1932

Abstract

Circulating tumor DNA (ctDNA), often referred to as a liquid biopsy, represents a promising biomarker in the management of both localized and advanced solid tumors. It has garnered significant attention due to its potential to inform prognosis and guide therapeutic decisions. The clinical utility of ctDNA spans early cancer detection, minimal residual disease identification, recurrence surveillance, treatment monitoring, and precision oncology treatment decision-making in the advanced setting. Unlike conventional radiological assessments, the short half-life of ctDNA allows for more timely insights into disease dynamics. Several technological approaches are available to measure ctDNA, including next-generation sequencing and droplet digital polymerase chain reaction, although their clinical accuracy depends on multiple biological and technical factors. This review evaluates current evidence surrounding ctDNA's utility in early and advanced solid tumors.

Keyword(s): biomarkercancerctDNA
Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-100223-090016
2025-01-27
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/med/76/1/annurev-med-100223-090016.html?itemId=/content/journals/10.1146/annurev-med-100223-090016&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mandel P, Metais P. 1948.. Les acides nucléiques du plasma sanguin chez l'homme [Nuclear acids in human blood plasma]. . C. R. Seances Soc. Biol. Fil. 142:(3–4):24143
    [Google Scholar]
  2. 2.
    Anker P, Mulcahy H, Chen XQ, Stroun M. 1999.. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. . Cancer Metastasis Rev. 18:(1):6573
    [Google Scholar]
  3. 3.
    Holtzman NA, Watson MS. 1999.. Promoting safe and effective genetic testing in the United States. Final report of the Task Force on Genetic Testing. . J. Child Fam. Nurs. 2:(5):38890
    [Google Scholar]
  4. 4.
    Krebs MG, Malapelle U, André F, et al. 2022.. Practical considerations for the use of circulating tumor DNA in the treatment of patients with cancer: a narrative review. . JAMA Oncol. 8:(12):183039
    [Google Scholar]
  5. 5.
    Thompson JC, Scholes DG, Carpenter EL, Aggarwal C. 2023.. Molecular response assessment using circulating tumor DNA (ctDNA) in advanced solid tumors. . Br. J. Cancer 129::1893902
    [Google Scholar]
  6. 6.
    Elazezy M, Joosse SA. 2018.. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. . Comput. Struct. Biotechnol. J. 16::37078
    [Google Scholar]
  7. 7.
    Hasenleithner SO, Speicher MR. 2022.. A clinician's handbook for using ctDNA throughout the patient journey. . Mol. Cancer 21:(1):81
    [Google Scholar]
  8. 8.
    Nikanjam M, Kato S, Kurzrock R. 2022.. Liquid biopsy: current technology and clinical applications. . J. Hematol. Oncol. 15:(1):131
    [Google Scholar]
  9. 9.
    Aravanis AM, Lee M, Klausner RD. 2017.. Next-generation sequencing of circulating tumor DNA for early cancer detection. . Cell 168:(4):57174
    [Google Scholar]
  10. 10.
    Pignon J-P, Tribodet H, Scagliotti GV, et al. 2008.. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. . J. Clin. Oncol. 26:(21):355259
    [Google Scholar]
  11. 11.
    Sargent D, Sobrero A, Grothey A, et al. 2009.. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. . J. Clin. Oncol. 27:(6):87277
    [Google Scholar]
  12. 12.
    Peto R, Davies C, Godwin J, et al. 2012.. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. . Lancet 379:(9814):43244
    [Google Scholar]
  13. 13.
    Chin RI, Chen K, Usmani A, et al. 2019.. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). . Mol. Diagn. Ther. 23:(3):31131
    [Google Scholar]
  14. 14.
    Pascual J, Attard G, Bidard FC, et al. 2022.. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. . Ann. Oncol. 33:(8):75068
    [Google Scholar]
  15. 15.
    Santonja A, Cooper WN, Eldridge MD, et al. 2023.. Comparison of tumor-informed and tumor-naïve sequencing assays for ctDNA detection in breast cancer. . EMBO Mol. Med. 15:(6):e16505
    [Google Scholar]
  16. 16.
