1932

Abstract

Pathogenic variants in and are associated with significantly elevated lifetime risks of breast, ovarian, pancreatic, and prostate cancer. These genes are critical in double-strand break repair through homologous recombination. An understanding of the biology of and led to the development of targeted therapeutics, specifically poly(ADP-ribose) polymerase (PARP) inhibitors, which are approved by the US Food and Drug Administration for multiple -associated cancers. Here, we discuss the development of PARP inhibitors, mechanisms of resistance, and the potential utility of these drugs beyond canonical tumors, and we describe novel agents under study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-082523-083843
2025-01-27
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-082523-083843.html?itemId=/content/journals/10.1146/annurev-med-082523-083843&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chatterjee N, Walker GC. 2017.. Mechanisms of DNA damage, repair and mutagenesis. . Environ. Mol. Mutagen. 58:(5):235
    [Google Scholar]
  2. 2.
    Kuchenbaecker KB, Hopper JL, Barnes DR, et al. 2017.. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. . JAMA 317:(23):240216
    [Google Scholar]
  3. 3.
    Li S, Silvestri V, Leslie G, et al. 2022.. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. . J. Clin. Oncol. 40:(14):152941
    [Google Scholar]
  4. 4.
    Maxwell KN, Wubbenhorst B, Wenz BM, et al. 2017.. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. . Nat. Commun. 8::319
    [Google Scholar]
  5. 5.
    Jonsson P, Bandlamudi C, Cheng ML, et al. 2019.. Tumour lineage shapes BRCA-mediated phenotypes. . Nature 571:(7766):57679
    [Google Scholar]
  6. 6.
    Huang K-L, Mashl RJ, Wu Y, et al. 2018.. Pathogenic germline variants in 10,389 adult cancers. . Cell 173:(2):35570.e14
    [Google Scholar]
  7. 7.
    Rowlands CF, Allen S, Balmaña J, et al. 2024.. Population-based germline breast cancer gene association studies and meta-analysis to inform wider mainstream testing. . Ann. Oncol. 35:(10):892901
    [Google Scholar]
  8. 8.
    Breast Cancer Assoc. Consort. 2021.. Breast cancer risk genes—association analysis in more than 113,000 women. . N. Engl. J. Med. 384:(5):42839
    [Google Scholar]
  9. 9.
    Hu C, Hart SN, Gnanaolivu R, et al. 2021.. A population-based study of genes previously implicated in breast cancer. . New Engl. J. Med. 384:(5):44051
    [Google Scholar]
  10. 10.
    Yang X, Leslie G, Doroszuk A, et al. 2020.. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. . J. Clin. Oncol. 38:(7):67485
    [Google Scholar]
  11. 11.
    Hsu FC, Roberts NJ, Childs E, et al. 2021.. Risk of pancreatic cancer among individuals with pathogenic variants in the ATM gene. . JAMA Oncol. 7:(11):166468
    [Google Scholar]
  12. 12.
    Yang X, Song H, Leslie G, et al. 2020.. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. . J. Natl. Cancer Inst. 112:(12):124250
    [Google Scholar]
  13. 13.
    Brown LC, Zhu J, Mauer E, et al. 2023.. RNA-based homologous recombination deficiency signature detects homologous recombination deficiency-RNA+ patients with and without homologous recombination repair gene pathogenic alterations in men with prostate cancer. . JCO Precis. Oncol. 7::e2300378
    [Google Scholar]
  14. 14.
    Mandelker D, Kumar R, Pei X, et al. 2019.. The landscape of somatic genetic alterations in breast cancers from CHEK2 germline mutation carriers. . JNCI Cancer Spectr. 3:(2):pkz027
    [Google Scholar]
  15. 15.
    Weigelt B, Bi R, Kumar R, et al. 2018.. The landscape of somatic genetic alterations in breast cancers from ATM germline mutation carriers. . J. Natl. Cancer Inst. 110:(9):103034
    [Google Scholar]
  16. 16.
    Farmer H, McCabe H, Lord CJ, et al. 2005.. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. . Nature 434:(7035):91721
    [Google Scholar]
  17. 17.
    Bryant HE, Schultz N, Thomas HD, et al. 2005.. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. . Nature 434:(7035):91317
    [Google Scholar]
  18. 18.
    Fong PC, Boss DS, Yap TA, et al. 2009.. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. . N. Engl. J. Med. 361:(2):12334
    [Google Scholar]
  19. 19.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. 2015.. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. . J. Clin. Oncol. 33:(3):24450
    [Google Scholar]
  20. 20.
    Disilvestro P, Banerjee S, Colombo N, et al. 2023.. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. . J. Clin. Oncol. 41:(3):60917
    [Google Scholar]
  21. 21.
    Moore K, Colombo N, Scambia G, et al. 2018.. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. . N. Engl. J. Med. 379:(26):2495505
    [Google Scholar]
  22. 22.
    González-Martín A, Pothuri B, Vergote I, et al. 2019.. Niraparib in patients with newly diagnosed advanced ovarian cancer. . N. Engl. J. Med. 381:(25):2391402
    [Google Scholar]
  23. 23.
    Monk BJ, Parkinson C, Lim MC, et al. 2022.. A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). . J. Clin. Oncol. 40:(34):395264
    [Google Scholar]
  24. 24.
    Ray-Coquard I, Pautier P, Pignata S, et al. 2019.. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. . N. Engl. J. Med. 381:(25):241628
    [Google Scholar]
  25. 25.
    Pujade-Lauraine E, Ledermann JA, Selle F, et al. 2017.. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. . Lancet Oncol. 18:(9):127484
    [Google Scholar]
  26. 26.
    Mirza MR, Monk BJ, Herrstedt J, et al. 2016.. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. . N. Engl. J. Med. 375:(22):215464
    [Google Scholar]
  27. 27.
    Coleman RL, Oza AM, Lorusso D, et al. 2017.. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. . Lancet 390:(10106):194961
    [Google Scholar]
  28. 28.
    Daly MB, Pal T, Maxwell KN, et al. 2023.. NCCN Guidelines® insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2024. . J. Natl. Compr. Cancer Netw. 21:(10):100110
    [Google Scholar]
  29. 29.
    Robson M, Im SA, Senkus E, et al. 2017.. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. . N. Engl. J. Med. 377:(6):52333
    [Google Scholar]
  30. 30.
    Litton JK, Rugo HS, Ettl J, et al. 2018.. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. . N. Engl. J. Med. 379:(8):75363
    [Google Scholar]
  31. 31.
    Tung NM, Robson ME, Ventz S, et al. 2020.. TBCRC 048: a phase II study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (olaparib expanded). . J. Clin. Oncol. 38:(15_Suppl.):1002
    [Google Scholar]
  32. 32.
    Batalini F, Madison RW, Sokol ES, et al. 2023.. Homologous recombination deficiency landscape of breast cancers and real-world effectiveness of poly ADP-ribose polymerase inhibitors in patients with somatic BRCA1/2, germline PALB2, or homologous recombination deficiency signature. . JCO Precis. Oncol. 7::e2300091
    [Google Scholar]
  33. 33.
    Geyer CE, Garber JE, Gelber RD, et al. 2022.. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. . Ann. Oncol. 33:(12):125068
    [Google Scholar]
  34. 34.
    Tutt ANJ, Garber JE, Kaufman B, et al. 2021.. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. . N. Engl. J. Med. 384:(25):2394405
    [Google Scholar]
  35. 35.
    de Bono J, Mateo J, Fizazi K, et al. 2020.. Olaparib for metastatic castration-resistant prostate cancer. . N. Engl. J. Med. 382:(22):2091102
    [Google Scholar]
  36. 36.
    Mateo J, De Bono JS, Fizazi K, et al. 2024.. Olaparib for the treatment of patients with metastatic castration-resistant prostate cancer and alterations in BRCA1 and/or BRCA2 in the PROfound trial. . J. Clin. Oncol. 42:(5):57183
    [Google Scholar]
  37. 37.
    Abida W, Patnaik A, Campbell D, et al. 2020.. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. . J. Clin. Oncol. 38:(32):376372
    [Google Scholar]
  38. 38.
    Fizazi K, Piulats JM, Reaume MN, et al. 2023.. Rucaparib or physician's choice in metastatic prostate cancer. . N. Engl. J. Med. 388:(8):71932
    [Google Scholar]
  39. 39.
    Carreira S, Porta N, Arce-Gallego S, et al. 2021.. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. . Cancer Discov. 11:(11):281227
    [Google Scholar]
  40. 40.
    Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. 2022.. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. . NEJM Evid. 1:(9):EVIDoa2200043
    [Google Scholar]
  41. 41.
    Chi KN, Rathkopf D, Smith MR, et al. 2023.. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. . J. Clin. Oncol. 41:(18):333951
    [Google Scholar]
  42. 42.
    Agarwal N, Azad AA, Carles J, et al. 2023.. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. . Lancet 402:(10398):291303
    [Google Scholar]
  43. 43.
    Shroff RT, Hendifar A, McWilliams RR, et al. 2018.. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. . JCO Precis. Oncol. 2::e1700316
    [Google Scholar]
  44. 44.
    Reiss KA, Mick R, O'Hara MH, et al. 2021.. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. . J. Clin. Oncol. 39:(22):2497505
    [Google Scholar]
  45. 45.
    Kindler HL, Hammel P, Reni M, et al. 2022.. Overall survival results from the POLO trial: a phase III study of active maintenance olaparib versus placebo for germline BRCA-mutated metastatic pancreatic cancer. . J. Clin. Oncol. 40:(34):392939
    [Google Scholar]
  46. 46.
    Golan T, Hammel P, Reni M, et al. 2019.. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. . N. Engl. J. Med. 381:(4):31727
    [Google Scholar]
  47. 47.
    Wineland D, Le AN, Hausler R, et al. 2023.. Biallelic BRCA loss and homologous recombination deficiency in nonbreast/ovarian tumors in germline BRCA1/2 carriers. . JCO Precis. Oncol. 7::e2300036
    [Google Scholar]
  48. 48.
    Schram AM, Colombo N, Arrowsmith E, et al. 2023.. Avelumab plus talazoparib in patients with BRCA1/2- or ATM-altered advanced solid tumors: results from JAVELIN BRCA/ATM, an open-label, multicenter, phase 2b, tumor-agnostic trial. . JAMA Oncol. 9:(1):2939
    [Google Scholar]
  49. 49.
    Srkalovic G, Rothe M, Mangat PK, et al. 2024.. Talazoparib in patients with solid tumors with BRCA1/2 mutation: results from the Targeted Agent and Profiling Utilization Registry Study. . JCO Precis. Oncol. 8::e2400026
    [Google Scholar]
  50. 50.
    Gruber JJ, Afghahi A, Timms K, et al. 2022.. A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. . Nat. Cancer 3::118191
    [Google Scholar]
  51. 51.
    Edwards SL, Brough R, Lord CJ, et al. 2008.. Resistance to therapy caused by intragenic deletion in BRCA2. . Nature 451:(7182):111115
    [Google Scholar]
  52. 52.
    Nguyen L, Martens JWM, Van Hoeck A, Cuppen E. 2020.. Pan-cancer landscape of homologous recombination deficiency. . Nat. Commun. 11::5584
    [Google Scholar]
  53. 53.
    Swisher EM, Kwan TT, Oza AM, et al. 2021.. Molecular and clinical determinants of response and resistance to rucaparib for recurrent ovarian cancer treatment in ARIEL2 (parts 1 and 2). . Nat. Commun. 12::2487
    [Google Scholar]
  54. 54.
    Fallah J, Xu J, Weinstock C, et al. 2024.. Efficacy of poly(ADP-ribose) polymerase inhibitors by individual genes in homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer: a US Food and Drug Administration pooled analysis. . J. Clin. Oncol. 42:(14):168798
    [Google Scholar]
  55. 55.
    Bell D, Berchuck A, Birrer M, et al. 2011.. Integrated genomic analyses of ovarian carcinoma. . Nature 474:(7353):609
    [Google Scholar]
  56. 56.
    Davies H, Glodzik D, Morganella S, et al. 2017.. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. . Nat. Med. 23:(4):51725
    [Google Scholar]
  57. 57.
    Pellegrino B, Herencia-Roper A, Llop-Guevar A, et al. 2022.. Preclinical in vivo validation of the RAD51 test for identification of homologous recombination-deficient tumors and patient stratification. . Cancer Res. 82:(8):164657
    [Google Scholar]
  58. 58.
    Sakai W, Swisher EM, Karlan BY, et al. 2008.. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. . Nature 451:(7182):111620
    [Google Scholar]
  59. 59.
    Lin KK, Harrell MI, Oza AM, et al. 2019.. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. . Cancer Discov. 9:(2):21019
    [Google Scholar]
  60. 60.
    Harvey-Jones E, Raghunandan M, Robbez-Masson L, et al. 2024.. Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. . Ann. Oncol. 35:(4):36480
    [Google Scholar]
  61. 61.
    Brown TJ, Yablonovitch A, Till JE, et al. 2023.. The clinical implications of reversions in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, or PALB2 after progression on rucaparib. . Clin. Cancer Res. 29:(24):520716
    [Google Scholar]
  62. 62.
    Fu X, Li P, Zhou Q, et al. 2024.. Mechanism of PARP inhibitor resistance and potential overcoming strategies. . Genes Dis. 11:(1):306
    [Google Scholar]
  63. 63.
    Wethington SL, Shah PD, Martin L, et al. 2023.. Combination ATR (ceralasertib) and PARP (olaparib) inhibitor (CAPRI) trial in acquired PARP inhibitor-resistant homologous recombination-deficient ovarian cancer. . Clin. Cancer Res. 29:(15):28007
    [Google Scholar]
  64. 64.
    Barszczewska-Pietraszek G, Drzewiecka M, Czarny P, et al. 2022.. Polθ inhibition: an anticancer therapy for HR-deficient tumours. . Int. J. Mol. Sci. 24:(1):319
    [Google Scholar]
  65. 65.
    Petropoulos M, Karamichali A, Rossetti GG, et al. 2024.. Transcription–replication conflicts underlie sensitivity to PARP inhibitors. . Nature 628:(8007):43341
    [Google Scholar]
  66. 66.
    Azad A, Voskoboynik M, Joshua AM, et al. 2024.. PETRANHA: phase 1/2 study of AZD5305 + novel hormonal agents in patients with metastatic prostate cancer—interim safety and pharmacokinetic results. . J. Clin. Oncol. 42:(4_Suppl.):123 (Abstr.)
    [Google Scholar]
  67. 67.
    Yap TA, Im SA, Schram AM, et al. 2022.. Abstract CT007: PETRA: first in class, first in human trial of the next generation PARP1-selective inhibitor AZD5305 in patients (pts) with BRCA1/2, PALB2 or RAD51C/D mutations. . Cancer Res. 82:(12_Suppl.):CT007
    [Google Scholar]
  68. 68.
    Liu JF, Barry WT, Birrer M, et al. 2014.. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. . Lancet Oncol. 15:(11):120714
    [Google Scholar]
  69. 69.
    Yap TA, Kristeleit R, Michalarea V, et al. 2020.. Phase I trial of the PARP inhibitor olaparib and AKY inhibitor capivasertib in patients with BRCA1/2- and non-BRCA1/2-mutant cancers. . Cancer Discov. 10:(10):152843
    [Google Scholar]
  70. 70.
    Konstantinopoulos PA, Gonzalez-Martin A, Cruz FM, et al. 2022.. EPIK-O/ENGOT-OV61: alpelisib plus olaparib versus cytotoxic chemotherapy in high-grade serous ovarian cancer (phase III study). . Futur. Oncol. 18:(31):348192
    [Google Scholar]
  71. 71.
    Domchek SM, Postel-Vinay S, Im SA, et al. 2020.. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. . Lancet Oncol. 21:(9):115564
    [Google Scholar]
  72. 72.
    Fanucci KA, Pilat MJ, Shyr D, et al. 2023.. Abstract CT145: olaparib +/− atezolizumab in patients with BRCA-mutated (BRCAmt) locally advanced unresectable or metastatic (advanced) breast cancer: an open-label, multicenter, randomized phase II trial. . Cancer Res. 83:(8_Suppl.):CT145
    [Google Scholar]
  73. 73.
    Drew Y, Kim JW, Penson RT, et al. 2024.. Olaparib plus durvalumab, with or without bevacizumab, as treatment in PARP inhibitor-naïve platinum-sensitive relapsed ovarian cancer: a phase II multi-cohort study. . Clin. Cancer Res. 30:(1):5062
    [Google Scholar]
  74. 74.
    Saad F, Clarke NW, Oya M, et al. 2023.. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): final prespecified overall survival results of a randomised, double-blind, phase 3 trial. . Lancet Oncol. 24:(10):1094108
    [Google Scholar]
  75. 75.
    Chi KN, Sandhu S, Smith MR, et al. 2023.. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: second interim analysis of the randomized phase III MAGNITUDE trial. . Ann. Oncol. 34:(9):77282
    [Google Scholar]
  76. 76.
    Rottenberg S, Jaspers JE, Kersbergen A, et al. 2008.. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. . PNAS 105:(44):17079
    [Google Scholar]
  77. 77.
    Evers B, Drost R, Schut E, et al. 2008.. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. . Clin. Cancer Res. 14:(12):391625
    [Google Scholar]
  78. 78.
    Pettitt SJ, Krastev DB, Brandsma I, et al. 2018.. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. . Nat. Commun. 9::1849
    [Google Scholar]
  79. 79.
    Zatreanu D, Robinson HMR, Alkhatib O, et al. 2021.. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. . Nat. Commun. 12::3636
    [Google Scholar]
  80. 80.
    Chaudhuri AR, Callen E, Ding X, et al. 2016.. Replication fork stability confers chemoresistance in BRCA-deficient cells. . Nature 535:(7612):38287
    [Google Scholar]
  81. 81.
    Gogola E, Duarte AA, de Ruiter JR, et al. 2018.. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. . Cancer Cell 33:(6):107893.e12
    [Google Scholar]
/content/journals/10.1146/annurev-med-082523-083843
Loading
/content/journals/10.1146/annurev-med-082523-083843
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error