At the end of the multistep transcription process, the elongating RNA polymerase (RNAP) is dislodged from the DNA template either at specific DNA sequences, called the terminators, or by a nascent RNA-dependent helicase, Rho. In , about half of the transcription events are terminated by the Rho protein. Rho utilizes its RNA-dependent ATPase activities to translocate along the mRNA and eventually dislodges the RNAP via an unknown mechanism. The transcription elongation factor NusG facilitates this termination process by directly interacting with Rho. In this review, we discuss current models describing the mechanism of action of this hexameric transcription terminator, its regulation by different and factors, and the effects of the termination process on physiological processes in bacterial cells, particularly and Typhimurium.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adhya S, Gottesman M. 1.  1978. Control of transcription termination. Annu. Rev. Biochem. 47:967–96 [Google Scholar]
  2. Adhya S, Gottesman M, De Crombrugghe B. 2.  1974. Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription. PNAS 71:2534–38 [Google Scholar]
  3. Aguilera A, Garcia-Muse T. 3.  2012. R loops: From transcription byproducts to threats to genome stability. Mol. Cell 46:115–24 [Google Scholar]
  4. Banerjee R, Nath S, Ranjan A, Khamrui S, Pani B. 4.  et al. 2012. The first structure of polarity suppression protein, Psu from enterobacteria phage P4, reveals a novel fold and a knotted dimer. J. Biol. Chem. 287:44667–75 [Google Scholar]
  5. Banerjee S, Chalissery J, Bandey I, Sen R. 5.  2006. Rho-dependent transcription termination: more questions than answers. J. Microbiol. 44:11–22 [Google Scholar]
  6. Bear DG, Hicks PS, Escudero KW, Andrews CL, McSwiggen JA, von Hippel PH. 6.  1988. Interactions of Escherichia coli transcription termination factor rho with RNA: II. Electron microscopy and nuclease protection experiments. J. Mol. Biol. 199:4623–35 [Google Scholar]
  7. Bogden CE, Fass D, Bergman N, Nichols MD, Berger JM. 7.  1999. The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3:487–93 [Google Scholar]
  8. Bossi L, Schwartz A, Guillemardet B, Boudvillain M, Figueroa-Bossi N. 8.  2012. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26:1864–73 [Google Scholar]
  9. Boudvillain M, Figueroa-Bossi N, Bossi L. 9.  2013. Terminator still moving forward: expanding roles for Rho factor. Curr. Opin. Microbiol. 16:118–24 [Google Scholar]
  10. Brennan CA, Dombroski AJ, Platt T. 10.  1987. Transcription termination factor rho is an RNA-DNA helicase. Cell 48:945–52 [Google Scholar]
  11. Brennan CA, Platt T. 11.  1991. Mutations in an RNP1 consensus sequence of Rho protein reduce RNA binding affinity but facilitate helicase turnover. J. Biol. Chem. 266:17296–305 [Google Scholar]
  12. Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL. 12.  et al. 2010. A NusE:NusG complex links transcription and translation. Science 328:501–4 [Google Scholar]
  13. Burns CM, Nowatzke WL, Richardson JP. 13.  1999. Activation of Rho-dependent transcription termination by NusG: Dependence on terminator location and acceleration of RNA release. J. Biol. Chem. 274:5245–51 [Google Scholar]
  14. Burns CM, Richardson LV, Richardson JP. 14.  1998. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J. Mol. Biol. 278:307–16 [Google Scholar]
  15. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X. 15.  et al. 2005. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–37 [Google Scholar]
  16. Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. 16.  2008. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320:935–38 [Google Scholar]
