1932

Abstract

The role of protein phosphatases in pathogenic bacteria has been studied extensively over the last two decades. Ser/Thr and Tyr phosphatases are associated with growth and virulence of many bacteria. These phosphatases control kinase-mediated functions and return the proteins to their unmodified state. Biochemical, structural, and functional studies, in addition to extensive genetic characterization, have highlighted the importance of phosphatases in bacteria. However, questions remain regarding the mechanisms driving localization of secretory phosphatases to cellular compartments, identification of receptor phosphatase sensory signals, and a possible role of cofactors and ligands in their functions. This review focuses on the role of Ser/Thr- and Tyr-specific phosphatases present in pathogenic bacteria, with an emphasis on the regulation of basic cellular processes and virulence. Furthermore, we highlight their clinical importance and analyze the development of drugs targeting protein phosphatases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020415-111342
2015-10-15
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-020415-111342.html?itemId=/content/journals/10.1146/annurev-micro-020415-111342&mimeType=html&fmt=ahah

Literature Cited

  1. Adkins I, Koberle M, Grobner S, Bohn E, Autenrieth IB, Borgmann S. 1.  2007. Yersinia outer proteins E, H, P, and T differentially target the cytoskeleton and inhibit phagocytic capacity of dendritic cells. Int. J. Med. Microbiol. 297:235–44 [Google Scholar]
  2. Agarwal S, Agarwal S, Jin H, Pancholi P, Pancholi V. 2.  2012. Serine/threonine phosphatase (SP-STP), secreted from Streptococcus pyogenes, is a pro-apoptotic protein. J. Biol. Chem. 287:9147–67 [Google Scholar]
  3. Agarwal S, Agarwal S, Pancholi P, Pancholi V. 3.  2011. Role of serine/threonine phosphatase (SP-STP) in Streptococcus pyogenes physiology and virulence. J. Biol. Chem. 286:41368–80 [Google Scholar]
  4. Agarwal S, Agarwal S, Pancholi P, Pancholi V. 4.  2012. Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infect. Immun. 80:1361–72 [Google Scholar]
  5. Alonso A, Bottini N, Bruckner S, Rahmouni S, Williams S. 5.  et al. 2004. Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J. Biol. Chem. 279:4922–28 [Google Scholar]
  6. Andersson K, Magnusson KE, Majeed M, Stendahl O, Fallman M. 6.  1999. Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infect. Immun. 67:2567–74 [Google Scholar]
  7. Archambaud C, Gouin E, Pizarro-Cerda J, Cossart P, Dussurget O. 7.  2005. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Mol. Microbiol. 56:383–96 [Google Scholar]
  8. Archambaud C, Nahori MA, Pizarro-Cerda J, Cossart P, Dussurget O. 8.  2006. Control of Listeria superoxide dismutase by phosphorylation. J. Biol. Chem. 281:31812–22 [Google Scholar]
  9. Arora G, Sajid A, Arulanandh MD, Misra R, Singhal A. 9.  et al. 2013. Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/BasPrpC) in Bacillus anthracis. Biometals 26:715–30 [Google Scholar]
  10. Arora G, Sajid A, Arulanandh MD, Singhal A, Mattoo AR. 10.  et al. 2012. Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. J. Biol. Chem. 287:26749–63 [Google Scholar]
  11. Arora G, Sajid A, Gupta M, Bhaduri A, Kumar P. 11.  et al. 2010. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. PLOS ONE 5:e10772 [Google Scholar]
  12. Arora G, Sajid A, Singhal A, Joshi J, Virmani R. 12.  et al. 2014. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLOS Negl. Trop. Dis. 8:e3315 [Google Scholar]
  13. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. 13.  2008. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–22 [Google Scholar]
  14. Bach H, Wong D, Av-Gay Y. 14.  2009. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J. 420:155–60 [Google Scholar]
  15. Banu LD, Conrads G, Rehrauer H, Hussain H, Allan E, van der Ploeg JR. 15.  2010. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect. Immun. 78:2209–20 [Google Scholar]
  16. Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, Veening JW. 16.  2012. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. PNAS 109:E905–13 [Google Scholar]
  17. Bell SD, Denu JM, Dixon JE, Ellington AD. 17.  1998. RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J. Biol. Chem. 273:14309–14 [Google Scholar]
