1932

Abstract

This review explores the evolving landscape of treatments for hypercortisolism, highlighting both established and emerging therapies. Although surgery remains the cornerstone of management, medical therapies play a crucial and expanding role, especially in cases of persistent, recurrent, or severe hypercortisolism. We discuss the effectiveness and limitations of steroidogenesis inhibitors, pituitary-directed drugs, glucocorticoid receptor antagonists, and experimental drugs targeting novel molecular pathways that have been implicated in the pathogenesis of hypercortisolism. Despite advancements, significant unmet needs persist, underscoring the importance of personalized treatment approaches and the development of targeted therapies. Ongoing and future clinical trials are crucial for validating the safety and efficacy of these innovative treatments in Cushing disease management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-071723-044849
2025-01-27
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-071723-044849.html?itemId=/content/journals/10.1146/annurev-med-071723-044849&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pivonello R, Isidori AM, De Martino MC, et al. 2016.. Complications of Cushing's syndrome: state of the art. . Lancet Diabetes Endocrinol. 4::61129
    [Google Scholar]
  2. 2.
    De Alcubierre D, Ferrari D, Mauro G, et al. 2023.. Glucocorticoids and cognitive function: a walkthrough in endogenous and exogenous alterations. . J. Endocrinol. Investig. 46::196182
    [Google Scholar]
  3. 3.
    Minnetti M, Hasenmajer V, Sbardella E, et al. 2022.. Susceptibility and characteristics of infections in patients with glucocorticoid excess or insufficiency: the ICARO tool. . Eur. J. Endocrinol. 187::71931
    [Google Scholar]
  4. 4.
    Wengander S, Trimpou P, Papakokkinou E, Ragnarsson O. 2019.. The incidence of endogenous Cushing's syndrome in the modern era. . Clin. Endocrinol. 91::26370
    [Google Scholar]
  5. 5.
    Reincke M, Fleseriu M. 2023.. Cushing syndrome: a review. . JAMA 330::17081
    [Google Scholar]
  6. 6.
    Fassnacht M, Arlt W, Bancos I, et al. 2016.. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. . Eur. J. Endocrinol. 175::G134
    [Google Scholar]
  7. 7.
    Hamidi O. 2021.. Cardiovascular and metabolic consequences in patients with asymptomatic adrenal adenomas. . Curr. Opin. Endocrinol. Diabetes Obes. 28::27782
    [Google Scholar]
  8. 8.
    Sbardella E, Minnetti M, D'Aluisio D, et al. 2018.. Cardiovascular features of possible autonomous cortisol secretion in patients with adrenal incidentalomas. . Eur. J. Endocrinol. 178::50111
    [Google Scholar]
  9. 9.
    Nieman LK, Biller BM, Findling JW, et al. 2015.. Treatment of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. . J. Clin. Endocrinol. Metab. 100::280731
    [Google Scholar]
  10. 10.
    Bonaventura I, Tomaselli A, Angelini F, et al. 2024.. Predicting postoperative hypocortisolism in patients with non-aldosterone-producing adrenocortical adenoma: a retrospective single-centre study. . J. Endocrinol. Investig. 47::175162
    [Google Scholar]
  11. 11.
    Rubinstein G, Osswald A, Zopp S, et al. 2019.. Therapeutic options after surgical failure in Cushing's disease: a critical review. . Best Pract. Res. Clin. Endocrinol. Metab. 33::101270
    [Google Scholar]
  12. 12.
    Pivonello R, Ferrigno R, De Martino MC, et al. 2020.. Medical treatment of Cushing's disease: an overview of the current and recent clinical trials. . Front. Endocrinol. 11::648
    [Google Scholar]
  13. 13.
    Pivonello R, Simeoli C, Di Paola N, Colao A. 2022.. Cushing's disease: adrenal steroidogenesis inhibitors. . Pituitary 25::72632
    [Google Scholar]
  14. 14.
    Viecceli C, Mattos ACV, Hirakata VN, et al. 2023.. Ketoconazole as second-line treatment for Cushing's disease after transsphenoidal surgery: systematic review and meta-analysis. . Front. Endocrinol. 14::1145775
    [Google Scholar]
  15. 15.
    Castinetti F, Guignat L, Giraud P, et al. 2014.. Ketoconazole in Cushing's disease: Is it worth a try?. J. Clin. Endocrinol. Metab. 99::162330
    [Google Scholar]
  16. 16.
    Daniel E, Aylwin S, Mustafa O, et al. 2015.. Effectiveness of metyrapone in treating Cushing's syndrome: a retrospective multicenter study in 195 patients. . J. Clin. Endocrinol. Metab. 100::414654
    [Google Scholar]
  17. 17.
    Ceccato F, Zilio M, Barbot M, et al. 2018.. Metyrapone treatment in Cushing's syndrome: a real-life study. . Endocrine 62::70111
    [Google Scholar]
  18. 18.
    Nieman LK, Boscaro M, Scaroni CM, et al. 2021.. Metyrapone treatment in endogenous Cushing's syndrome: results at week 12 from PROMPT, a prospective international multicenter, open-label, phase III/IV study. . J. Endocr. Soc. 5:(Suppl. 1):A515
    [Google Scholar]
  19. 19.
    Broersen LHA, Jha M, Biermasz NR, et al. 2018.. Effectiveness of medical treatment for Cushing's syndrome: a systematic review and meta-analysis. . Pituitary 21::63141
    [Google Scholar]
  20. 20.
    Debono M, Harrison RF, Chadarevian R, et al. 2017.. Resetting the abnormal circadian cortisol rhythm in adrenal incidentaloma patients with mild autonomous cortisol secretion. . J. Clin. Endocrinol. Metab. 102::346169
    [Google Scholar]
  21. 21.
    Minnetti M, Hasenmajer V, Pofi R, et al. 2020.. Fixing the broken clock in adrenal disorders: focus on glucocorticoids and chronotherapy. . J. Endocrinol. 246::R1331
    [Google Scholar]
  22. 22.
    Fleseriu M, Auchus R, Bancos I, et al. 2021.. Consensus on diagnosis and management of Cushing's disease: a guideline update. . Lancet Diabetes Endocrinol. 9::84775
    [Google Scholar]
  23. 23.
    Azzola A, Eastabrook G, Matsui D, et al. 2021.. Adrenal Cushing syndrome diagnosed during pregnancy: successful medical management with metyrapone. . J. Endocr. Soc. 5::bvaa167
    [Google Scholar]
  24. 24.
    Baudry C, Coste J, Bou Khalil R, et al. 2012.. Efficiency and tolerance of mitotane in Cushing's disease in 76 patients from a single center. . Eur. J. Endocrinol. 167::47381
    [Google Scholar]
  25. 25.
    Gadelha M, Gatto F, Wildemberg LE, Fleseriu M. 2023.. Cushing's syndrome. . Lancet 402::223752
    [Google Scholar]
  26. 26.
    Preda VA, Sen J, Karavitaki N, Grossman AB. 2012.. Etomidate in the management of hypercortisolaemia in Cushing's syndrome: a review. . Eur. J. Endocrinol. 167::13743
    [Google Scholar]
  27. 27.
    Fleseriu M, Pivonello R, Elenkova A, et al. 2019.. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing's syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. . Lancet Diabetes Endocrinol. 7::85565
    [Google Scholar]
  28. 28.
    Pivonello R, Zacharieva S, Elenkova A, et al. 2022.. Levoketoconazole in the treatment of patients with endogenous Cushing's syndrome: a double-blind, placebo-controlled, randomized withdrawal study (LOGICS). . Pituitary 25::91126
    [Google Scholar]
  29. 29.
    Meredith EL, Ksander G, Monovich LG, et al. 2013.. Discovery and in vivo evaluation of potent dual CYP11B2 (aldosterone synthase) and CYP11B1 inhibitors. . ACS Med. Chem. Lett. 4::12037
    [Google Scholar]
  30. 30.
    Fleseriu M, Pivonello R, Young J, et al. 2016.. Osilodrostat, a potent oral 11β-hydroxylase inhibitor: 22-week, prospective, phase II study in Cushing's disease. . Pituitary 19::13848
    [Google Scholar]
  31. 31.
    Pivonello R, Fleseriu M, Newell-Price J, et al. 2020.. Efficacy and safety of osilodrostat in patients with Cushing's disease (LINC 3): a multicentre phase III study with a double-blind, randomised withdrawal phase. . Lancet Diabetes Endocrinol. 8::74861
    [Google Scholar]
  32. 32.
    Gadelha M, Bex M, Feelders RA, et al. 2022.. Randomized trial of osilodrostat for the treatment of Cushing disease. . J. Clin. Endocrinol. Metab. 107::e288295
    [Google Scholar]
  33. 33.
    Sliskovic DR, Picard JA, Krause BR. 2002.. ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. . Prog. Med. Chem. 39::12171
    [Google Scholar]
  34. 34.
    Lamberts SW, Uitterlinden P, Klijn JM. 1989.. The effect of the long-acting somatostatin analogue SMS 201–995 on ACTH secretion in Nelson's syndrome and Cushing's disease. . Acta Endocrinol. 120::76066
    [Google Scholar]
  35. 35.
    Gatto F, Arvigo M, Amaru J, et al. 2019.. Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. . Pituitary 22::8999
    [Google Scholar]
  36. 36.
    Simoes Correa Galendi J, Correa Neto ANS, Demetres M, et al. 2021.. Effectiveness of medical treatment of Cushing's disease: a systematic review and meta-analysis. . Front. Endocrinol. 12::732240
    [Google Scholar]
  37. 37.
    Schopohl J, Gu F, Rubens R, et al. 2015.. Pasireotide can induce sustained decreases in urinary cortisol and provide clinical benefit in patients with Cushing's disease: results from an open-ended, open-label extension trial. . Pituitary 18::60412
    [Google Scholar]
  38. 38.
    Colao A, Petersenn S, Newell-Price J, et al. 2012.. A 12-month phase 3 study of pasireotide in Cushing's disease. . N. Engl. J. Med. 366::91424
    [Google Scholar]
  39. 39.
    Lacroix A, Gu F, Gallardo W, et al. 2018.. Efficacy and safety of once-monthly pasireotide in Cushing's disease: a 12 month clinical trial. . Lancet Diabetes Endocrinol. 6::1726
    [Google Scholar]
  40. 40.
    Mondin A, Manara R, Voltan G, et al. 2022.. Pasireotide-induced shrinkage in GH and ACTH secreting pituitary adenoma: a systematic review and meta-analysis. . Front. Endocrinol. 13::935759
    [Google Scholar]
  41. 41.
    Pivonello R, Pivonello C, Simeoli C, et al. 2022.. The dopaminergic control of Cushing's syndrome. . J. Endocrinol. Investig. 45::1297315
    [Google Scholar]
  42. 42.
    Godbout A, Manavela M, Danilowicz K, et al. 2010.. Cabergoline monotherapy in the long-term treatment of Cushing's disease. . Eur. J. Endocrinol. 163::70916
    [Google Scholar]
  43. 43.
    Pivonello R, De Martino MC, Cappabianca P, et al. 2009.. The medical treatment of Cushing's disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. . J. Clin. Endocrinol. Metab. 94::22330
    [Google Scholar]
  44. 44.
    Ferriere A, Cortet C, Chanson P, et al. 2017.. Cabergoline for Cushing's disease: a large retrospective multicenter study. . Eur. J. Endocrinol. 176::30514
    [Google Scholar]
  45. 45.
    Yawar A, Zuberi LM, Haque N. 2007.. Cushing's disease and pregnancy: case report and literature review. . Endocr. Pract. 13::29699
    [Google Scholar]
  46. 46.
    Barbot M, Albiger N, Ceccato F, et al. 2014.. Combination therapy for Cushing's disease: effectiveness of two schedules of treatment: Should we start with cabergoline or ketoconazole?. Pituitary 17::10917
    [Google Scholar]
  47. 47.
    Feelders RA, Fleseriu M, Kadioglu P, et al. 2023.. Long-term efficacy and safety of subcutaneous pasireotide alone or in combination with cabergoline in Cushing's disease. . Front. Endocrinol. 14::1165681
    [Google Scholar]
  48. 48.
    Feelders RA, de Bruin C, Pereira AM, et al. 2010.. Pasireotide alone or with cabergoline and ketoconazole in Cushing's disease. . N. Engl. J. Med. 362::184648
    [Google Scholar]
  49. 49.
    Burman P, Lamb L, McCormack A. 2020.. Temozolomide therapy for aggressive pituitary tumours—current understanding and future perspectives. . Rev. Endocr. Metab. Disord. 21::26376
    [Google Scholar]
  50. 50.
    Feelders RA, Newell-Price J, Pivonello R, et al. 2019.. Advances in the medical treatment of Cushing's syndrome. . Lancet Diabetes Endocrinol. 7::30012
    [Google Scholar]
  51. 51.
    Yamamoto M, Nakao T, Ogawa W, Fukuoka H. 2021.. Aggressive Cushing's disease: molecular pathology and its therapeutic approach. . Front. Endocrinol. 12::650791
    [Google Scholar]
  52. 52.
    Raverot G, Castinetti F, Jouanneau E, et al. 2012.. Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. . Clin. Endocrinol. 76::76975
    [Google Scholar]
  53. 53.
    Jordan S, Lidhar K, Korbonits M, et al. 2000.. Cyclin D and cyclin E expression in normal and adenomatous pituitary. . Eur. J. Endocrinol. 143::R1R6
    [Google Scholar]
  54. 54.
    Liu NA, Araki T, Cuevas-Ramos D, et al. 2015.. Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. . J. Clin. Endocrinol. Metab. 100::255764
    [Google Scholar]
  55. 55.
    Liu NA, Ben-Shlomo A, Carmichael JD, et al. 2023.. Treatment of Cushing disease with pituitary-targeting seliciclib. . J. Clin. Endocrinol. Metab. 108::72635
    [Google Scholar]
  56. 56.
    Pecori Giraldi F, Sesta A, Tapella L, et al. 2021.. Dual effects of 9-cis retinoic acid on ACTH-dependent hyperplastic adrenal tissues. . Sci. Rep. 11::14315
    [Google Scholar]
  57. 57.
    Pecori Giraldi F, Ambrogio AG, Andrioli M, et al. 2012.. Potential role for retinoic acid in patients with Cushing's disease. . J. Clin. Endocrinol. Metab. 97::357783
    [Google Scholar]
  58. 58.
    Vilar L, Albuquerque JL, Lyra R, et al. 2016.. The role of isotretinoin therapy for Cushing's disease: results of a prospective study. . Int. J. Endocrinol. 2016::8173182
    [Google Scholar]
  59. 59.
    Occhi G, Regazzo D, Albiger NM, et al. 2014.. Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing's disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. . Endocrinology 155::353849
    [Google Scholar]
  60. 60.
    von Selzam V, Theodoropoulou M. 2022.. Innovative tumour targeting therapeutics in Cushing's disease. . Best Pract. Res. Clin. Endocrinol. Metab. 36::101701
    [Google Scholar]
  61. 61.
    Heaney AP, Fernando M, Yong WH, Melmed S. 2002.. Functional PPAR-γ receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. . Nat. Med. 8::128187
    [Google Scholar]
  62. 62.
    Kreutzer J, Jeske I, Hofmann B, et al. 2009.. No effect of the PPAR-γ agonist rosiglitazone on ACTH or cortisol secretion in Nelson's syndrome and Cushing's disease in vitro and in vivo. . Clin. Neuropathol. 28::43039
    [Google Scholar]
  63. 63.
    Ambrosi B, Dall'Asta C, Cannavo S, et al. 2004.. Effects of chronic administration of PPAR-γ ligand rosiglitazone in Cushing's disease. . Eur. J. Endocrinol. 151::17378
    [Google Scholar]
  64. 64.
    Pecori Giraldi F, Scaroni C, Arvat E, et al. 2006.. Effect of protracted treatment with rosiglitazone, a PPARγ agonist, in patients with Cushing's disease. . Clin. Endocrinol. 64::21924
    [Google Scholar]
  65. 65.
    Munir A, Song F, Ince P, et al. 2007.. Ineffectiveness of rosiglitazone therapy in Nelson's syndrome. . J. Clin. Endocrinol. Metab. 92::175863
    [Google Scholar]
  66. 66.
    Suri D, Weiss RE. 2005.. Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing's disease. . J. Clin. Endocrinol. Metab. 90::134046
    [Google Scholar]
  67. 67.
    Dai C, Liang S, Sun B, Kang J. 2020.. The progress of immunotherapy in refractory pituitary adenomas and pituitary carcinomas. . Front. Endocrinol. 11::608422
    [Google Scholar]
  68. 68.
    Alcubierre DDE, Carretti AL, Ducray F, et al. 2024.. Aggressive pituitary tumors and carcinomas: medical treatment beyond temozolomide. . Minerva Endocrinol. 49:(3):32134
    [Google Scholar]
  69. 69.
    Castinetti F, Fassnacht M, Johanssen S, et al. 2009.. Merits and pitfalls of mifepristone in Cushing's syndrome. . Eur. J. Endocrinol. 160::100310
    [Google Scholar]
  70. 70.
    Wallia A, Colleran K, Purnell JQ, et al. 2013.. Improvement in insulin sensitivity during mifepristone treatment of Cushing syndrome: early and late effects. . Diabetes Care 36::e14748
    [Google Scholar]
  71. 71.
    Katznelson L, Loriaux DL, Feldman D, et al. 2014.. Global clinical response in Cushing's syndrome patients treated with mifepristone. . Clin. Endocrinol. 80::56269
    [Google Scholar]
  72. 72.
    Fein HG, Vaughan TB III, Kushner H, et al. 2015.. Sustained weight loss in patients treated with mifepristone for Cushing's syndrome: a follow-up analysis of the SEISMIC study and long-term extension. . BMC Endocr. Disord. 15::63
    [Google Scholar]
  73. 73.
    Fleseriu M, Biller BM, Findling JW, et al. 2012.. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing's syndrome. . J. Clin. Endocrinol. Metab. 97::203949
    [Google Scholar]
  74. 74.
    Pivonello R, Bancos I, Feelders RA, et al. 2021.. Relacorilant, a selective glucocorticoid receptor modulator, induces clinical improvements in patients with Cushing syndrome: results from a prospective, open-label phase 2 study. . Front. Endocrinol. 12::662865
    [Google Scholar]
  75. 75.
    Hunt H, Donaldson K, Strem M, et al. 2018.. Assessment of safety, tolerability, pharmacokinetics, and pharmacological effect of orally administered CORT125134: an adaptive, double-blind, randomized, placebo-controlled phase 1 clinical study. . Clin. Pharmacol. Drug Dev. 7::40821
    [Google Scholar]
  76. 76.
    Tomlinson JW, Walker EA, Bujalska IJ, et al. 2004.. 11β-Hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. . Endocr. Rev. 25::83166
    [Google Scholar]
  77. 77.
    Tomlinson JW, Draper N, Mackie J, et al. 2002.. Absence of Cushingoid phenotype in a patient with Cushing's disease due to defective cortisone to cortisol conversion. . J. Clin. Endocrinol. Metab. 87::5762
    [Google Scholar]
  78. 78.
    Arai H, Kobayashi N, Nakatsuru Y, et al. 2008.. A case of cortisol producing adrenal adenoma without phenotype of Cushing's syndrome due to impaired 11β-hydroxysteroid dehydrogenase 1 activity. . Endocr. J. 55::70915
    [Google Scholar]
  79. 79.
    Oda S, Ashida K, Uchiyama M, et al. 2021.. An open-label phase I/IIa clinical trial of 11β-HSD1 inhibitor for Cushing's syndrome and autonomous cortisol secretion. . J. Clin. Endocrinol. Metab. 106::e386580
    [Google Scholar]
  80. 80.
    Othonos N, Pofi R, Arvaniti A, et al. 2023.. 11β-HSD1 inhibition in men mitigates prednisolone-induced adverse effects in a proof-of-concept randomised double-blind placebo-controlled trial. . Nat. Commun. 14::1025
    [Google Scholar]
  81. 81.
    Ma ZY, Song ZJ, Chen JH, et al. 2015.. Recurrent gain-of-function USP8 mutations in Cushing's disease. . Cell Res. 25::30617
    [Google Scholar]
  82. 82.
    Perez-Rivas LG, Theodoropoulou M, Ferrau F, et al. 2015.. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing's disease. . J. Clin. Endocrinol. Metab. 100::E9971004
    [Google Scholar]
  83. 83.
    Perez-Rivas LG, Theodoropoulou M, Puar TH, et al. 2018.. Somatic USP8 mutations are frequent events in corticotroph tumor progression causing Nelson's tumor. . Eur. J. Endocrinol. 178::5763
    [Google Scholar]
  84. 84.
    Albani A, Perez-Rivas LG, Tang S, et al. 2022.. Improved pasireotide response in USP8 mutant corticotroph tumours in vitro. . Endocr. Relat. Cancer 29::50311
    [Google Scholar]
  85. 85.
    Takayasu S, Kageyama K, Daimon M. 2023.. Advances in molecular pathophysiology and targeted therapy for Cushing's disease. . Cancers 15::496
    [Google Scholar]
  86. 86.
    Rebollar-Vega RG, Zuarth-Vazquez JM, Hernandez-Ramirez LC. 2023.. Clinical spectrum of USP8 pathogenic variants in Cushing's disease. . Arch. Med. Res. 54::102899
    [Google Scholar]
  87. 87.
    Fukuoka H, Cooper O, Ben-Shlomo A, et al. 2011.. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. . J. Clin. Investig. 121::471221
    [Google Scholar]
  88. 88.
    Asari Y, Kageyama K, Sugiyama A, et al. 2019.. Lapatinib decreases the ACTH production and proliferation of corticotroph tumor cells. . Endocr. J. 66::51522
    [Google Scholar]
  89. 89.
    Shen Y, Ji C, Jian X, et al. 2020.. Regulation of the EGFR pathway by HSP90 is involved in the pathogenesis of Cushing's disease. . Front. Endocrinol. 11::601984
    [Google Scholar]
  90. 90.
    Riebold M, Kozany C, Freiburger L, et al. 2015.. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. . Nat. Med. 21::27680
    [Google Scholar]
  91. 91.
    Pecori Giraldi F, Cassarino MF, Sesta A, et al. 2023.. Silibinin, an HSP90 inhibitor, on human ACTH-secreting adenomas. . Neuroendocrinology 113::60614
    [Google Scholar]
  92. 92.
    Feldhaus AL, Anderson K, Dutzar B, et al. 2017.. ALD1613, a novel long-acting monoclonal antibody to control ACTH-driven pharmacology. . Endocrinology 158::18
    [Google Scholar]
  93. 93.
    Fowler MA, Kusnetzow AK, Han S, et al. 2021.. Effects of CRN04894, a nonpeptide orally bioavailable ACTH antagonist, on corticosterone in rodent models of ACTH excess. . J. Endocr. Soc. 5:(Suppl. 1):A167
    [Google Scholar]
  94. 94.
    Rocheville M, Lange DC, Kumar U, et al. 2000.. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. . Science 288::15457
    [Google Scholar]
  95. 95.
    Gunther T, Culler M, Schulz S. 2016.. Research resource: real-time analysis of somatostatin and dopamine receptor signaling in pituitary cells using a fluorescence-based membrane potential assay. . Mol. Endocrinol. 30::47990
    [Google Scholar]
  96. 96.
    Lu J, Chatain GP, Bugarini A, et al. 2017.. Histone deacetylase inhibitor SAHA is a promising treatment of Cushing disease. . J. Clin. Endocrinol. Metab. 102::282535
    [Google Scholar]
  97. 97.
    Lee HA, Kang SH, Kim M, et al. 2018.. Histone deacetylase inhibition ameliorates hypertension and hyperglycemia in a model of Cushing's syndrome. . Am. J. Physiol. Endocrinol. Metab. 314::E3952
    [Google Scholar]
  98. 98.
    Kamenicky P, Droumaguet C, Salenave S, et al. 2011.. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing's syndrome. . J. Clin. Endocrinol. Metab. 96::2796804
    [Google Scholar]
  99. 99.
    Vilar L, Naves LA, Azevedo MF, et al. 2010.. Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing's disease. . Pituitary 13::12329
    [Google Scholar]
  100. 100.
    Corcuff JB, Young J, Masquefa-Giraud P, et al. 2015.. Rapid control of severe neoplastic hypercortisolism with metyrapone and ketoconazole. . Eur. J. Endocrinol. 172::47381
    [Google Scholar]
/content/journals/10.1146/annurev-med-071723-044849
Loading
/content/journals/10.1146/annurev-med-071723-044849
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error