  17. Carpousis AJ. 17.  2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61:71–87 [Google Scholar]
  18. Chalissery J, Banerjee S, Bandey I, Sen R. 18.  2007. Transcription termination defective mutants of Rho: role of different functions of Rho in releasing RNA from the elongation complex. J. Mol. Biol. 371:855–72 [Google Scholar]
  19. Chalissery J, Muteeb G, Kalarickal NC, Mohan S, Jisha V, Sen R. 19.  2011. Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. J. Mol. Biol. 405:49–64 [Google Scholar]
  20. Ciampi MS. 20.  2006. Rho-dependent terminators and transcription termination. Microbiology 152:2515–28 [Google Scholar]
  21. Darlix JL. 21.  1973. The functions of rho in T7-DNA transcription in vitro. Eur. J. Biochem. 35:517–26 [Google Scholar]
  22. Das A, Court D, Adhya S. 22.  1976. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. PNAS 73:1959–63 [Google Scholar]
  23. De Crombrugghe B, Adhya S, Gottesman M, Pastan I. 23.  1973. Effect of Rho on transcription of bacterial operons. Nat. N. Biol. 241:260–64 [Google Scholar]
  24. De Septenville AL, Duigou S, Boubakri H, Michel B. 24.  2012. Replication fork reversal after replication-transcription collision. PLOS Genet 8:e1002622 [Google Scholar]
  25. D'Heygere F, Rabhi M, Boudvillain M. 25.  2013. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology 159:1423–36 [Google Scholar]
  26. Dolan JW, Marshall NF, Richardson JP. 26.  1990. Transcription termination factor rho has three distinct structural domains. J. Biol. Chem. 265:5747–54 [Google Scholar]
  27. Dombroski AJ, Brennan CA, Spear P, Platt T. 27.  1988. Site-directed alterations in the ATP-binding domain of rho protein affect its activities as a termination factor. J. Biol. Chem. 263:18802–9 [Google Scholar]
  28. Dombroski AJ, LaDine JR, Cross RL, Platt T. 28.  1988. The ATP binding site on rho protein: affinity labeling of Lys181 by pyridoxal 5′-diphospho-5′-adenosine. J. Biol. Chem. 263:18810–15 [Google Scholar]
  29. Dombroski AJ, Platt T. 29.  1988. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. PNAS 85:2538–42 [Google Scholar]
  30. Dornenburg JE, Devita AM, Palumbo MJ, Wade JT. 30.  2010. Widespread antisense transcription in Escherichia coli. mBio 1:e00024–10 [Google Scholar]
  31. Dreyfus M. 31.  2009. Killer and protective ribosomes. Prog. Mol. Biol. Transl. Sci. 85:423–66 [Google Scholar]
  32. Drolet M, Broccoli S, Rallu F, Hraiky C, Fortin C. 32.  et al. 2003. The problem of hypernegative supercoiling and R-loop formation in transcription. Front. Biosci. 8:d210–21 [Google Scholar]
  33. Dutta D, Chalissery J, Sen R. 33.  2008. Transcription termination factor rho prefers catalytically active elongation complexes for releasing RNA. J. Biol. Chem. 283:20243–51 [Google Scholar]
  34. Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 34.  2011. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146:533–43 [Google Scholar]
  35. Epshtein V, Dutta D, Wade J, Nudler E. 35.  2010. An allosteric mechanism of Rho-dependent transcription termination. Nature 463:245–49 [Google Scholar]
  36. Figueroa-Bossi N, Schwartz A, Guillemardet B, D'Heygere F, Bossi L, Boudvillain M. 36.  2014. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28:1239–51 [Google Scholar]
  37. Finger LR, Richardson JP. 37.  1982. Stabilization of the hexameric form of Escherichia coli protein rho under ATP hydrolysis conditions. J. Mol. Biol. 156:203–19 [Google Scholar]
  38. Galluppi GR, Richardson JP. 38.  1980. ATP-induced changes in the binding of RNA synthesis termination protein Rho to RNA. J. Mol. Biol. 138:513–39 [Google Scholar]
