1932

Abstract

is a recently emerged fungal pathogen that causes severe infections in healthcare settings around the globe. A feature that distinguishes from other fungal pathogens is its high capacity to colonize skin, leading to widespread outbreaks in healthcare facilities via patient-to-patient transmission. can persist on skin or in the surrounding environment for extended periods of time, and it exhibits greater antifungal resistance than other species. These factors pose major obstacles for the prevention and treatment of infection. Recent reports have identified frequently colonized skin sites, risk factors for developing invasive infection, and patterns of antifungal resistance among strains, all of which help guide therapeutic options. In this review, we highlight key studies of epidemiology and antifungal resistance, discussing how these factors influence healthcare-associated transmission and treatment outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-061523-021233
2025-01-27
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-061523-021233.html?itemId=/content/journals/10.1146/annurev-med-061523-021233&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Satoh K, Makimura K, Hasumi Y, et al. 2009.. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. . Microbiol. Immunol. 53::4144
    [Google Scholar]
  2. 2.
    Chowdhary A, Sharma C, Duggal S, et al. 2013.. New clonal strain of Candidaauris, Delhi, India. . Emerg. Infect. Dis. 19::167073
    [Google Scholar]
  3. 3.
    Lee WG, Shin JH, Uh Y, et al. 2011.. First three reported cases of nosocomial fungemia caused by Candida auris. . J. Clin. Microbiol. 49::313942
    [Google Scholar]
  4. 4.
    Magobo RE, Corcoran C, Seetharam S, Govender NP. 2014.. Candida auris–associated candidemia, South Africa. . Emerg. Infect. Dis. 20::125052
    [Google Scholar]
  5. 5.
    Calvo B, Melo AS, Perozo-Mena A, et al. 2016.. First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia. . J. Infect. 73::36974
    [Google Scholar]
  6. 6.
    Chowdhary A, Sharma C, Meis JF. 2017.. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. . PLOS Pathog. 13::e1006290
    [Google Scholar]
  7. 7.
    Lockhart SR, Etienne KA, Vallabhaneni S, et al. 2017.. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. . Clin. Infect. Dis. 64::13440
    [Google Scholar]
  8. 8.
    Spruijtenburg B, Badali H, Abastabar M, et al. 2022.. Confirmation of fifth Candida auris clade by whole genome sequencing. . Emerg. Microbes Infect. 11::240511
    [Google Scholar]
  9. 9.
    Vallabhaneni S, Kallen A, Tsay S, et al. 2016.. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. . Morb. Mortal. Wkly. Rep. 65::123437
    [Google Scholar]
  10. 10.
    Chow NA, Gade L, Tsay SV, et al. 2018.. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. . Lancet Infect. Dis. 18::137784
    [Google Scholar]
  11. 11.
    Eyre DW, Sheppard AE, Madder H, et al. 2018.. A Candida auris outbreak and its control in an intensive care setting. . N. Engl. J. Med. 379::132231
    [Google Scholar]
  12. 12.
    Schelenz S, Hagen F, Rhodes JL, et al. 2016.. First hospital outbreak of the globally emerging Candida auris in a European hospital. . Antimicrob. Resist. Infect. Control 5::35
    [Google Scholar]
  13. 13.
    Borman AM, Szekely A, Johnson EM. 2016.. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. . mSphere 1::e00189
    [Google Scholar]
  14. 14.
    Chowdhary A, Kumar VA, Sharma C, et al. 2014.. Multidrug-resistant endemic clonal strain of Candida auris in India. . Eur. J. Clin. Microbiol. Infect. Dis. 33::91926
    [Google Scholar]
  15. 15.
    Kumar J, Eilertson B, Cadnum JL, et al. 2019.. Environmental contamination with Candida species in multiple hospitals including a tertiary care hospital with a Candida auris outbreak. . Pathog. Immun. 4::26070
    [Google Scholar]
  16. 16.
    Adams E, Quinn M, Tsay S, et al. 2018.. Candida auris in healthcare facilities, New York, USA, 2013–2017. . Emerg. Infect. Dis. 24::181624
    [Google Scholar]
  17. 17.
    Biswal M, Rudramurthy SM, Jain N, et al. 2017.. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. . J. Hosp. Infect. 97::36370
    [Google Scholar]
  18. 18.
    Welsh RM, Bentz ML, Shams A, et al. 2017.. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. . J. Clin. Microbiol. 55::29963005
    [Google Scholar]
  19. 19.
    Cadnum JL, Shaikh AA, Piedrahita CT, et al. 2017.. Effectiveness of disinfectants against Candida auris and other Candida species. . Infect. Control Hosp. Epidemiol. 38::124043
    [Google Scholar]
  20. 20.
    Johnson CJ, Eix EF, Lam BC, et al. 2021.. Augmenting the activity of chlorhexidine for decolonization of Candida auris from porcine skin. . J. Fungi 7::804
    [Google Scholar]
  21. 21.
    Sherry L, Ramage G, Kean R, et al. 2017.. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. . Emerg. Infect. Dis. J. 23::32831
    [Google Scholar]
  22. 22.
    Abdolrasouli A, Armstrong-James D, Ryan L, Schelenz S. 2017.. In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris. . Mycoses 60::75863
    [Google Scholar]
  23. 23.
    Proctor DM, Dangana T, Sexton DJ, et al. 2021.. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. . Nat. Med. 27::14019
    [Google Scholar]
  24. 24.
    Tsay S, Kallen A, Jackson BR, et al. 2018.. Approach to the investigation and management of patients with Candida auris, an emerging multidrug-resistant yeast. . Clin. Infect. Dis. 66::30611
    [Google Scholar]
  25. 25.
    Armstrong PA, Rivera SM, Escandon P, et al. 2019.. Hospital-associated multicenter outbreak of emerging fungus Candida auris, Colombia, 2016. . Emerg. Infect. Dis. 25::133946
    [Google Scholar]
  26. 26.
    Morales-López SE, Parra-Giraldo CM, Ceballos-Garzón A, et al. 2017.. Invasive infections with multidrug-resistant yeast Candida auris, Colombia. . Emerg. Infect. Dis. 23::16264
    [Google Scholar]
  27. 27.
    Khatamzas E, Madder H, Jeffery K. 2019.. Neurosurgical device–associated infections due to Candida auris—three cases from a single tertiary center. . J. Infect. 78::40921
    [Google Scholar]
  28. 28.
    Shastri PS, Shankarnarayan SA, Oberoi J, et al. 2020.. Candida auris candidaemia in an intensive care unit—prospective observational study to evaluate epidemiology, risk factors, and outcome. . J. Crit. Care 57::4248
    [Google Scholar]
  29. 29.
    Park JY, Bradley N, Brooks S, et al. 2019.. Management of patients with Candida auris fungemia at Community Hospital, Brooklyn, New York, USA, 2016–2018. . Emerg. Infect. Dis. J. 25::6012
    [Google Scholar]
  30. 30.
    Sayeed MA, Farooqi J, Jabeen K, Mahmood SF. 2019.. Comparison of risk factors and outcomes of Candida auris candidemia with non–Candida auris candidemia: a retrospective study from Pakistan. . Med. Mycol. 58::72129
    [Google Scholar]
  31. 31.
    Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, et al. 2018.. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. . Mycoses 61::498505
    [Google Scholar]
  32. 32.
    Chakrabarti A, Sood P, Rudramurthy SM, et al. 2015.. Incidence, characteristics and outcome of ICU-acquired candidemia in India. . Intensive Care Med. 41::28595
    [Google Scholar]
  33. 33.
    Chen J, Tian S, Han X, et al. 2020.. Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. . BMC Infect. Dis. 20::827
    [Google Scholar]
  34. 34.
    Lone SA, Ahmad A. 2019.. Candida auris—the growing menace to global health. . Mycoses 62::62037
    [Google Scholar]
  35. 35.
    Benedict K, Forsberg K, Gold JAW, et al. 2023.. Candida auris–associated hospitalizations, United States, 2017–2022. . Emerg. Infect. Dis. J. 29::148587
    [Google Scholar]
  36. 36.
    Huang X, Welsh RM, Deming C, et al. 2021.. Skin metagenomic sequence analysis of early Candida auris outbreaks in U.S. nursing homes. . mSphere 6::e00287
    [Google Scholar]
  37. 37.
    Zhu Y, O'Brien B, Leach L, et al. 2020.. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: impact and lessons learned. . J. Clin. Microbiol. 58::e01503
    [Google Scholar]
  38. 38.
    Casadevall A, Kontoyiannis DP, Robert V. 2019.. On the emergence of Candida auris: climate change, azoles, swamps, and birds. . mBio 10::e01397
    [Google Scholar]
  39. 39.
    Arora P, Singh P, Wang Y, et al. 2021.. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. . mBio 12::e03181
    [Google Scholar]
  40. 40.
    Akinbobola A, Kean R, Quilliam RS. 2024.. Plastic pollution as a novel reservoir for the environmental survival of the drug resistant fungal pathogen Candida auris. . Mar. Pollut. Bull. 198::115841
    [Google Scholar]
  41. 41.
    Babler K, Sharkey M, Arenas S, et al. 2023.. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami–Dade County, Florida. . Sci. Total Environ. 898::165459
    [Google Scholar]
  42. 42.
    Barber C, Crank K, Papp K, et al. 2023.. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in southern Nevada. . Environ. Sci. Technol. 57::175563
    [Google Scholar]
  43. 43.
    Lyman M, Forsberg K, Sexton DJ, et al. 2023.. Worsening spread of Candida auris in the United States, 2019 to 2021. . Ann. Intern. Med. 176::48995
    [Google Scholar]
  44. 44.
    Koleri J, Petkar HM, Al Soub HARS, Al Maslamani MARS. 2023.. Candida auris blood stream infection—a descriptive study from Qatar. . BMC Infect. Dis. 23::513
    [Google Scholar]
  45. 45.
    Bruno VM, Kalachikov S, Subaran R, et al. 2006.. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. . PLOS Pathog. 2::e21
    [Google Scholar]
  46. 46.
    Kordalewska M, Lee A, Park S, et al. 2018.. Understanding echinocandin resistance in the emerging pathogen Candida auris. . Antimicrob. Agents Chemother. 62::e00238
    [Google Scholar]
  47. 47.
    Ostrowsky B, Greenko J, Adams E, et al. 2020.. Candida auris isolates resistant to three classes of antifungal medications—New York, 2019. . Morb. Mortal. Wkly. Rep. 69::69
    [Google Scholar]
  48. 48.
    Maphanga TG, Naicker SD, Kwenda S, et al. 2021.. In vitro antifungal resistance of Candida auris isolates from bloodstream infections, South Africa. . Antimicrob. Agents Chemother. 65::e0051721
    [Google Scholar]
  49. 49.
    Pappas PG, Kauffman CA, Andes DR, et al. 2016.. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. . Clin. Infect. Dis. 62::e150
    [Google Scholar]
  50. 50.
    Govender NP, Avenant T, Brink A, et al. 2019.. Federation of Infectious Diseases Societies of Southern Africa guideline: recommendations for the detection, management and prevention of healthcare-associated Candida auris colonisation and disease in South Africa. . S. Afr. J. Infect. Dis. 34::163
    [Google Scholar]
  51. 51.
    Ong CW, Chen SC, Clark JE, et al. 2019.. Diagnosis, management and prevention of Candida auris in hospitals: position statement of the Australasian Society for Infectious Diseases. . Intern. Med. J. 49::122943
    [Google Scholar]
  52. 52.
    Lepak AJ, Zhao M, Berkow EL, et al. 2017.. Pharmacodynamic optimization for treatment of invasive Candida auris infection. . Antimicrob. Agents Chemother. 61::e00791
    [Google Scholar]
  53. 53.
    Grant VC, Nguyen K, Rodriguez S, et al. 2022.. Characterizing safety and clinical outcomes associated with high-dose micafungin utilization in patients with proven invasive candidiasis. . Trop. Med. Infect. Dis. 7::23
    [Google Scholar]
  54. 54.
    Chowdhary A, Tarai B, Singh A, Sharma A. 2020.. Multidrug-resistant Candida auris infections in critically ill coronavirus disease patients, India, April–July 2020. . Emerg. Infect. Dis. 26::269496
    [Google Scholar]
  55. 55.
    Lepak AJ, Zhao M, Andes DR. 2018.. Pharmacodynamic evaluation of rezafungin (CD101) against Candida auris in the neutropenic mouse invasive candidiasis model. . Antimicrob. Agents Chemother. 62::e01572
    [Google Scholar]
  56. 56.
    Arendrup MC, Chowdhary A, Astvad KMT, Jørgensen KM. 2018.. APX001A in vitro activity against contemporary blood isolates and Candida auris determined by the EUCAST reference method. . Antimicrob. Agents Chemother. 62::e01225
    [Google Scholar]
  57. 57.
    Alvarado-Socarras JL, Vargas-Soler JA, Franco-Paredes C, et al. 2021.. A cluster of neonatal infections caused by Candida auris at a large referral center in Colombia. . J. Pediatr. Infect. Dis. Soc. 10::54955
    [Google Scholar]
  58. 58.
    O'Brien B, Chaturvedi S, Chaturvedi V. 2020.. In vitro evaluation of antifungal drug combinations against multidrug-resistant Candida auris isolates from New York outbreak. . Antimicrob. Agents Chemother. 64::e02195
    [Google Scholar]
  59. 59.
    Caballero U, Eraso E, Quindos G, et al. 2023.. PK/PD modeling and simulation of the in vitro activity of the combinations of isavuconazole with echinocandins against Candida auris. . CPT Pharmacomet. Syst. Pharmacol. 12::77082
    [Google Scholar]
  60. 60.
    Caballero U, Eraso E, Quindos G, Jauregizar N. 2021.. In vitro interaction and killing-kinetics of amphotericin B combined with anidulafungin or caspofungin against Candida auris. . Pharmaceutics 13::1333
    [Google Scholar]
  61. 61.
    Fakhim H, Chowdhary A, Prakash A, et al. 2017.. In vitro interactions of echinocandins with triazoles against multidrug-resistant Candida auris. . Antimicrob. Agents Chemother. 61::e01056
    [Google Scholar]
  62. 62.
    Bidaud AL, Botterel F, Chowdhary A, Dannaoui E. 2019.. In vitro antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against Candida auris shows no antagonism. . Antimicrob. Agents Chemother. 63::e01393
    [Google Scholar]
  63. 63.
    Ruiz-Gaitán A, Martínez H, Moret AM, et al. 2019.. Detection and treatment of Candida auris in an outbreak situation: risk factors for developing colonization and candidemia by this new species in critically ill patients. . Expert Rev. Anti-Infect. Ther. 17::295305
    [Google Scholar]
  64. 64.
    Ashkenazi-Hoffnung L, Rosenberg Danziger C. 2023.. Navigating the new reality: a review of the epidemiological, clinical, and microbiological characteristics of Candida auris, with a focus on children. . J. Fungi 9::176
    [Google Scholar]
  65. 65.
    Watanabe NA, Miyazaki M, Horii T, et al. 2012.. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. . Antimicrob. Agents Chemother. 56::96071
    [Google Scholar]
  66. 66.
    Vazquez JA, Pappas PG, Boffard K, et al. 2023.. Clinical efficacy and safety of a novel antifungal, fosmanogepix, in patients with candidemia caused by Candida auris: results from a phase 2 trial. . Antimicrob. Agents Chemother. 67::e0141922
    [Google Scholar]
  67. 67.
    Simon SP, Li R, Silver M, et al. 2023.. Comparative outcomes of Candida auris bloodstream infections: a multicenter retrospective case–control study. . Clin. Infect. Dis. 76::e143643
    [Google Scholar]
  68. 68.
    Benedict K, Forsberg K, Gold JAW, et al. 2023.. Candida auris–associated hospitalizations, United States, 2017–2022. . Emerg. Infect. Dis. 29::148587
    [Google Scholar]
  69. 69.
    Berrio I, Caceres DH, Coronell RW, et al. 2021.. Bloodstream infections with Candida auris among children in Colombia: clinical characteristics and outcomes of 34 cases. . J. Pediatr. Infect. Dis. Soc. 10::15154
    [Google Scholar]
  70. 70.
    Adam RD, Revathi G, Okinda N, et al. 2019.. Analysis of Candida auris fungemia at a single facility in Kenya. . Int. J. Infect. Dis. 85::18287
    [Google Scholar]
  71. 71.
    Kojic EM, Darouiche RO. 2004.. Candida infections of medical devices. . Clin. Microbiol. Rev. 17::25567
    [Google Scholar]
  72. 72.
    Nagy F, Toth Z, Nyikos F, et al. 2021.. In vitro and in vivo interaction of caspofungin with isavuconazole against Candida auris planktonic cells and biofilms. . Med. Mycol. 59::101523
    [Google Scholar]
/content/journals/10.1146/annurev-med-061523-021233
Loading
/content/journals/10.1146/annurev-med-061523-021233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error