1932

Abstract

CD70 is an emerging target for anticancer therapies. It is an ideal antigen target given its limited expression in normal physiologic tissues and propensity to be aberrantly expressed in a variety of malignancies, thus limiting off-target toxicities. It is also heavily involved in immune homeostasis, and disruption of this pathway can help overcome tumor-related immune cell exhaustion. Recent phase I/II trials using cellular therapies targeting CD70, such as chimeric antigen receptor-T cells, have shown promising effectiveness and safety in treating relapsed or refractory renal cell carcinoma. Noncellular therapies targeting CD70, such as antibody-drug conjugates, monoclonal antibodies, radionuclides, and cytokines, are currently under investigation, with early data showing encouraging results as well. Efforts are already underway to further improve and optimize CD70-based therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-070623-045906
2025-01-27
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-070623-045906.html?itemId=/content/journals/10.1146/annurev-med-070623-045906&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Motzer RJ, Tannir NM, McDermott DF, et al. 2018.. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. . N. Engl. J. Med. 378::127790
    [Google Scholar]
  2. 2.
    Motzer R, Alekseev B, Rha S-Y, et al. 2021.. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. . N. Engl. J. Med. 384::1289300
    [Google Scholar]
  3. 3.
    Rini BI, Plimack ER, Stus V, et al. 2019.. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. . N. Engl. J. Med. 380::111627
    [Google Scholar]
  4. 4.
    Choueiri TK, Powles T, Burotto M, et al. 2021.. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. . N. Engl. J. Med. 384::82941
    [Google Scholar]
  5. 5.
    Choueiri TK, Tomczak P, Park SH, et al. 2021.. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. . N. Engl. J. Med. 385::68394
    [Google Scholar]
  6. 6.
    Laetsch TW, Maude SL, Rives S, et al. 2023.. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. . J. Clin. Oncol. 41::166469
    [Google Scholar]
  7. 7.
    Lens SM, Tesselaar K, van Oers MH, van Lier RA. 1998.. Control of lymphocyte function through CD27-CD70 interactions. . Semin. Immunol. 10::49199
    [Google Scholar]
  8. 8.
    Nolte MA, van Olffen RW, van Gisbergen KP, van Lier RA. 2009.. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. . Immunol. Rev. 229::21631
    [Google Scholar]
  9. 9.
    Denoeud J, Moser M. 2011.. Role of CD27/CD70 pathway of activation in immunity and tolerance. . J. Leukoc. Biol. 89::195203
    [Google Scholar]
  10. 10.
    Flieswasser T, Van den Eynde A, Van Audenaerde J, et al. 2022.. The CD70-CD27 axis in oncology: the new kids on the block. . J. Exp. Clin. Cancer Res. 41::12
    [Google Scholar]
  11. 11.
    Junker K, Hindermann W, von Eggeling F, et al. 2005.. CD70: a new tumor specific biomarker for renal cell carcinoma. . J. Urol. 173::215053
    [Google Scholar]
  12. 12.
    Diegmann J, Junker K, Gerstmayer B, et al. 2005.. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. . Eur. J. Cancer 41::1794801
    [Google Scholar]
  13. 13.
    Jilaveanu LB, Sznol J, Aziz SA, et al. 2012.. CD70 expression patterns in renal cell carcinoma. . Hum. Pathol. 43::139499
    [Google Scholar]
  14. 14.
    Diegmann J, Junker K, Loncarevic IF, et al. 2006.. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. . Neoplasia 8::93338
    [Google Scholar]
  15. 15.
    Wang QJ, Hanada K, Robbins PF, et al. 2012.. Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma. . Cancer Res. 72::611929
    [Google Scholar]
  16. 16.
    Ye H, Huang RR, Shuch BM, et al. 2022.. CD70 is a promising CAR-T cell target in patients with advanced renal cell carcinoma. . J. Clin. Oncol. 40:(Suppl. 6):384
    [Google Scholar]
  17. 17.
    Benhamouda N, Sam I, Epaillard N, et al. 2022.. Plasma CD27, a surrogate of the intratumoral CD27-CD70 interaction, correlates with immunotherapy resistance in renal cell carcinoma. . Clin. Cancer Res. 28::498394
    [Google Scholar]
  18. 18.
    Zhang C, Liu J, Zhong JF, Zhang X. 2017.. Engineering CAR-T cells. . Biomark. Res. 5::22
    [Google Scholar]
  19. 19.
    Wang M, Munoz J, Goy A, et al. 2020.. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. . N. Engl. J. Med. 382::133142
    [Google Scholar]
  20. 20.
    Martin T, Usmani SZ, Berdeja JG, et al. 2023.. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. . J. Clin. Oncol. 41::126574
    [Google Scholar]
  21. 21.
    Panowski SH, Srinivasan S, Tan N, et al. 2022.. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. . Cancer Res. 82::261024
    [Google Scholar]
  22. 22.