  39. Geiselmann J, Seifried SE, Yager TD, Liang C, von Hippel PH. 39.  1992. Physical properties of the Escherichia coli transcription termination factor rho: 2. Quaternary structure of the rho hexamer. Biochemistry 31:121–32 [Google Scholar]
  40. Geiselmann J, von Hippel PH. 40.  1992. Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho: I. Binding of ATP. Protein Sci 1:850–60 [Google Scholar]
  41. Geiselmann J, Yager TD, Gill SC, Calmettes P, von Hippel PH. 41.  1992. Physical properties of the Escherichia coli transcription termination factor rho: 1. Association states and geometry of the rho hexamer. Biochemistry 31:111–21 [Google Scholar]
  42. Georg J, Hess WR. 42.  2011. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75:286–300 [Google Scholar]
  43. Goldberg AR, Hurwitz J. 43.  1972. Studies on termination of in vitro ribonucleic acid synthesis by rho factor. J. Biol. Chem. 247:5637–45 [Google Scholar]
  44. Gowrishankar J, Harinarayanan R. 44.  2004. Why is transcription coupled to translation in bacteria?. Mol. Microbiol. 54:598–603 [Google Scholar]
  45. Gowrishankar J, Leela JK, Anupama K. 45.  2013. R-loops in bacterial transcription: Their causes and consequences. Transcription 4:153–57 [Google Scholar]
  46. Grylak-Mielnicka A, Bidnenko V, Bardowski J, Bidnenko E. 46.  2016. Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. Microbiology 162:433–47 [Google Scholar]
  47. Guarente LP, Beckwith J. 47.  1978. Mutant RNA polymerase of Escherichia coli terminates transcription in strains making defective rho factor. PNAS 75:294–97 [Google Scholar]
  48. Guerin M, Robichon N, Geiselmann J, Rahmouni AR. 48.  1998. A simple polypyrimidine repeat acts as an artificial Rho-dependent terminator in vivo and in vitro. Nucleic Acids Res 26:4895–900 [Google Scholar]
  49. Gulletta E, Das A, Adhya S. 49.  1983. The pleiotropic ts15 mutation of E.coli is an IS1 insertion in the rho structural gene. Genetics 105:265–80 [Google Scholar]
  50. Gutierrez P, Kozlov G, Gabrielli L, Elias D, Osborne MJ. 50.  et al. 2007. Solution structure of YaeO, a Rho-specific inhibitor of transcription termination. J. Biol. Chem. 282:23348–53 [Google Scholar]
  51. Hart CM, Roberts JW. 51.  1994. Deletion analysis of the lambda tR1 termination region: effect of sequences near the transcript release sites, and the minimum length of rho-dependent transcripts. J. Mol. Biol. 237:255–65 [Google Scholar]
  52. Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A. 52.  et al. 2012. Riboswitch control of Rho-dependent transcription termination. PNAS 109:5376–81 [Google Scholar]
  53. Hollands K, Sevostiyanova A, Groisman EA. 53.  2014. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. PNAS 111:E1999–2007 [Google Scholar]
  54. Howard BH, de Crombrugghe B. 54.  1976. ATPase activity required for termination of transcription by the Escherichia coli protein factor rho. J. Biol. Chem. 251:2520–24 [Google Scholar]
  55. Inoko H, Shigesada K, Imai M. 55.  1977. Isolation and characterization of conditional-lethal rho mutants of Escherichia coli. PNAS 74:1162–66 [Google Scholar]
  56. Jin DJ, Burgess RR, Richardson JP, Gross CA. 56.  1992. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. PNAS 89:1453–57 [Google Scholar]
  57. Jin DJ, Gross CA. 57.  1988. Mapping and sequencing of mutations in the Escherichia colirpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202:45–58 [Google Scholar]
  58. Jin DJ, Walter WA, Gross CA. 58.  1988. Characterization of the termination phenotypes of rifampicin-resistant mutants. J. Mol. Biol. 202:245–53 [Google Scholar]