    Emiloju OE, Storandt M, Zemla T, et al. Tumor-informed circulating tumor DNA for minimal residual disease detection in the management of colorectal cancer. . JCO Precis. Oncol. 2024:(8):e2300127
    [Google Scholar]
  17. 17.
    Kotani D, Oki E, Nakamura Y, et al. 2023.. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. . Nat. Med. 29:(1):12734
    [Google Scholar]
  18. 18.
    Mittal A, Molto Valiente C, Tamimi F, et al. 2023.. Utility of ctDNA in predicting relapse in solid tumors after curative therapy: a meta-analysis. . JNCI Cancer Spectr. 7:(4):pkad040
    [Google Scholar]
  19. 19.
    Garcia-Murillas I, Chopra N, Comino-Méndez I, et al. 2019.. Assessment of molecular relapse detection in early-stage breast cancer. . JAMA Oncol. 5:(10):147378
    [Google Scholar]
  20. 20.
    Chaudhuri AA, Chabon JJ, Lovejoy AF, et al. 2017.. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. . Cancer Discov. 7:(12):1394403
    [Google Scholar]
  21. 21.
    Christensen E, Birkenkamp-Demtröder K, Sethi H, et al. 2019.. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. . J. Clin. Oncol. 37:(18):154757
    [Google Scholar]
  22. 22.
    Landau MA, Zhu B, Akwuole FN, Pai RK. 2019.. Histopathological predictors of recurrence in stage III colon cancer: reappraisal of tumor deposits and tumor budding using AJCC8 criteria. . Int. J. Surg. Pathol. 27:(2):14758
    [Google Scholar]
  23. 23.
    Singh AK, Singhal BM, Yadav SK, Kewlani V. 2023.. Impact of different histopathological factors on recurrence and survival in operated carcinoma esophagus. . Int. J. Recent Surg. Med. Sci. 9::S7379
    [Google Scholar]
  24. 24.
    Poleri C, Morero JL, Nieva B, et al. 2003.. Risk of recurrence in patients with surgically resected stage I non-small cell lung carcinoma: histopathologic and immunohistochemical analysis. . Chest 123:(6):185867
    [Google Scholar]
  25. 25.
    Tie J, Cohen JD, Lahouel K, et al. 2022.. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. . N. Engl. J. Med. 386:(24):226172
    [Google Scholar]
  26. 26.
    Kasi PM, Aushev VN, Ensor J, et al. 2024.. Circulating tumor DNA (ctDNA) for informing adjuvant chemotherapy (ACT) in stage II/III colorectal cancer (CRC): interim analysis of BESPOKE CRC study. . J. Clin. Oncol. 42:(3 Suppl.):9
    [Google Scholar]
  27. 27.
    Morris VK, Yothers G, Kopetz S, et al. 2020.. Phase II/III study of circulating tumor DNA as a predictive biomarker in adjuvant chemotherapy in patients with stage II colon cancer: NRG-GI005 (COBRA). . J. Clin. Oncol. 38:(4 Suppl.):TPS261
    [Google Scholar]
  28. 28.
    Morris VK, Yothers G, Kopetz S, et al. 2024.. Phase II results of circulating tumor DNA as a predictive biomarker in adjuvant chemotherapy in patients with stage II colon cancer: NRG-GI005 (COBRA) phase II/III study. . J. Clin. Oncol. 42:(3 Suppl.):5
    [Google Scholar]
  29. 29.
    Zhou Q, Gampenrieder SP, Frantal S, et al. 2022.. Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response. . Clin. Cancer Res. 28:(4):697707
    [Google Scholar]
  30. 30.
    Dyrskjøt L, Laliotis G, Nordentoft I, et al. 2023.. Utility of ctDNA in predicting outcome and pathological complete response in patients with bladder cancer as a guide for selective bladder preservation strategies. . J. Clin. Oncol. 41:(6 Suppl.):563
    [Google Scholar]
  31. 31.