    Pal S, Tran B, Haanen J, et al. 2022.. 558 CTX130 allogeneic CRISPR-Cas9–engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: results from the phase 1 COBALT-RCC study. . J. Immunother. Cancer 10:(Suppl. 2):A584
    [Google Scholar]
  23. 23.
    Srour S, Kotecha R, Curti B, et al. 2023.. Abstract CT011: a phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC). . Cancer Res. 83:(Suppl. 8):CT011
    [Google Scholar]
  24. 24.
    Sun JC, Beilke JN, Lanier LL. 2009.. Adaptive immune features of natural killer cells. . Nature 457::55761
    [Google Scholar]
  25. 25.
    Klingemann H. 2014.. Are natural killer cells superior CAR drivers?. Oncoimmunology 3::e28147
    [Google Scholar]
  26. 26.
    Valeri A, Garcia-Ortiz A, Castellano E, et al. 2022.. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. . Front. Immunol. 13::953849
    [Google Scholar]
  27. 27.
    Choi E, Chang J-W, Krueger J, et al. 2021.. Engineering CD70-directed CAR-NK cells for the treatment of hematological and solid malignancies. . Blood 138:(Suppl. 1):1691
    [Google Scholar]
  28. 28.
    McEarchern JA, Oflazoglu E, Francisco L, et al. 2006.. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. . Blood 109::118592
    [Google Scholar]
  29. 29.
    Aftimos P, Rolfo C, Rottey S, et al. 2017.. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. . Clin. Cancer Res. 23::641120
    [Google Scholar]
  30. 30.
    Adam PJ, Terrett JA, Steers G, et al. 2006.. CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding. . Br. J. Cancer 95::298306
    [Google Scholar]
  31. 31.
    Massard C, Soria J-C, Krauss J, et al. 2019.. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. . Cancer Chemother. Pharmacol. 83::105763
    [Google Scholar]
  32. 32.
    Sandall S, Anderson M, Jonas M, et al. 2014.. Abstract 2647: SGN-CD70A, a novel and highly potent anti-CD70 ADC, induces double-strand DNA breaks and is active in models of MDR+ renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL). . Cancer Res. 74:(Suppl. 19):2647
    [Google Scholar]
  33. 33.
    Pal SK, Forero-Torres A, Thompson JA, et al. 2019.. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. . Cancer 125::112432
    [Google Scholar]
  34. 34.
    Tannir NM, Forero-Torres A, Ramchandren R, et al. 2014.. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. . Investig. New Drugs 32::124657
    [Google Scholar]
  35. 35.
    Owonikoko TK, Hussain A, Stadler WM, et al. 2016.. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. . Cancer Chemother. Pharmacol. 77::15562
    [Google Scholar]
  36. 36.
    Wang L, Liu H, Shang X, et al. 2022.. Abstract 1759: PRO1160, a novel CD70-directed antibody-drug conjugate, demonstrates robust anti-tumor activity in mouse models of renal cell carcinoma and non-Hodgkin lymphoma. . Cancer Res. 82:(Suppl. 12):1759
    [Google Scholar]
  37. 37.
    Hagemann UB, Mihaylova D, Uran SR, et al. 2017.. Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. . Oncotarget 8::5631126
    [Google Scholar]
  38. 38.
    Trac N, Oh HS, Jones LI, et al. 2022.. CD70-targeted micelles enhance HIF2α siRNA delivery and inhibit oncogenic functions in patient-derived clear cell renal carcinoma cells. . Molecules 27::8457
    [Google Scholar]
  39. 39.
    Chen P, Nogusa S, Thapa RJ, et al. 2013.. Anti-CD70 immunocytokines for exploitation of interferon-γ-induced RIP1-dependent necrosis in renal cell carcinoma. . PLOS ONE 8::e61446
    [Google Scholar]
  40. 40.
    Terrett JA, Kalaitzidis D, Dequeant M-L, et al. 2023.. Abstract ND02: CTX112 and CTX131: next-generation CRISPR/Cas9-engineered allogeneic (allo) CAR T cells incorporating novel edits that increase potency and efficacy in the treatment of lymphoid and solid tumors. . Cancer Res. 83:(Suppl. 7):ND02
    [Google Scholar]
  41. 41.
    Ji F, Zhang F, Zhang M, et al. 2021.. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway. . J. Hematol. Oncol. 14::152
    [Google Scholar]
  42. 42.
    Riether C, Pabst T, Hopner S, et al. 2020.. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. . Nat. Med. 26::145967
    [Google Scholar]
  43. 43.
    Pabst T, Vey N, Ades L, et al. 2023.. Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy. . Haematologica 108::1793802
    [Google Scholar]
/content/journals/10.1146/annurev-med-070623-045906
Loading
/content/journals/10.1146/annurev-med-070623-045906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error