  59. Kalyani BS, Muteeb G, Qayyum MZ, Sen R. 59.  2011. Interaction with the nascent RNA is a prerequisite for the recruitment of Rho to the transcription elongation complex in vitro. J. Mol. Biol. 413:548–60 [Google Scholar]
  60. Kamarthapu V, Nudler E. 60.  2015. Rethinking transcription coupled DNA repair. Curr. Opin. Microbiol. 24:15–20 [Google Scholar]
  61. Koslover DJ, Fazal FM, Mooney RA, Landick R, Block SM. 61.  2012. Binding and translocation of termination factor rho studied at the single-molecule level. J. Mol. Biol. 423:664–76 [Google Scholar]
  62. Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. 62.  2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 4:e04970 [Google Scholar]
  63. Kriner MA, Groisman EA. 63.  2015. The bacterial transcription termination factor Rho coordinates Mg2+ homeostasis with translational signals. J. Mol. Biol. 427:3834–49 [Google Scholar]
  64. Kriner MA, Sevostyanova A, Groisman EA. 64.  2016. Learning from the leaders: gene regulation by the transcription termination factor Rho. Trends Biochem. Sci 41:690–99 [Google Scholar]
  65. Lawson MR, Dyer K, Berger JM. 65.  2016. Ligand-induced and small-molecule control of substrate loading in a hexameric helicase. PNAS 113:13714–19 [Google Scholar]
  66. Leela JK, Syeda AH, Anupama K, Gowrishankar J. 66.  2013. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. PNAS 110:258–63 [Google Scholar]
  67. Li J, Horwitz R, McCracken S, Greenblatt J. 67.  1992. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J. Biol. Chem. 267:6012–19 [Google Scholar]
  68. Li J, Mason SW, Greenblatt J. 68.  1993. Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev 7:161–72 [Google Scholar]
  69. Li X, Manley JL. 69.  2006. Cotranscriptional processes and their influence on genome stability. Genes Dev 20:1838–47 [Google Scholar]
  70. Liu B, Steitz TA. 70.  2017. Structural insights into NusG regulating transcription elongation. Nucleic Acids Res 45:968–74 [Google Scholar]
  71. Lowery C, Richardson JP. 71.  1977. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor ρ: Enzymatic properties and effects of inhibitors. J. Biol. Chem. 252:1375–80 [Google Scholar]
  72. Lowery-Goldhammer C, Richardson JP. 72.  1974. An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. PNAS 71:2003–7 [Google Scholar]
  73. Magyar A, Zhang X, Abdi F, Kohn H, Widger WR. 73.  1999. Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant rho proteins. J. Biol. Chem. 274:7316–24 [Google Scholar]
  74. Magyar A, Zhang X, Kohn H, Widger WR. 74.  1996. The antibiotic bicyclomycin affects the secondary RNA binding site of Escherichia coli transcription termination factor Rho. J. Biol. Chem. 271:25369–74 [Google Scholar]
  75. Martinez A, Burns CM, Richardson JP. 75.  1996. Residues in the RNP1-like sequence motif of Rho protein are involved in RNA-binding affinity and discrimination. J. Mol. Biol. 257:909–18 [Google Scholar]
  76. Michaux C, Verneuil N, Hartke A, Giard JC. 76.  2014. Physiological roles of small RNA molecules. Microbiology 160:1007–19 [Google Scholar]
  77. Miwa Y, Horiguchi T, Shigesada K. 77.  1995. Structural and functional dissections of transcription termination factor rho by random mutagenesis. J. Mol. Biol. 254:815–37 [Google Scholar]
  78. Modrak D, Richardson JP. 78.  1994. The RNA-binding domain of transcription termination factor rho: isolation, characterization, and determination of sequence limits. Biochemistry 33:8292–99 [Google Scholar]
  79. Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. 79.  2009. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33:97–108 [Google Scholar]