  18. Beltramini AM, Mukhopadhyay CD, Pancholi V. 18.  2009. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect. Immun. 77:1406–16 [Google Scholar]
  19. Bender MH, Yother J. 19.  2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276:47966–74 [Google Scholar]
  20. Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L. 20.  2007. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem. J. 406:13–18 [Google Scholar]
  21. Black DS, Bliska JB. 21.  1997. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16:2730–44 [Google Scholar]
  22. Bliska JB, Black DS. 22.  1995. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect. Immun. 63:681–85 [Google Scholar]
  23. Bliska JB, Copass MC, Falkow S. 23.  1993. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect. Immun. 61:3914–21 [Google Scholar]
  24. Boitel B, Ortiz-Lombardia M, Duran R, Pompeo F, Cole ST. 24.  et al. 2003. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol. 49:1493–508 [Google Scholar]
  25. Bourret RB, Silversmith RE. 25.  2010. Two-component signal transduction. Curr. Opin. Microbiol. 13:113–15 [Google Scholar]
  26. Bruckner S, Rhamouni S, Tautz L, Denault JB, Alonso A. 26.  et al. 2005. Yersinia phosphatase induces mitochondrially dependent apoptosis of T cells. J. Biol. Chem. 280:10388–94 [Google Scholar]
  27. Bubeck SS, Dube PH. 27.  2007. Yersinia pestis CO92 delta yopH is a potent live, attenuated plague vaccine. Clin. Vaccine Immunol. 14:1235–38 [Google Scholar]
  28. Burnside K, Lembo A, de Los RM, Iliuk A, Binhtran NT. 28.  et al. 2010. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLOS ONE 5e11071 [Google Scholar]
  29. Burnside K, Lembo A, Harrell MI, Gurney M, Xue L. 29.  et al. 2011. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. J. Biol. Chem. 286:44197–210 [Google Scholar]
  30. Burnside K, Rajagopal L. 30.  2011. Aspects of eukaryotic-like signaling in gram-positive cocci: a focus on virulence. Future Microbiol. 6:747–61 [Google Scholar]
  31. Button JE, Galan JE. 31.  2011. Regulation of chaperone/effector complex synthesis in a bacterial type III secretion system. Mol. Microbiol. 81:1474–83 [Google Scholar]
  32. Caselli A, Camici G, Manao G, Moneti G, Pazzagli L. 32.  et al. 1994. Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. J. Biol. Chem. 269:24878–82 [Google Scholar]
  33. Castandet J, Prost JF, Peyron P, Astarie-Dequeker C, Anes E. 33.  et al. 2005. Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Res. Microbiol. 156:1005–13 [Google Scholar]
  34. Choi HW, Brooking-Dixon R, Neupane S, Lee CJ, Miao EA. 34.  et al. 2013. Salmonella typhimurium impedes innate immunity with a mast-cell-suppressing protein tyrosine phosphatase, SptP. Immunity 39:1108–20 [Google Scholar]
  35. Chopra P, Singh B, Singh R, Vohra R, Koul A. 35.  et al. 2003. Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem. Biophys. Res. Commun. 311:112–20 [Google Scholar]
  36. Cowley SC, Babakaiff R, Av-Gay Y. 36.  2002. Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res. Microbiol. 153:233–41 [Google Scholar]
  37. Cozzone AJ. 37.  2005. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J. Mol. Microbiol. Biotechnol. 9:198–213 [Google Scholar]
  38. de la Puerta ML, Trinidad AG, del Carmen RM, Bogetz J, Sanchez CM. 38.  et al. 2009. Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLOS ONE 4:e4431 [Google Scholar]
  39. Debarbouille M, Dramsi S, Dussurget O, Nahori MA, Vaganay E. 39.  et al. 2009. Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J. Bacteriol. 191:4070–81 [Google Scholar]
  40. Deleuil F, Mogemark L, Francis MS, Wolf-Watz H, Fallman M. 40.  2003. Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol. 5:53–64 [Google Scholar]
  41. DeVinney R, Steele-Mortimer O, Finlay BB. 41.  2000. Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol. 8:29–33 [Google Scholar]
  42. Dworkin J. 42.  2015. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol. 24:47–52 [Google Scholar]
  43. Ecco G, Vernal J, Razzera G, Martins PA, Matiollo C, Terenzi H. 43.  2010. Mycobacterium tuberculosis tyrosine phosphatase A (PtpA) activity is modulated by S-nitrosylation. Chem. Commun. 46:7501–3 [Google Scholar]
  44. Falk SP, Weisblum B. 44.  2013. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase. FEMS Microbiol. Lett. 340:19–23 [Google Scholar]