    Tran HT, Heeke S, Sujit S, et al. 2024.. Circulating tumor DNA and radiological tumor volume identify patients at risk for relapse with resected, early-stage non-small-cell lung cancer. . Ann. Oncol. 35:(2):18389
    [Google Scholar]
  32. 32.
    Lonardi S, Pietrantonio F, Tarazona Llavero N, et al. 2023.. LBA28 The PEGASUS trial: post-surgical liquid biopsy-guided treatment of stage III and high-risk stage II colon cancer patients. . Ann. Oncol. 34::S126869
    [Google Scholar]
  33. 33.
    Shirasu H, Taniguchi H, Matsuhashi N, et al. 2022.. A randomized, double-blind, phase III study comparing trifluridine/tipiracil hydrochloride therapy versus placebo in resected colorectal cancer patients who are positive for blood circulating tumor DNA after standard adjuvant therapy (EPOC 1905): ALTAIR trial in CIRCULATE-Japan (trial in progress). . J. Clin. Oncol. 40:(4 Suppl.):TPS215
    [Google Scholar]
  34. 34.
    Osumi H, Shinozaki E, Ooki A, et al. 2021.. Correlation between circulating tumor DNA and carcinoembryonic antigen levels in patients with metastatic colorectal cancer. . Cancer Med. 10:(24):882028
    [Google Scholar]
  35. 35.
    Bast RC Jr., Xu FJ, Yu YH, et al. 1998.. CA 125: the past and the future. . Int. J. Biol. Markers 13:(4):17987
    [Google Scholar]
  36. 36.
    Ballehaninna UK, Chamberlain RS. 2011.. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. . J. Gastrointest. Oncol. 3:(2):10519
    [Google Scholar]
  37. 37.
    Fakih M, Sandhu J, Wang C, et al. 2022.. Evaluation of comparative surveillance strategies of circulating tumor DNA, imaging, and carcinoembryonic antigen levels in patients with resected colorectal cancer. . JAMA Netw. Open 5:(3):e221093
    [Google Scholar]
  38. 38.
    Pereira E, Camacho-Vanegas O, Anand S, et al. 2016.. Personalized circulating tumor DNA biomarkers dynamically predict treatment response and survival in gynecologic cancers. . PLOS ONE 10:(12):e0145754
    [Google Scholar]
  39. 39.
    Zhou Y, Xu Y, Wang C, et al. 2021.. Serial circulating tumor DNA identification associated with the efficacy and prognosis of neoadjuvant chemotherapy in breast cancer. . Breast Cancer Res. Treat. 188:(3):66173
    [Google Scholar]
  40. 40.
    Nors J, Henriksen TV, Gotschalck KA, et al. 2020.. IMPROVE-IT2: implementing noninvasive circulating tumor DNA analysis to optimize the operative and postoperative treatment for patients with colorectal cancer – intervention trial 2. Study protocol. . Acta Oncol. 59:(3):33641
    [Google Scholar]
  41. 41.
    Tarazona N, Gimeno-Valiente F, Gambardella V, et al. 2019.. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. . Ann. Oncol. 30:(11):180412
    [Google Scholar]
  42. 42.
    Wang B, Pei J, Wang S, et al. 2022.. Prognostic potential of circulating tumor DNA detection at different time periods in resectable non-small cell lung cancer: evidence from a meta-analysis. . Crit. Rev. Oncol. Hematol. 177::103771
    [Google Scholar]
  43. 43.
    Chakravarty D, Johnson A, Sklar J, et al. 2022.. Somatic genomic testing in patients with metastatic or advanced cancer: ASCO provisional clinical opinion. . J. Clin. Oncol. 40:(11):123158
    [Google Scholar]
  44. 44.
    Pascual J, Attard G, Bidard FC, et al. 2022.. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. . Ann. Oncol. 33:(8):75068
    [Google Scholar]
  45. 45.
    Wu SG, Shih JY. 2018.. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. . Mol. Cancer 17:(1):38
    [Google Scholar]
  46. 46.
    US Food Drug Adm. (FDA). 2016.. cobas EGFR mutation test v2. . US Food and Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/cobas-egfr-mutation-test-v2
    [Google Scholar]
  47. 47.
