, (b) biomarkers of restoration of neurotrophic function, and (c) biomarkers
of ketamine-induced glutamate surge.

Synaptic Strength and Prefrontal Excitability

Magnetoencephalography studies found higher antidepressant responses to ketamine in depressed
patients with pretreatment high rostral anterior cingulate activity in response to exposure to fearful
faces (71). Conversely, high pregenual anterior cingulate activity during a working memory task
predicted poor response to ketamine (72). Interestingly, patients with poor pretreatment connec-
tivity between the pregenual anterior cingulate and the left amygdala showed better response to
ketamine treatment (72). Moreover, responders, but not nonresponders, to ketamine treatment
showed increased stimulus-evoked somatosensory cortical excitability ∼6 h post treatment. This
finding was interpreted as evidence of a positive relationship between ketamine-induced synaptic
potentiation and response to treatment (73). Additional evidence associating synaptic potentiation
with ketamine antidepressant effects comes from an electroencephalography (EEG) study, which
examined sleep slow waves as putative markers of synaptic plasticity. The study provided evidence
of increased synaptic strength the night after ketamine treatment of depressed patients (74). Ad-
ditionally, synaptic plasticity changes were related to BDNF and treatment response (see below).
Using proton magnetic resonance spectroscopy (1H-MRS), the same research group found an
enhanced antidepressant effect of ketamine in depressed patients with low pretreatment frontal
glx/glutamate ratio, a presumable surrogate of glutamine (75). However, there was no correlation
between pretreatment frontal glutamate and treatment response (75). Similarly, 1H-MRS acquired
in depressed patients at baseline, 3 h, and 48 h after ketamine infusion found no relationship be-
tween ketamine’s effect and occipital glutamate, glutamine, and GABA (15).

Restoration of Neurotrophic Function

Given the known role of BDNF in the pathophysiology and treatment of depression, several stud-
ies have investigated the relationship between ketamine effects and peripheral BDNF levels or
a polymorphism of the BDNF gene. An early pilot study found no relationship between serum
BDNF and the effects of ketamine in patients with MDD (76). Another small pilot study in bipolar
depression found no differences between pretreatment BDNF levels in responders and nonrespon-
ders to ketamine. However, following treatment, serum levels of BDNF were significantly reduced
in nonresponders (77). A more recent, relatively large trial did find a positive relationship between
peripheral BDNF levels and the antidepressant effect of ketamine in depressed patients. Four
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hours post ketamine infusion, plasma BDNF increased in responders compared to nonresponders
(78). Using EEG sleep slow waves as a marker of plasticity, another clinical study found a positive
relationship between enhanced synaptic strength and increased plasma BDNF 4 h post ketamine
administration. This correlation was found in patients who responded to ketamine treatment but
not in nonresponders (74). In addition, a significant increase in plasma BDNF was observed in
the total group (74). A recent genetic study examined the relationship between a functional vari-
ant of BDNF (Val66Met; rs6265) and response to ketamine treatment. The Met allele blocks
the processing and activity-dependent release of BDNF and is therefore a loss-of-function allele.
The study reported enhanced antidepressant effect in patients with the Val/Val BDNF variant
compared to Met carriers. Together, these findings corroborate preclinical evidence implicating
BDNF in the rapid antidepressant effects of ketamine (55, 57). Other studies investigated plasma
ketamine and its active metabolite norketamine; however, no associations with treatment response
were detected (33, 79, 80). Pretreatment homocysteine, folic acid, and vitamin B12 were examined
in patients with bipolar depression, but only B12 was associated with treatment response. Patients
with high levels of B12 responded better to ketamine (81).

Ketamine-Induced Glutamate Surge

The above data provided clinical evidence for a direct relationship between prefrontal activities,
synaptic plasticity, BNDF, and the rapid antidepressant effects of ketamine. However, to our
knowledge, there are no clinical data directly relating the ketamine-induced glutamate surge
to the antidepressant effects of the drug. In humans, the demonstration of a glutamate surge
has been largely examined in healthy volunteers and was driven by interest in the relationship
between ketamine-induced glutamate transmission changes and the acute perceptual side effects
of ketamine, which mimic core symptoms of schizophrenia. The presence of a glutamate surge
and its association with the psychotomimetic effects of ketamine in humans have been suggested
by studies showing that glutamate release inhibitors, such as lamotrigine or group II metabotropic
agonists, attenuate these perceptual effects (82–85). Interestingly, some depression studies, but
not all, have found a positive correlation between the acute perceptual adverse effects and the
antidepressant effects of ketamine post treatment (80, 86). Thanks to the strong relationship
between glutamate cycling and energy consumption (87), positron emission tomography (PET)
studies provide indirect evidence of altered glutamate neurotransmission showing increased neural
metabolism, particularly in the PFC, following the administration of low-dose ketamine (88–90).
1H-MRS studies in healthy subjects reported a transient increase in glutamate or glutamine levels
in the PFC (91, 92), although not a consistent one (93). This inconsistency could be due to
the fact that 1H-MRS measures the total (intra- and extracellular) glutamate level, which may
reflect processes other than glutamatergic neurotransmission. In addition, at low- and mid-field
strengths (1.5–4.7 Tesla), the 1H spectroscopy signal from glutamate is difficult to distinguish
from glutamine (94). Future studies in depressed patients using higher-magnetic-field strength
(e.g., 7 Tesla) 1H-MRS and/or using 13C MRS to measure glutamate/glutamine cycling would
be required to determine the relationship between acute glutamate transmission changes and the
antidepressant effects of ketamine.

CONCLUSION AND FUTURE DIRECTIONS

Five decades of antidepressant research focused on the monoaminergic system and wrestled with
the fact that monoaminergic antidepressants require weeks to months to produce their full ther-
apeutic effects. In addition, these antidepressants were effective in only a fraction of depressed
patients. The well-replicated finding of rapid antidepressant effects following a single infusion of
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the glutamate NMDA receptor antagonist ketamine demonstrated that rapid (within hours) an-
tidepressant effects are possible and that targeting the glutamatergic system may offer a truly novel
class of antidepressants. To date, a wealth of controlled and open-label studies have demonstrated
the efficacy and tolerability of a single infusion of ketamine in rapidly treating severely refractory
depressed patients. However, considering the abuse liability of ketamine and the known toxicity
following daily intake of high doses (95), ketamine administration remains a research procedure
with potential risks (see Future Issues, below).

Although the large majority of research to date has focused on ketamine’s antidepressant
effects, emerging evidence also highlights the utility of the drug in rapidly reducing suicidality
(28) and in alleviating posttraumatic stress disorder symptoms (96). Ketamine is also being studied
as a treatment for obsessive-compulsive disorder and cocaine dependence (97–99). An intriguing
subject for future research is the investigation of the procognitive correlates of the ketamine-
induced enhanced prefrontal plasticity demonstrated in rodents and supported by clinical studies
(56, 73, 74). Ketamine research offers a new window into the biology of depression and provides
new therapeutic targets to achieve rapid antidepressant effects. The research outlined in this review
may lead to new valuable treatments that are safe, rapid in relieving depression and suicidality,
and effective for those who are suffering treatment-refractory depression.

SUMMARY POINTS

1. An emerging body of well-replicated evidence has demonstrated the rapid antidepressant
effects of ketamine in treatment-refractory patients.

2. Although a single infusion of ketamine appears to be safe, the long-term safety of repeated
ketamine dosing is not fully known.

3. Prolonged stress and depression are associated with neuronal atrophy and overall synaptic
depression in the PFC.

4. Enhancing BDNF and mTORC1 signaling leads to prefrontal synaptic formation and
reversal of stress- and depression-induced neuronal atrophy and synaptic dysconnectivity.
This appears to be a required step for efficacious antidepressant treatment.

5. The rapid antidepressant effects of ketamine are triggered by three consecutive events:
first, a presynaptic disinhibition of glutamatergic neurons leading to a glutamate surge;
second, an increased activation of AMPA receptors, combined with blockade of extrasy-
naptic NMDA receptors; and third, a postsynaptic activation of neuroplasticity-related
signaling pathways involving BDNF and mTORC1, resulting in restoration of prefrontal
synaptic connectivity.

6. As a prototype for rapid-acting antidepressants, ketamine has provided an exciting new
direction that may offer hope of rapid therapeutics for patients who are suffering from
depression.

FUTURE ISSUES

1. What are the optimal dose and preferable route of administration of ketamine?

2. At what frequency and dose does repeated ketamine administration stop being beneficial
and become harmful?
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3. What is the best strategy to maintain treatment response following ketamine infusion?

4. Will ketamine-induced synaptic plasticity lead to enhanced cognitive functions following
a single infusion?

5. Will the antisuicidal properties of ketamine be of clinical value in the emergency setting?

6. Will the ketamine-induced rapid antidepressant effects and enhanced synaptic plasticity
facilitate and augment response to cognitive behavioral therapy?
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