  45. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C. 45.  et al. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–62 [Google Scholar]
  46. Flynn EM, Hanson JA, Alber T, Yang H. 46.  2010. Dynamic active-site protection by the M. tuberculosis protein tyrosine phosphatase PtpB lid domain. J. Am. Chem. Soc. 132:4772–80 [Google Scholar]
  47. Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, Golemi-Kotra D. 47.  2013. Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52:7975–86 [Google Scholar]
  48. Fu Y, Galan JE. 48.  1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–97 [Google Scholar]
  49. Geno KA, Hauser JR, Gupta K, Yother J. 49.  2014. Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability. J. Bacteriol. 196:1992–2003 [Google Scholar]
  50. Gerke C, Falkow S, Chien YH. 50.  2005. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. J. Exp. Med. 201:361–71 [Google Scholar]
  51. Goldova J, Ulrych A, Hercik K, Branny P. 51.  2011. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 12:437 [Google Scholar]
  52. Green SP, Hartland EL, Robins-Browne RM, Phillips WA. 52.  1995. Role of YopH in the suppression of tyrosine phosphorylation and respiratory burst activity in murine macrophages infected with Yersinia enterocolitica. J. Leukoc. Biol. 57:972–77 [Google Scholar]
  53. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ. 53.  et al. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLOS Pathog. 7:e1002251 [Google Scholar]
  54. Grosdent N, Maridonneau-Parini I, Sory MP, Cornelis GR. 54.  2002. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70:4165–76 [Google Scholar]
  55. Grundner C, Ng HL, Alber T. 55.  2005. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 13:1625–34 [Google Scholar]
  56. Grundner C, Perrin D, Hooft van Huijsduijnen R, Swinnen D, Gonzalez J. 56.  et al. 2007. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Structure 15:499–509 [Google Scholar]
  57. Guan KL, Dixon JE. 57.  1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249:553–56 [Google Scholar]
  58. Gupta M, Sajid A, Arora G, Tandon V, Singh Y. 58.  2009. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J. Biol. Chem. 284:34723–34 [Google Scholar]
  59. Hagelueken G, Huang H, Mainprize IL, Whitfield C, Naismith JH. 59.  2009. Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J. Mol. Biol. 392:678–88 [Google Scholar]
  60. Hamid N, Gustavsson A, Andersson K, McGee K, Persson C. 60.  et al. 1999. YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27:231–42 [Google Scholar]
  61. Hamon M, Bierne H, Cossart P. 61.  2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4:423–34 [Google Scholar]
  62. Hao H, Dai M, Wang Y, Huang L, Yuan Z. 62.  2012. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus. Future Microbiol. 7:1315–29 [Google Scholar]
  63. He Y, Xu J, Yu ZH, Gunawan AM, Wu L. 63.  et al. 2013. Discovery and evaluation of novel inhibitors of Mycobacterium protein tyrosine phosphatase B from the 6-hydroxy-benzofuran-5-carboxylic acid scaffold. J. Med. Chem. 56:832–42 [Google Scholar]
  64. Hobbie S, Chen LM, Davis RJ, Galan JE. 64.  1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159:5550–59 [Google Scholar]
  65. Hood RD, Singh P, Hsu F, Guvener T, Carl MA. 65.  et al. 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37 [Google Scholar]
  66. Hsu JL, Chen HC, Peng HL, Chang HY. 66.  2008. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 283:9933–44 [Google Scholar]
  67. Humphreys D, Hume PJ, Koronakis V. 67.  2009. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 5:225–33 [Google Scholar]
  68. Hussain H, Branny P, Allan E. 68.  2006. A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. J. Bacteriol. 188:1628–32 [Google Scholar]
  69. Ivanov MI, Stuckey JA, Schubert HL, Saper MA, Bliska JB. 69.  2005. Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence. Mol. Microbiol. 55:1346–56 [Google Scholar]
  70. Jin H, Pancholi V. 70.  2006. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J. Mol. Biol. 357:1351–72 [Google Scholar]
  71. Kalia VC, Wood TK, Kumar P. 71.  2014. Evolution of resistance to quorum-sensing inhibitors. Microb. Ecol. 68:13–23 [Google Scholar]
  72. Kant S, Agarwal S, Pancholi P, Pancholi V. 72.  2015. The Streptococcus pyogenes orphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol. Microbiol. 97:515–40 [Google Scholar]