  80. Mori H, Imai M, Shigesada K. 80.  1989. Mutant rho factors with increased transcription termination activities: II. Identification and functional dissection of amino acid changes. J. Mol. Biol. 210:39–49 [Google Scholar]
  81. Moyse KA, Knight JS, Richardson JP. 81.  2000. The bicyclomycin sensitivities of 38 bicyclomycin-resistant mutants of transcription termination protein rho and the location of their mutations support a structural model of rho based on the F1 ATPase. J. Mol. Biol. 302:565–79 [Google Scholar]
  82. Neely MN, Friedman DI. 82.  1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: Location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28:1255–67 [Google Scholar]
  83. Nehrke KW, Zalatan F, Platt T. 83.  1993. NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene. Expr. 3:119–33 [Google Scholar]
  84. Pani B, Banerjee S, Chalissery J, Muralimohan A, Loganathan RM. 84.  et al. 2006. Mechanism of inhibition of Rho-dependent transcription termination by bacteriophage P4 protein Psu. J. Biol. Chem. 281:26491–500 [Google Scholar]
  85. Pani B, Ranjan A, Sen R. 85.  2009. Interaction surface of bacteriophage P4 protein Psu required for complex formation with the transcription terminator Rho. J. Mol. Biol. 389:647–60 [Google Scholar]
  86. Park HG, Zhang X, Moon HS, Zwiefka A, Cox K. 86.  et al. 1995. Bicyclomycin and dihydrobicyclomycin inhibition kinetics of Escherichia coli rho-dependent transcription termination factor ATPase activity. Arch. Biochem. Biophys. 323:447–54 [Google Scholar]
  87. Park JS, Roberts JW. 87.  2006. Role of DNA bubble rewinding in enzymatic transcription termination. PNAS 103:4870–75 [Google Scholar]
  88. Pasman Z, von Hippel PH. 88.  2000. Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry 39:5573–85 [Google Scholar]
  89. Pereira S, Platt T. 89.  1995. A mutation in the ATP binding domain of rho alters its RNA binding properties and uncouples ATP hydrolysis from helicase activity. J. Biol. Chem. 270:30401–7 [Google Scholar]
  90. Pereira S, Platt T. 90.  1995. Analysis of E.coli rho factor: mutations affecting secondary-site interactions. J. Mol. Biol. 251:30–40 [Google Scholar]
  91. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 91.  2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26:2621–33 [Google Scholar]
  92. Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. 92.  2000. Rho directs widespread termination of intragenic and stable RNA transcription. PNAS 106:15406–11 [Google Scholar]
  93. Peters JM, Vangeloff AD, Landick R. 93.  2011. Bacterial transcription terminators: The RNA 3′-end chronicles. J. Mol. Biol. 412:793–813 [Google Scholar]
  94. Proshkin S, Mironov A, Nudler E. 94.  2014. Riboswitches in regulation of Rho-dependent transcription termination. Biochim. Biophys. Acta 1839:974–77 [Google Scholar]
  95. Qayyum MZ, Dey D, Sen R. 95.  2016. Transcription elongation factorNusAis a general antagonist of Rho-dependent termination in Escherichia coli. J. Biol. Chem. 291:8090–108 [Google Scholar]
  96. Rabhi M, Espeli O, Schwartz A, Cayrol B, Rahmouni AR. 96.  et al. 2011. The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J 30:2805–16 [Google Scholar]
  97. Rabhi M, Tuma R, Boudvillain M. 97.  2010. RNA remodeling by hexameric RNA helicases. RNA Biol 7:655–66 [Google Scholar]
  98. Ranjan A, Banerjee R, Pani B, Sen U, Sen R. 98.  2013. The moonlighting function of bacteriophage P4 capsid protein, Psu, as a transcription antiterminator. Bacteriophage 3:e25657 [Google Scholar]
  99. Ranjan A, Sharma S, Banerjee R, