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Abstract

Statins, ezetimibe, and PCSK9 inhibitors are currently the standard of care
for the prevention and treatment of coronary artery disease. Despite their
widespread use, coronary artery disease remains the leading cause of death
worldwide, a fact that pleads for the development of new protective thera-
pies. In no small part due to advances in the field of human genetics, many
new therapies targeting various lipid traits or inflammation have recently
received approval from regulatory agencies such as the US Food and Drug
Administration or fared favorably in clinical trials. This wave of new ther-
apies promises to transform the care of patients at risk for life-threatening
coronary events.
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INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death worldwide. No ethnicity, nation, or
community is spared. After the age of 40, one in two men and one in three women suffer coro-
nary events during their lifetimes (1)—even though millions of people take medications that have
been established to prevent coronary events, namely statins, ezetimibe, and PCSK9 inhibitors.
Indeed, in the United States, mortality from cardiovascular disease has begun to rise after decades
of decline (2). Preventing even a fraction of the unaddressed events globally would reduce health-
care spending by the equivalent of billions of US dollars each year, and it would improve quality
of life for many individuals who would otherwise suffer sequelae of CAD, such as heart failure
and arrhythmias. New preventive agents will be indispensable in light of CAD emerging as the
preeminent global health threat of the twenty-first century.

Encouragingly, in just the past couple of years, a variety of new therapies outnumbering the
previous mainstays of preventive cardiology either have received strong validation in clinical trials
or are undergoing trials that will read out in the near future. A common thread among many of
these medications is that their success has been augured by human genetics—by the recognition
that naturally occurring variants in key genes and pathways are linked to protection against CAD
in the individuals fortunate enough to have inherited the variants.

STANDARD THERAPIES

Statins, the medications most commonly used to reduce low-density lipoprotein (LDL) choles-
terol, are the recommended first-line therapy for CAD prevention in patients deemed to be at
sufficiently high risk to warrant pharmacotherapy (3). In diverse randomized clinical trials with dif-
ferent statins at different dosages in patients with differing levels of CAD risk, statins have proven
to substantially reduce the risk of cardiovascular events and, particularly in secondary preven-
tion patients, cardiovascular mortality. All statins act as inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMGCR), a key enzyme in the synthesis of cholesterol. Although statins
were clinically validated and widely adopted before the modern era of human genetic research,
it is noteworthy that naturally occurring human genetic variants in HMGCR that are associated
with decreased LDL cholesterol are also associated with decreased CAD risk (4).This relationship
provides a post hoc rationale for the use of statins in patients (not that cardiovascular practitioners
would find any rationalization necessary in light of the ample preexisting clinical trial evidence).
Notably, there is a genetic association between the same HMGCR variants and mildly increased
risk of type 2 diabetes mellitus (4)—lending support to the equivocal clinical evidence that statins
can increase the risk of diabetes. Thus, statins have proven to be a useful test case for the propo-
sition that human genetics can predict the clinical efficacy and safety of medications targeting
specific gene targets.

Ezetimibe provided an even more remarkable test case. Ezetimibe inhibits the Niemann-Pick
C1-like 1 (NPC1L1) protein in the gastrointestinal tract, thereby reducing cholesterol absorption
via the diet and modestly reducing blood LDL cholesterol levels. After its regulatory approval for
patient use on the basis of its ability to reduce LDL cholesterol, ezetimibe incited controversy
after early randomized clinical trials using CAD surrogates (rather than cardiovascular events)
as endpoints suggested a lack of clinical efficacy. Years later, a large randomized controlled trial,
IMPROVE-IT, finally unequivocally established ezetimibe’s ability to reduce CAD risk (5). Mere
days before the public announcement of the results of IMPROVE-IT, a human genetic study
establishing an association between naturally occurring inactivating variants in NPC1L1 and pro-
tection fromCADwas published (6).Ezetimibe is now thewidely accepted, recommended second-
line therapy for CAD prevention after statins (3).
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In contrast to the statins and ezetimibe, the inhibitors of PCSK9 (proprotein convertase sub-
tilisin/kexin type 9) owe their existence to human genetic studies. Activating mutations in PCSK9
were discovered in 2003 to be a cause of familial hypercholesterolemia (7); the PCSK9 protein
was found to be preferentially produced in the liver and secreted into the bloodstream, where
it antagonizes cellular LDL receptors. Soon thereafter, inactivating mutations in PCSK9 were
observed to have the effect of reducing blood LDL cholesterol levels (8). These same inactivat-
ing mutations were established to be highly protective against CAD, reducing the risk by up to
88% (9). Of note, the individuals who enjoyed this reduced CAD risk were carriers of just one
inactivating mutation (in the two copies of PCSK9). The discovery of healthy individuals with
two inactivating mutations—full knockout of PCSK9 function—with no serious adverse conse-
quences argued for the safety of PCSK9 inhibition (10, 11). This observation energized a number
of drug development programs with PCSK9 as the intended target. In 2015, only 12 years after
the discovery of the gene, the first two PCSK9 inhibitors—themonoclonal antibodies evolocumab
and alirocumab, which are administered via injections every few weeks—received regulatory ap-
proval for patient use (12). Each of the antibodies has proven to reduce cardiovascular events in
randomized controlled trials—FOURIER and ODYSSEY OUTCOMES, respectively (13, 14)—
and for that reason, both are now included in guidelines as third-line agents after statins and
ezetimibe (3). Inclisiran, a small interfering RNA (siRNA) therapy that with a single adminis-
tration can knock down hepatic PCSK9 expression for at least six months, has proven its mettle
in clinical trials as an LDL cholesterol–lowering agent (15, 16). Contingent on regulatory ap-
proval of the drug, it is anticipated that high-risk patients will receive inclisiran just two times per
year.

ADDITIONAL LDL CHOLESTEROL–LOWERING DRUGS

Elevated LDL cholesterol is unequivocally a causal risk factor for CAD. Mutations in LDL
cholesterol–related genes—LDLR (LDL receptor), APOB (apolipoprotein B), and PCSK9—that
cause familial hypercholesterolemia also result in premature CAD, as early as childhood (7, 17,
18). Just as tellingly, common genetic variants that are associated with mildly altered blood LDL
cholesterol levels are also associated with modified CAD risk. In a study with a cohort of more
than 50,000 individuals with or without CAD, a genetic score incorporating 13 common variants
associated with LDL cholesterol was calculated for all participants (19). Observational epidemi-
ological studies predict that a one-standard-deviation increase in LDL cholesterol (≈35 mg/dL
increase) should be associated with a 54% increase in CAD risk.A one-standard-deviation increase
in LDL cholesterol caused by variance in the genetic score was actually associated with a 113%
increase in CAD risk (p = 2×10–10).

Two LDL cholesterol–loweringmedications, lomitapide andmipomersen, are intended for use
in extreme cases, namely patients with homozygous familial hypercholesterolemia who have not
adequately responded to standard therapies. Lomitapide is an inhibitor of microsomal triglyceride
transfer protein (expressed byMTTP), which is involved in the assembly of nascent lipoproteins in
hepatocytes. Lomitapide therefore reduces hepatic lipoprotein secretion and, in turn, blood LDL
cholesterol levels (20).Naturally occurring inhibitorymutations inMTTP cause the recessive con-
dition abetalipoproteinemia, which is marked not only by very low LDL cholesterol but also by
a host of other problems including hepatosteatosis and steatorrhea (21). Not surprisingly, lomi-
tapide can cause the same issues in patients, which limits its use to extreme cases.Mipomersen is an
antisense oligonucleotide (ASO) drug that binds the APOB messenger RNA and thereby reduces
expression of apolipoprotein B, the core protein of LDL particles. Like lomitapide, mipomersen
interferes with the assembly and secretion of lipoproteins from hepatocytes and thereby reduces
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LDL cholesterol (22). Inhibitory mutations inAPOB cause familial hypobetalipoproteinemia (23),
which in severe cases can present similarly to abetalipoproteinemia.Mipomersen, like lomitapide,
must be used cautiously because of the risk of hepatosteatosis. Although neither drug has been
proven formally to reduce the risk of CAD in patients with homozygous familial hypercholes-
terolemia, each drug received regulatory approval for use based on the logical premise that reduc-
tion of the very high LDL cholesterol levels in these patients should be of clinical benefit.

Bempedoic acid, another LDL cholesterol–lowering drug, recently received regulatory ap-
proval for clinical use in patients with familial hypercholesterolemia or established CAD who are
already on maximally tolerated statin therapy and require additional LDL cholesterol reduction.
It acts by inhibiting ATP citrate lyase (expressed by ACLY), which, like HMGCR, is a key enzyme
in the synthesis of cholesterol; it catalyzes a reaction upstream of the one catalyzed by HMGCR.
Bempedoic acid received regulatory approval on the basis of its ability to reduce LDL cholesterol
in two clinical trials (24, 25), although the effect was modest compared to that of statins and there
was increased risk of gout and tendon rupture. A human genetic study found that common vari-
ants surrounding ACLY, when aggregated, were associated with CAD risk (26), suggesting that
pharmacological inhibition of ATP citrate lyase by bempedoic acid should reduce cardiovascu-
lar events. This hypothesis will be formally tested by an ongoing randomized controlled study,
CLEAR Outcomes, that is expected to be completed in 2022.

MODIFYING LIPIDS BESIDES LDL CHOLESTEROL

Epidemiological analyses of other blood lipids besides LDL cholesterol—namely high-density
lipoprotein (HDL) cholesterol, lipoprotein(a) [Lp(a)], and triglycerides—suggest some degree of
association with CAD. The magnitude of the inverse association between HDL cholesterol and
CAD risk is comparable to that of the direct association between LDL cholesterol and CAD risk
(27). Nonetheless, human genetics suggests that the link between HDL cholesterol and CAD is
not a causal one. In a study with a cohort of more than 50,000 individuals with or without CAD,
a genetic score incorporating 14 common variants associated with HDL cholesterol was calcu-
lated for all participants (19). Observational epidemiological studies predict that a one-standard-
deviation increase in HDL cholesterol (≈15 mg/dL increase) should be associated with a 38%
decrease in CAD risk. Yet a one-standard-deviation increase in HDL cholesterol caused by vari-
ance in the genetic score was not significantly associated with a change in CAD risk (7% decrease,
p = 0.63). This observation suggests that most if not all interventions that specifically increase
HDL cholesterol alone would not favorably modify CAD risk. Consistent with this conclusion,
the best-studied HDL cholesterol–raising medications have largely proved futile in reducing car-
diovascular events in randomized controlled trials.

The AIM-HIGH and HPS2-THRIVE trials showed no benefit for extended-release niacin
or for a combination of extended-release niacin and laropiprant (the latter agent added to miti-
gate side effects of high-dose niacin), respectively (28, 29). Three inhibitors of cholesteryl ester
transfer protein (CETP)—torcetrapib, dalcetrapib, and evacetrapib—all raise HDL cholesterol
substantially, in some patients more than doubling the blood levels, but their respective trials—
ILLUMINATE, dal-OUTCOMES, and ACCELERATE (30–32)—all were stopped early for fu-
tility. A fourth CETP inhibitor, anacetrapib, did show a small (9%) reduction of coronary events
in the HPS3/TIMI55–REVEAL trial (33), but anacetrapib is distinct from the other CETP in-
hibitors in that along with its HDL cholesterol–raising effect, it also modestly reduces blood LDL
cholesterol levels. Accordingly, the observed protective effect of anacetrapib has been attributed
to altered levels of LDL cholesterol, not HDL cholesterol. These results (28–33) have effectively
ruled out CETP inhibitors as a practical means for CAD risk reduction in patients.
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Lp(a) is an LDL-like particle that is covalently linked to the protein apolipoprotein(a), ex-
pressed by LPA. The blood Lp(a) level is notable in that it varies up to 1,000-fold among individ-
uals, with most of the variability due to genetic variation in LPA, in particular a highly variable
number of kringle IV domains (ranging from 3 to >40) encoded in the gene (34). Observational
epidemiological studies have shown blood Lp(a) levels to be directly associated with CAD risk,
with disproportionate risk arising at the high extreme of Lp(a) levels (35). Genetic studies with
variants in LPA have established that genetically elevated Lp(a) results in increased risk of CAD
(36, 37), arguing for Lp(a) being a causal risk factor independently of LDL cholesterol. This ob-
servation has motivated the development of an ASO drug to bind the LPA messenger RNA and
reduce expression of apolipoprotein(a), thereby knocking down the blood Lp(a) level. In random-
ized controlled studies, the drug has proven to be effective at reducing Lp(a) in healthy volunteers
and in CAD patients with elevated Lp(a) levels, with up to 80% reduction observed with weekly
injections (38, 39).Whether the drug will prove effective at reducing CAD risk in patients remains
to be seen; the placebo-controlled Lp(a)HORIZON trial has begun enrolling CAD patients with
elevated Lp(a) levels and is expected to reach completion with an assessment of cardiovascular
events in 2024.

Triglycerides appear to have a more complicated relationship with CAD.Human genetic stud-
ies to assess for a causal link between blood triglyceride levels and CAD risk are confounded by
pleiotropy, i.e.,most common variants that are associatedwith triglycerides are also associatedwith
other traits such as HDL cholesterol level.One study attempted to rigorously address this issue by
employing a genetic score arrived at by a statistical framework in which the triglyceride-associated
effects of variants on CAD risk were separated from the LDL and HDL cholesterol–associated
effects of the variants (40). A one-standard-deviation increase in triglycerides caused by variance in
genetic score was associated with a 54% increase in CAD risk (p= 1×10–8). This finding suggests
that there are at least some mechanisms of triglyceride reduction that would protect against CAD.
The results of randomized controlled studies of triglyceride-lowering agents have been mixed. As
already noted, the AIM-HIGH and HPS2-THRIVE trials with niacin—which not only increases
HDL cholesterol levels but also reduces triglyceride levels—were negative (28, 29). So too was the
ACCORD-Lipid trial, which tested the clinical efficacy of fenofibrate, a fibrate drug commonly
used to treat hypertriglyceridemia (41).

Purified fish oil preparations, i.e., omega-3 fatty acids, are also used for the reduction of high
triglyceride levels. Most randomized controlled studies of omega-3 fatty acids, including the re-
cent large trials ASCEND, VITAL, and STRENGTH (42–44), found no reduction of CAD risk
(STRENGTH was stopped early for futility). These three trials evaluated a combination of eico-
sapentaenoic acid (EPA) and docosahexaenoic acid. In contrast, the REDUCE-IT trial tested a
high-dose preparation of EPA only (2 g twice daily) and had a remarkably positive result—a 25%
reduction of cardiovascular events in CAD patients with elevated triglycerides as well as a com-
mensurate reduction of cardiovascular mortality, albeit with increased risk of atrial fibrillation or
flutter requiring hospitalization and increased risk of bleeding (45). The mechanism(s) by which
EPA produced the clinical benefit is unclear.Although the patients receiving EPA did have reduced
blood triglyceride levels compared to the control group, the magnitude of the change was rela-
tively small (14%). Extrapolating from observational epidemiological studies, that level of triglyc-
eride reduction should not have singlehandedly produced the large reduction of cardiovascular
events observed with EPA. Moreover, patients experienced the clinical benefit regardless of the
triglyceride level achieved. These observations suggest that EPA might work through pleiotropic
mechanisms that remain to be defined. As such, it is difficult to regard REDUCE-IT as a strong
endorsement of the virtue of pharmacologically reducing triglyceride levels. Nonetheless, the ef-
ficacy of the tested high-dose preparation of EPA has resulted in the drug being incorporated into
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The lipoprotein lipase (LPL) pathway. LPL proteins tethered to endothelial cells in blood vessels engage
with triglyceride-rich lipoproteins in the bloodstream, where they catalyze triglycerides within the particles
and mobilize the breakdown products into the blood. Naturally occurring mutations in various genes with
protein products in this pathway modify the risk of coronary artery disease (CAD), highlighting the
importance of triglyceride-rich lipoproteins for the pathogenesis of disease.

the latest clinical guidelines as an option for CAD risk reduction in high-risk patients who are
already on maximally tolerated statin therapy and have elevated triglycerides (46, 47).

Human genetic studies of individual genes have suggested that it is triglyceride-rich lipopro-
teins (TRLs), rather than the triglycerides carried by the particles in the blood, that are causally
linked to CAD risk. Genetic association analyses have convincingly linked variants in at least
seven genes that regulate blood triglyceride levels to CAD risk—LPL (lipoprotein lipase),APOA5
(apolipoprotein A-V), APOA4 (apolipoprotein A-IV), APOC3 (apolipoprotein C-III), ANGPTL4
(angiopoietin-like 4),ANGPTL3 (angiopoietin-like 3), and TRIB1 (tribbles-1) (19, 48–57). Five of
the genes in this list are part of the same pathway, either encoding LPL or encoding direct regula-
tors of LPL, a key enzyme that hydrolyzes triglycerides in various TRLs (Figure 1). Inactivating
mutations in LPL increase both blood triglyceride levels and CAD risk, whereas activating muta-
tions in LPL have the opposite effects (48). Inactivating mutations in APOA5, which encodes an
activator of LPL, increase triglycerides and CAD risk (49–51). Conversely, as described in more
detail below, inactivating mutations in APOC3, ANGPTL4, or ANGPTL3, which all encode in-
hibitors of LPL, decrease triglycerides and CAD risk.These genetic observations represent strong
evidence that therapies that act upon any of these members of the LPL pathway should modify
CAD risk. As such, all five genes represent potential targets for CAD prevention. Of note, neither
niacin nor fibrates specifically target the LPL pathway, possibly accounting for the lack of clinical
efficacy of these triglyceride-lowering agents in clinical trials.

APOC3 is a gene specific in its expression to the liver and small intestine. Its protein product,
apolipoprotein C-III, is carried by TRLs and serves to inhibit hydrolysis of the particles’ triglyc-
erides by LPL, thereby boosting blood triglyceride levels. A human genetic study in an Old Order
Amish cohort identified an inhibitory mutation as being linked to decreased triglycerides as well
as decreased coronary artery calcification (52). Subsequent studies found that individuals with a
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single inhibitory mutation in APOC3 had a 35–40% reduction in CAD risk (53, 54). Remark-
ably, an entire Pakistani family (two parents, nine children) with homozygosity for a nonsense
mutation in APOC3 was identified; the family members were healthy, had reduced triglycerides
and increased HDL cholesterol, on physiological testing displayed marked blunting of the rise in
triglyceride levels normally experienced after an oral fat load, and had no apparent adverse effects
(58). The favorable phenotypes of the family members recommended APOC3 as a target for novel
therapies.

Volanesorsen, an ASO drug that silences APOC3 in its primary site of expression, hepatocytes,
was observed in clinical trials to substantially reduce blood triglyceride levels in patients with
hypertriglyceridemia (59, 60). A substantial proportion of the study participants also displayed
thrombocytopenia, halting the drug’s further development as a therapeutic for CAD prevention,
although it is approved in Europe for use in patients with familial chylomicronemia syndrome.
A more potent next-generation ASO drug that inhibits APOC3 is now undergoing assessment in
clinical trials and, if its safety is established, may ultimately prove to have value for patients at
high risk for CAD. An siRNA drug against hepatic APOC3 and a monoclonal antibody against
apolipoprotein C-III are also in development.

ANGPTL4 is highly expressed in the liver and is also expressed in a variety of other tissues,
including adipose, pancreas, intestine, and brain. The ANGPTL4 protein is secreted into the
bloodstream, where it inhibits LPL and increases triglyceride levels. Human genetic studies have
shown that inhibitory mutations in ANGPTL4 protect against CAD as well as type 2 diabetes
mellitus, suggesting it as a therapeutic target (48, 55). A monoclonal antibody against ANGPTL4
substantially reduced blood triglyceride levels in mice and monkeys (55); however, abdominal
lymphadenopathy from lipid accumulation was observed in both animal models,militating against
further development of the antibody or other ANGPTL4 inhibitors as human therapeutics.

Of the three aforementioned genes encoding LPL inhibitors, it is perhaps ANGPTL3 that
holds the most therapeutic potential for the prevention of CAD. Although it shares structural and
functional features with ANGPTL4, ANGPTL3 has distinctive properties that make its inhibi-
tion an attractive alternative to PCSK9 inhibition. ANGPTL3 originally was discovered as a liver-
specific gene that, when mutated, was responsible for the hypolipidemic phenotype of a mouse
strain with abnormally low triglyceride and total cholesterol levels (61). Independently,ANGPTL3
was discovered to be the cause of a recessive condition in humans called familial combined hy-
polipidemia, marked by very low levels of LDL cholesterol, HDL cholesterol, and triglycerides
(62). The first individuals recognized to have this condition were four siblings of a single family
who each harbored two different nonsense mutations in the first exon of ANGPTL3, effectively
making them natural knockouts for the gene—notable because the siblings were free of CAD, had
no apparent adverse consequences of gene knockout, and had healthy children (56, 62). Subse-
quent work showed that individuals carrying just one inhibitory ANGPTL3 mutation enjoyed a
35–40% reduction of CAD risk (56, 57).

The ANGPTL3 protein is expressed in hepatocytes and secreted into the bloodstream, where
it inhibits LPL and thereby increases triglycerides. The mechanism(s) by which ANGPTL3 in-
creases blood LDL cholesterol levels remains unclear but appears to be independent of the LDL
receptor. The unique potential of ANGPTL3 inhibitors to safely block two orthogonal axes of
CAD risk—LDL cholesterol and TRLs—has stimulated intensive efforts to develop such in-
hibitors. A monoclonal antibody, evinacumab, has proven effective in reducing both LDL choles-
terol and triglycerides in healthy volunteers as well as patients with familial hypercholesterolemia
(57, 63). Indeed, unlike PCSK9 inhibitors—which have limited LDL cholesterol–lowering effects
in homozygous familial hypercholesterolemia patients, especially those who lack LDL receptor
altogether (PCSK9 being an antagonist of LDL receptor)—evinacumab is just as potent at LDL
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cholesterol reduction in homozygous familial hypercholesterolemia patients as in other individu-
als (63). The fact that ANGPTL3 is predominantly expressed in hepatocytes makes it amenable to
therapeutic approaches that preferentially target the liver. An ASO drug targeting the ANGPTL3
messenger RNA in hepatocytes has been demonstrated to reduce LDL cholesterol and triglyc-
erides in healthy volunteers (64). An siRNA targeting ANGPTL3 in hepatocytes appears to have
similar effects. Thus, three distinct drugs that inhibit ANGPTL3 function might eventually be
available as options for CAD risk reduction, either as therapy that is additive to standard therapies
for high-risk patients or as primary therapy for severe familial hypercholesterolemia patients who
poorly respond to PCSK9 inhibitors.

MODIFYING INFLAMMATORY PATHWAYS

Besides blood lipids, the other axis of CAD risk that has been explored extensively for therapeutic
potential is inflammation. Observational epidemiological studies have established markers of in-
flammation, most notably C-reactive protein (CRP), as being associated with CAD risk. Indeed,
the strength of association of the blood CRP level, measured by a high-sensitivity CRP assay, with
CAD rivals that of LDL cholesterol with CAD (65). Nonetheless, multiple well-powered human
genetic studies have found that genetic variants in the CRP locus are not associated with CAD risk
(66, 67). These results indicate that CRP itself is not a causal risk factor for CAD, paralleling find-
ings with HDL cholesterol. These observations suggest that not all interventions that decrease
inflammation would favorably modify CAD risk, but they do not rule out that certain specific
inflammatory pathways are causal for CAD.

A host of randomized controlled studies assessing whether anti-inflammatory agents can re-
duce cardiovascular events were negative.Most notably, theCIRT trial tested low-dosemethotrex-
ate for general suppression of inflammation in high-risk patients with stable CAD and found no
difference in cardiovascular outcomes (68). The SOLID-TIMI 52 trial assessed darapladib, an in-
hibitor of lipoprotein-associated phospholipase A2 (Lp-PLA2), in patients following acute coro-
nary syndromes and found no reduction in coronary events (69). The LATITUDE-TIMI 60 trial
evaluated losmapimod, an inhibitor of p38 mitogen-activated protein kinase (MAPK)-stimulated
inflammation, and found no change in cardiovascular risk (70).

In contrast, a randomized controlled study testing the effect of inhibition of the interleukin-
1β/interleukin-6 (IL-1β/IL-6) inflammatory pathway was positive. Unlike other inflammatory
mechanisms, there is genetic evidence for this pathway being causal for CAD; multiple human
genetic studies have demonstrated variants in the IL-6 receptor locus, IL6R, to be associated with
CAD risk (71, 72). In the CANTOS trial, patients with stable CAD and elevated high-sensitivity
CRP levels were randomized to various doses of canakinumab, a monoclonal antibody target-
ing IL-1β, or placebo (73). With canakinumab, there was a dose-dependent reduction of high-
sensitivity CRP levels without any significant change in various blood lipid levels. At the highest
doses of canakinumab, there were 14–15% reductions in incident cardiovascular events.There was
higher incidence of fatal infection with canakinumab, but there was also lower cancer mortality,
balancing out to no difference in all-cause mortality.While it is unclear whether canakinumab will
ever be promoted as an agent for CAD risk reduction, due to the expense of the medication, the
CANTOS trial did provide a strong validation for the concept that non-lipid-based interventions
can be beneficial for patients, as can judiciously targeted anti-inflammatory interventions.

More recently, the randomized controlled trial COLCOT tested the anti-inflammatory drug
colchicine, commonly used for the treatment of pericarditis and gout, in patients after myocardial
infarction (74). Colchicine conferred a 23% reduction in cardiovascular events, although there
were no significant reductions in individual endpoints such as recurrent myocardial infarction or
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cardiovascular mortality. Because colchicine is an old drug that is inexpensive in many countries,
the potential for its adoption as a secondary prevention drug is intriguing. Additional trials show-
ing a clear CAD benefit will likely be required before colchicine is included as a recommended
CAD therapy in clinical guidelines.

OUTLOOK

After years during which statins, ezetimibe, and PCSK9 inhibitors were the only available proven
effective therapies for the prevention and treatment of CAD, we are now witnessing progress on
a number of fronts—additional LDL cholesterol–lowering drugs, drugs that modify other causal
lipid traits, and anti-inflammatory drugs. A common theme undergirding many of the new drugs
is strong support from human genetics, with genetic studies nominating or validating target genes
and pathways. An important consequence is that therapies can now be tailored specifically to those
genes and pathways, in contrast to the traditional approach of screening large libraries of small
molecules for therapeutic activity. Many of the new drugs are biologics, whether monoclonal an-
tibodies, ASOs, or siRNAs. While these drugs have advantages with respect to efficacy, safety,
and specificity, they all have limited half-lives and require frequent injections for the remainder
of the patient’s lifetime. The future will undoubtedly see the development of gene therapies and
genome-editing therapies that with a single administration can protect patients from CAD in
perpetuity—one-and-done preventives, conceptually akin to vaccinations (75). Such options will
be invaluable in tackling the preeminent global health threat of the twenty-first century.
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