  73. Kastner R, Dussurget O, Archambaud C, Kernbauer E, Soulat D. 73.  et al. 2011. LipA, a tyrosine and lipid phosphatase involved in the virulence of Listeria monocytogenes. Infect. Immun. 79:2489–98 [Google Scholar]
  74. Kennelly PJ, Potts M. 74.  1999. Life among the primitives: protein O-phosphatases in prokaryotes. Front. Biosci. 4:D372–85 [Google Scholar]
  75. Kerkhoff E, Rapp UR. 75.  1998. Cell cycle targets of Ras/Raf signalling. Oncogene 17:1457–62 [Google Scholar]
  76. Kim HS, Lee SJ, Yoon HJ, An DR, Kim DJ. 76.  et al. 2011. Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases. J. Struct. Biol. 175:442–50 [Google Scholar]
  77. Koul A, Choidas A, Treder M, Tyagi AK, Drlica K. 77.  et al. 2000. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J. Bacteriol. 182:5425–32 [Google Scholar]
  78. Koveal D, Clarkson MW, Wood TK, Page R, Peti W. 78.  2013. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonas aeruginosa. J. Mol. Biol. 425:2219–31 [Google Scholar]
  79. Lai SM, Le Moual H. 79.  2005. PrpZ, a Salmonella enterica serovar Typhi serine/threonine protein phosphatase 2C with dual substrate specificity. Microbiology 151:1159–67 [Google Scholar]
  80. Lee SH, Galan JE. 80.  2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51:483–95 [Google Scholar]
  81. Leone M, Barile E, Vazquez J, Mei A, Guiney D. 81.  et al. 2010. NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem. Biol. Drug Des. 76:10–16 [Google Scholar]
  82. Lhocine N, Arena ET, Bomme P, Ubelmann F, Prévost MC. 82.  et al. 2015. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe 17:164–77 [Google Scholar]
  83. Liebeke M, Meyer H, Donat S, Ohlsen K, Lalk M. 83.  2010. A metabolomic view of Staphylococcus aureus and its ser/thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. Chem. Biol. 17:820–30 [Google Scholar]
  84. Lin SL, Le TX, Cowen DS. 84.  2003. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell. Microbiol. 5:267–75 [Google Scholar]
  85. Logsdon LK, Mecsas J. 85.  2006. The proinflammatory response induced by wild-type Yersinia pseudotuberculosis infection inhibits survival of yop mutants in the gastrointestinal tract and Peyer's patches. Infect. Immun. 74:1516–27 [Google Scholar]
  86. Lyczak JB, Cannon CL, Pier GB. 86.  2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes. Infect. 2:1051–60 [Google Scholar]
  87. Madhurantakam C, Rajakumara E, Mazumdar PA, Saha B, Mitra D. 87.  et al. 2005. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J. Bacteriol. 187:2175–81 [Google Scholar]
  88. Margenat M, Labandera AM, Gil M, Carrion F, Purificação M. 88.  et al. 2015. New potential eukaryotic substrates of the mycobacterial protein tyrosine phosphatase PtpA: hints of a bacterial modulation of macrophage bioenergetics state. Sci. Rep. 5:8819 [Google Scholar]
  89. Matteoli G, Fahl E, Warnke P, Muller S, Bonin M. 89.  et al. 2008. Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice. BMC Microbiol. 8:153 [Google Scholar]
  90. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. 90.  1990. Secretion of Yop proteins by Yersiniae. Infect. Immun. 58:2840–49 [Google Scholar]
  91. Mishra RP, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F. 91.  2012. Vaccines and antibiotic resistance. Curr. Opin. Microbiol. 15:596–602 [Google Scholar]
  92. Morona JK, Morona R, Miller DC, Paton JC. 92.  2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol. 184:577–83 [Google Scholar]
  93. Morona JK, Morona R, Paton JC. 93.  2006. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. PNAS 103:8505–10 [Google Scholar]
  94. Morona JK, Paton JC, Miller DC, Morona R. 94.  2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35:1431–42 [Google Scholar]
  95. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M. 95.  et al. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–30 [Google Scholar]
  96. Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. 96.  2007. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat. Cell Biol. 9:797–803 [Google Scholar]
  97. Mukherjee S, Dhar R, Das AK. 97.  2009. Analyzing the catalytic mechanism of protein tyrosine phosphatase PtpB from Staphylococcus aureus through site-directed mutagenesis. Int. J. Biol. Macromol. 45:463–69 [Google Scholar]
  98. Murli S, Watson RO, Galan JE. 98.  2001. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. 3:795–810 [Google Scholar]
  99. Novakova L, Saskova L, Pallova P, Janecek J, Novotna J. 99.  et al. 2005. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J. 272:1243–54 [Google Scholar]
  100. Osaki M, Arcondeguy T, Bastide A, Touriol C, Prats H, Trombe MC. 100.  2009. The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. J. Bacteriol. 191:4943–50 [Google Scholar]
  101. Passalacqua KD, Satola SW, Crispell EK, Read TD. 101.  2012. A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin. Antimicrob. Agents Chemother. 56:5212–23 [Google Scholar]
  102. Pereira SF, Goss L, Dworkin J. 102.  2011. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev. 75:192–212 [Google Scholar]
  103. Persson C, Carballeira N, Wolf-Watz H, Fallman M. 103.  1997. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16:2307–18 [Google Scholar]
  104. Persson C, Nordfelth R, Andersson K, Forsberg A, Wolf-Watz H, Fallman M. 104.  1999. Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol. Microbiol. 33:828–38 [Google Scholar]
  105. Persson C, Nordfelth R, Holmstrom A, Hakansson S, Rosqvist R, Wolf-Watz H. 105.  1995. Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol. Microbiol. 18:135–50 [Google Scholar]
  106. Poirier V, Bach H, Av-Gay Y. 106.  2014. Mycobacterium tuberculosis promotes anti-apoptotic activity of the macrophage by PtpA protein-dependent dephosphorylation of host GSK3α. J. Biol. Chem. 289:29376–85 [Google Scholar]
  107. Pu M, Wood TK. 107.  2010. Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB. Biochem. Biophys. Res. Commun. 402:351–55 [Google Scholar]
  108. Pullen KE, Ng HL, Sung PY, Good MC, Smith SM, Alber T. 108.  2004. An alternate conformation and a third metal in PstP/PPP, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase. Structure 12:1947–54 [Google Scholar]
  109. Rajagopal L, Clancy A, Rubens CE. 109.  2003. A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J. Biol. Chem. 278:14429–41 [Google Scholar]
  110. Rajagopal L, Vo A, Silvestroni A, Rubens CE. 110.  2005. Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol. Microbiol. 56:1329–46 [Google Scholar]
  111. Rajagopal L, Vo A, Silvestroni A, Rubens CE. 111.  2006. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae. Mol. Microbiol. 62:941–57 [Google Scholar]
  112. Rolan HG, Durand EA, Mecsas J. 112.  2013. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 14:306–17 [Google Scholar]
  113. Römling U, Galperin MY, Gomelsky M. 113.  2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:1–52 [Google Scholar]
  114. Ruckdeschel K, Roggenkamp A, Schubert S, Heesemann J. 114.  1996. Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infect. Immun. 64:724–33 [Google Scholar]
  115. Sacksteder KA, Protopopova M, Barry CE III, Andries K, Nacy CA. 115.  2012. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 7:823–37 [Google Scholar]
  116. Sajid A, Arora G, Gupta M, Upadhyay S, Nandicoori VK, Singh Y. 116.  2011. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLOS ONE 6:e17871 [Google Scholar]
  117. Sassetti CM, Boyd DH, Rubin EJ. 117.  2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:77–84 [Google Scholar]
  118. Sauvonnet N, Lambermont I, van der Bruggen P, Cornelis GR. 118.  2002. YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol. Microbiol. 45:805–15 [Google Scholar]
  119. Shah IM, Laaberki MH, Popham DL, Dworkin J. 119.  2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–96 [Google Scholar]
  120. Shakir SM, Bryant KM, Larabee JL, Hamm EE, Lovchik J. 120.  et al. 2010. Regulatory interactions of a virulence-associated serine/threonine phosphatase-kinase pair in Bacillus anthracis. J. Bacteriol. 192:400–9 [Google Scholar]
  121. Sharma K, Gupta M, Krupa A, Srinivasan N, Singh Y. 121.  2006. EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J. 273:2711–21 [Google Scholar]
  122. Shi L, Potts M, Kennelly PJ. 122.  1998. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22:229–53 [Google Scholar]
  123. Silverman JM, Austin LS, Hsu F, Hicks KG, Hood RD, Mougous JD. 123.  2011. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol. 82:1277–90 [Google Scholar]
  124. Silvestroni A, Jewell KA, Lin WJ, Connelly JE, Ivancic MM. 124.  et al. 2009. Identification of serine/threonine kinase substrates in the human pathogen group B Streptococcus. J. Proteome Res. 8:2563–74 [Google Scholar]
  125. Singh R, Rao V, Shakila H, Gupta R, Khera A. 125.  et al. 2003. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol. Microbiol. 50:751–62 [Google Scholar]
  126. Singhal A, Arora G, Sajid A, Maji A, Bhat A. 126.  et al. 2013. Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci. Rep. 3:2264 [Google Scholar]
  127. Smith CL, Khandelwal P, Keliikuli K, Zuiderweg ER, Saper MA. 127.  2001. Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol. Microbiol. 42:967–79 [Google Scholar]
  128. Soellner MB, Rawls KA, Grundner C, Alber T, Ellman JA. 128.  2007. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J. Am. Chem. Soc. 129:9613–15 [Google Scholar]
  129. Soulat D, Vaganay E, Duclos B, Genestier AL, Etienne J, Cozzone AJ. 129.  2002. Staphylococcus aureus contains two low-molecular-mass phosphotyrosine protein phosphatases. J. Bacteriol. 184:5194–99 [Google Scholar]
  130. Standish AJ, Salim AA, Zhang H, Capon RJ, Morona R. 130.  2012. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production. PLOS ONE 7:e36312 [Google Scholar]
  131. Standish AJ, Whittall JJ, Morona R. 131.  2014. Tyrosine phosphorylation enhances activity of pneumococcal autolysin LytA. Microbiology 160:2745–54 [Google Scholar]
  132. Stebbins CE, Galan JE. 132.  2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81 [Google Scholar]
  133. Stehle T, Sreeramulu S, Lohr F, Richter C, Saxena K. 133.  et al. 2012. The apo-structure of the low molecular weight protein-tyrosine phosphatase A (MptpA) from Mycobacterium tuberculosis allows for better target-specific drug development. J. Biol. Chem. 287:34569–82 [Google Scholar]
  134. Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE, Saper MA. 134.  1994. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate. Nature 370:571–75 [Google Scholar]
  135. Sun F, Ding Y, Ji Q, Liang Z, Deng X. 135.  et al. 2012. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. PNAS 109:15461–66 [Google Scholar]
  136. Sun H, King AJ, Diaz HB, Marshall MS. 136.  2000. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr. Biol. 10:281–84 [Google Scholar]
  137. Taylor WP, Zhang ZY, Widlanski TS. 137.  1996. Quiescent affinity inactivators of protein tyrosine phosphatases. Bioorg. Med. Chem. 4:1515–20 [Google Scholar]
  138. Toniolo C, Balducci E, Romano MR, Proietti D, Ferlenghi I. 138.  et al. 2015. Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins CpsABCD. J. Biol. Chem. 290:9521–32 [Google Scholar]
  139. Ueda A, Wood TK. 139.  2009. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLOS Pathog. 5:e1000483 [Google Scholar]
  140. Ulijasz AT, Falk SP, Weisblum B. 140.  2009. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol. Microbiol. 71:382–90 [Google Scholar]
  141. Viboud GI, So SS, Ryndak MB, Bliska JB. 141.  2003. Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosis. Mol. Microbiol. 47:1305–15 [Google Scholar]
  142. Virshup DM, Shenolikar S. 142.  2009. From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33:537–45 [Google Scholar]
  143. Wehenkel A, Bellinzoni M, Schaeffer F, Villarino A, Alzari PM. 143.  2007. Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases. J. Mol. Biol. 374:890–98 [Google Scholar]
  144. Wei P, Wong WW, Park JS, Corcoran EE, Peisajovich SG. 144.  et al. 2012. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488:384–88 [Google Scholar]
  145. Whitmore SE, Lamont RJ. 145.  2012. Tyrosine phosphorylation and bacterial virulence. Int. J. Oral Sci. 4:1–6 [Google Scholar]
  146. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. 146.  2011. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. PNAS 108:19371–76 [Google Scholar]
  147. Wright DP, Ulijasz AT. 147.  2014. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in gram-positive bacterial pathogens. Virulence 5:863–85 [Google Scholar]
  148. Zhou B, He Y, Zhang X, Xu J, Luo Y. 148.  et al. 2010. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. PNAS 107:4573–78 [Google Scholar]
  149. Zhou P, Li W, Wong D, Xie J, Av-Gay Y. 149.  2015. Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. FEBS Lett. 589:326–31 [Google Scholar]
/content/journals/10.1146/annurev-micro-020415-111342
Loading
/content/journals/10.1146/annurev-micro-020415-111342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error