    Tukachinsky H, Madison RW, Chung JH, et al. 2021.. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. . Clin. Cancer Res. 27:(11):3094105
    [Google Scholar]
  48. 48.
    Moynahan ME, Chen D, He W, et al. 2017.. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2 advanced breast cancer: results from BOLERO-2. . Br. J. Cancer 116:(6):72630
    [Google Scholar]
  49. 49.
    Venetis K, Pepe F, Pescia C, et al. 2023.. ESR1 mutations in HR+/HER2− metastatic breast cancer: enhancing the accuracy of ctDNA testing. . Cancer Treat. Rev. 121::102642
    [Google Scholar]
  50. 50.
    Kinugasa H, Nouso K, Miyahara K, et al. 2015.. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. . Cancer 121:(13):227180
    [Google Scholar]
  51. 51.
    Nakamura Y, Taniguchi H, Ikeda M, et al. 2020.. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. . Nat. Med. 26:(12):185964
    [Google Scholar]
  52. 52.
    Sumiyoshi T, Yamasaki T, Takeda M, et al. 2021.. Detection of von Hippel-Lindau gene mutation in circulating cell-free DNA for clear cell renal cell carcinoma. . Cancer Sci. 112:(8):336374
    [Google Scholar]
  53. 53.
    Kotecha RR, Gedvilaite E, Ptashkin R, et al. 2022.. Matched molecular profiling of cell-free DNA and tumor tissue in patients with advanced clear cell renal cell carcinoma. . JCO Precis. Oncol. 6::e2200012
    [Google Scholar]
  54. 54.
    Crucitta S, Pasqualetti F, Gonnelli A, et al. 2024.. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. . BMC Cancer 24:(1):31
    [Google Scholar]
  55. 55.
    Sun X, Abrahamson P, Ballew N, et al. 2023.. The utility of ctDNA in lung cancer clinical research and practice: a systematic review and meta-analysis of clinical studies. . Cancer Investig. 41:(6):57192
    [Google Scholar]
  56. 56.
    Cabel L, Riva F, Servois V, et al. 2017.. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. . Ann. Oncol. 28:(8):19962001
    [Google Scholar]
  57. 57.
    Modi S, Andre F, Krop IE, et al. 2020.. Trastuzumab deruxtecan for HER2-positive metastatic breast cancer: DESTINY-Breast01 subgroup analysis. . J. Clin. Oncol. 38:(15 Suppl.):1036
    [Google Scholar]
  58. 58.
    Zhou C, Imamura F, Cheng Y, et al. 2019.. Early clearance of plasma EGFR mutations as a predictor of response to osimertinib and comparator EGFR-TKIs in the FLAURA trial. . J. Clin. Oncol. 37:(15 Suppl.):9020
    [Google Scholar]
  59. 59.
    Wang H, Zhou F, Qiao M, et al. 2021.. The role of circulating tumor DNA in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. . Front. Oncol. 11::671874
    [Google Scholar]
  60. 60.
    Assaf ZJF, Zou W, Fine AD, et al. 2023.. A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer. . Nat. Med. 29:(4):85968
    [Google Scholar]
  61. 61.
    Jones RP, Pugh SA, Graham J, et al. 2021.. Circulating tumour DNA as a biomarker in resectable and irresectable stage IV colorectal cancer; a systematic review and meta-analysis. . Eur. J. Cancer 144::36881
    [Google Scholar]
  62. 62.
    Callesen LB, Hamfjord J, Boysen AK, et al. 2022.. Circulating tumour DNA and its clinical utility in predicting treatment response or survival in patients with metastatic colorectal cancer: a systematic review and meta-analysis. . Br. J. Cancer 127:(3):50013
    [Google Scholar]
  63. 63.
    Zaman FY, Subramaniam A, Afroz A, et al. 2023.. Circulating tumour DNA (ctDNA) as a predictor of clinical outcome in non-small cell lung cancer undergoing targeted therapies: a systematic review and meta-analysis. . Cancers 15:(9):2425
    [Google Scholar]
  64. 64.
    Soo RA, Martini J-F, van der Wekken AJ, et al. 2021.. Early circulating tumor (ct) DNA dynamics and efficacy of lorlatinib: analysis from the CROWN study. . J. Clin. Oncol. 39:(15 Suppl.):9011
    [Google Scholar]
  65. 65.
    Hong DS, Morris VK, El Osta B, et al. 2016.. Phase IB study of vemurafenib in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with BRAFV600E mutation. . Cancer Discov. 6:(12):135265
    [Google Scholar]
  66. 66.
    Kopetz S, Murphy DA, Pu J, et al. 2022.. Evaluation of baseline BRAF V600E mutation in circulating tumor DNA and efficacy response from the BEACON study. . J. Clin. Oncol. 40:(4 Suppl.):162
    [Google Scholar]
  67. 67.
    Corcoran RB, André T, Atreya CE, et al. 2018.. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. . Cancer Discov. 8:(4):42843
    [Google Scholar]
  68. 68.
    Maron SB, Chatila WK, Millang BM, et al. 2020.. Pembrolizumab with trastuzumab and chemotherapy (PTC) in HER2-positive metastatic esophagogastric cancer (mEG): plasma and tumor-based biomarker analysis. . J. Clin. Oncol. 38:(15 Suppl.):4559
    [Google Scholar]
  69. 69.
    Maron SB, Chase LM, Lomnicki S, et al. 2019.. Circulating tumor DNA sequencing analysis of gastroesophageal adenocarcinoma. . Clin. Cancer Res. 25:(23):7098112
    [Google Scholar]
  70. 70.
    Conteduca V, Wetterskog D, Scarpi E, et al. 2020.. Plasma tumour DNA as an early indicator of treatment response in metastatic castration-resistant prostate cancer. . Br. J. Cancer 123:(6):98287
    [Google Scholar]
  71. 71.
    Kostos L, Fettke H, Kwan EM, Azad AA. 2023.. Utility and clinical application of circulating tumor DNA (ctDNA) in advanced prostate cancer. . Soc. Int. Urol. J. 4:(4):27386
    [Google Scholar]
  72. 72.
    Goodall J, Mateo J, Yuan W, et al. 2017.. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. . Cancer Discov. 7:(9):100617
    [Google Scholar]
  73. 73.
    Jang A, Lanka SM, Jaeger EB, et al. Longitudinal monitoring of circulating tumor DNA to assess the efficacy of immune checkpoint inhibitors in patients with advanced genitourinary malignancies. . JCO Precis. Oncol. 2023:(7):e2300131
    [Google Scholar]
  74. 74.
    Kim YJ, Kang Y, Kim JS, et al. 2021.. Potential of circulating tumor DNA as a predictor of therapeutic responses to immune checkpoint blockades in metastatic renal cell carcinoma. . Sci. Rep. 11:(1):5600
    [Google Scholar]
  75. 75.
    Maia MC, Bergerot PG, Dizman N, et al. 2017.. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. . Kidney Cancer 1:(1):6570
    [Google Scholar]
  76. 76.
    O'Leary B, Hrebien S, Morden JP, et al. 2018.. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. . Nat. Commun. 9:(1):896
    [Google Scholar]
  77. 77.
    Hrebien S, Citi V, Garcia-Murillas I, et al. 2019.. Early ctDNA dynamics as a surrogate for progression-free survival in advanced breast cancer in the BEECH trial. . Ann. Oncol. 30:(6):94552
    [Google Scholar]
  78. 78.
    Parkinson CA, Gale D, Piskorz AM, et al. 2016.. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. . PLOS Med. 13:(12):e1002198
    [Google Scholar]
  79. 79.
    Jakobsen A, Andersen RF, Hansen TF, et al. 2021.. Early ctDNA response to chemotherapy. A potential surrogate marker for overall survival. . Eur. J. Cancer 149::12833
    [Google Scholar]
  80. 80.
    Gracie L, Pan Y, Atenafu EG, et al. 2021.. Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis. . Eur. J. Cancer 158::191207
    [Google Scholar]
  81. 81.
    Jia W, Gao Q, Han A, et al. 2019.. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. . Cancer Biol. Med. 16:(4):65570
    [Google Scholar]
  82. 82.
    Lee JH, Long GV, Menzies AM, et al. 2018.. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. . JAMA Oncol. 4:(5):71721
    [Google Scholar]
  83. 83.
    Bettegowda C, Sausen M, Leary RJ, et al. 2014.. Detection of circulating tumor DNA in early- and late-stage human malignancies. . Sci. Transl. Med. 6:(224):224ra24
    [Google Scholar]
  84. 84.
    Parisi C, Tagliamento M, Belcaid L, et al. 2023.. Circulating tumor DNA in clinical trials for solid tumors: challenges and current applications. . J. Liq. Biopsy 1::100007
    [Google Scholar]
  85. 85.
    Zografos E, Dimitrakopoulos F-I, Koutras A. 2022.. Prognostic value of circulating tumor DNA (ctDNA) in oncogene-driven NSCLC: current knowledge and future perspectives. . Cancers 14:(19):4954
    [Google Scholar]
  86. 86.
    Chen K, Zhao H, Shi Y, et al. 2019.. Perioperative dynamic changes in circulating tumor DNA in patients with lung cancer (DYNAMIC). . Clin. Cancer Res. 25:(23):705867
    [Google Scholar]
  87. 87.
    Oxnard GR, Thress KS, Alden RS, et al. 2016.. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. . J. Clin. Oncol. 34:(28):337582
    [Google Scholar]
  88. 88.
    Sartore-Bianchi A, Pietrantonio F, Lonardi S, et al. 2021.. Phase II study of anti-EGFR rechallenge therapy with panitumumab driven by circulating tumor DNA molecular selection in metastatic colorectal cancer: the CHRONOS trial. . J. Clin. Oncol. 39:(15 Suppl.):3506
    [Google Scholar]
  89. 89.
    Bidard F-C, Hardy-Bessard A-C, Dalenc F, et al. 2022.. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial. . Lancet Oncol. 23:(11):136777
    [Google Scholar]
  90. 90.
    Guo RQ, Peng JZ, Sun J, Li YM. 2023.. Clinical significance of circulating tumor DNA in localized non-small cell lung cancer: a systematic review and meta-analysis. . Clin. Exp. Med. 23:(5):162131
    [Google Scholar]
  91. 91.
    Zhong R, Gao R, Fu W, et al. 2023.. Accuracy of minimal residual disease detection by circulating tumor DNA profiling in lung cancer: a meta-analysis. . BMC Med. 21:(1):180
    [Google Scholar]
  92. 92.
    Chen D, Guo J, Huang H, et al. 2023.. Prognostic value of circulating tumor DNA in operable non-small cell lung cancer: a systematic review and reconstructed individual patient-data based meta-analysis. . BMC Med. 21:(1):467
    [Google Scholar]
  93. 93.
    Papakonstantinou A, Gonzalez NS, Pimentel I, et al. 2022.. Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: a systematic review and meta-analysis. . Cancer Treat. Rev. 104::102362
    [Google Scholar]
  94. 94.
    Cullinane C, Fleming C, O'Leary DP, et al. 2020.. Association of circulating tumor DNA with disease-free survival in breast cancer: a systematic review and meta-analysis. . JAMA Netw. Open 3:(11):e2026921
    [Google Scholar]
  95. 95.
    Chidharla A, Rapoport E, Agarwal K, et al. 2023.. Circulating tumor DNA as a minimal residual disease assessment and recurrence risk in patients undergoing curative-intent resection with or without adjuvant chemotherapy in colorectal cancer: a systematic review and meta-analysis. . Int. J. Mol. Sci. 24:(12):10230
    [Google Scholar]
  96. 96.
    Wang R, Zhao A, Cao N, et al. 2020.. The value of circulation tumor DNA in predicting postoperative recurrence of colorectal cancer: a meta-analysis. . Int. J. Colorectal Dis. 35:(8):146375
    [Google Scholar]
  97. 97.
    Yekedüz E, Köksoy EB, Akbulut H, et al. 2020.. ctDNA as a prognostic factor in operable colon cancer patients: a systematic review and meta-analysis. . Future Oncol. 17:(3):34957
    [Google Scholar]
  98. 98.
    Chen Y, Mo S, Wu M, et al. 2022.. Circulating tumor DNA as a prognostic indicator of colorectal cancer recurrence—a systematic review and meta-analysis. . Int. J. Colorectal Dis. 37:(5):102127
    [Google Scholar]
  99. 99.
    Mi J, Han X, Wang R, et al. 2022.. Circulation tumour DNA in predicting recurrence and prognosis in operable colorectal cancer patients: a meta-analysis. . Eur. J. Clin. Investig. 52:(12):e13842
    [Google Scholar]
  100. 100.
    Fan X, Zhang J, Lu D. 2023.. CtDNA's prognostic value in patients with early-stage colorectal cancer after surgery: a meta-analysis and systematic review. . Medicine 102:(6):e32939
    [Google Scholar]
  101. 101.
    Dawood ZS, Alaimo L, Lima HA, et al. 2023.. Circulating tumor DNA, imaging, and carcinoembryonic antigen: comparison of surveillance strategies among patients who underwent resection of colorectal cancer—a systematic review and meta-analysis. . Ann. Surg. Oncol. 30:(1):25974
    [Google Scholar]
  102. 102.
    Mi J, Wang R, Han X, et al. 2023.. Circulating tumor DNA predicts recurrence and assesses prognosis in operable gastric cancer: a systematic review and meta-analysis. . Medicine 102:(48):e36228
    [Google Scholar]
  103. 103.
    Lee JS, Rhee TM, Pietrasz D, et al. 2019.. Circulating tumor DNA as a prognostic indicator in resectable pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. . Sci. Rep. 9:(1):16971
    [Google Scholar]
  104. 104.
    Fang Z, Meng Q, Zhang B, et al. 2020.. Prognostic value of circulating tumor DNA in pancreatic cancer: a systematic review and meta-analysis. . Aging 13:(2):203148
    [Google Scholar]
  105. 105.
    Chidambaram S, Markar SR. 2022.. Clinical utility and applicability of circulating tumor DNA testing in esophageal cancer: a systematic review and meta-analysis. . Dis. Esophagus 35:(2):doab046
    [Google Scholar]
  106. 106.
    Min L, Chen J, Yu M, et al. 2023.. Utilizing circulating tumour DNA as a prognostic predictor of gastric cancer: a meta-analysis. . Biomarkers 28:(5):42736
    [Google Scholar]
  107. 107.
    Gögenur M, Hadi NA, Qvortrup C, et al. 2022.. ctDNA for risk of recurrence assessment in patients treated with neoadjuvant treatment: a systematic review and meta-analysis. . Ann. Surg. Oncol. 29:(13):866674
    [Google Scholar]
  108. 108.
    Milin-Lazovic J, Madzarevic P, Rajovic N, et al. 2021.. Meta-analysis of circulating cell-free DNA's role in the prognosis of pancreatic cancer. . Cancers 13:(14):3378
    [Google Scholar]
  109. 109.
    Gao Y, Zhang K, Xi H, et al. 2017.. Diagnostic and prognostic value of circulating tumor DNA in gastric cancer: a meta-analysis. . Oncotarget 8:(4):633040
    [Google Scholar]
  110. 110.
    Feng SN, Cen XT, Tan R, et al. 2021.. The prognostic value of circulating tumor DNA in patients with melanoma: a systematic review and meta-analysis. . Transl. Oncol. 14:(6):101072
    [Google Scholar]
  111. 111.
    Mehra N, Dolling D, Sumanasuriya S, et al. 2018.. Plasma cell-free DNA concentration and outcomes from taxane therapy in metastatic castration-resistant prostate cancer from two phase III trials (FIRSTANA and PROSELICA). . Eur. Urol. 74:(3):28391
    [Google Scholar]
/content/journals/10.1146/annurev-med-100223-090016
Loading
/content/journals/10.1146/annurev-med-100223-090016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error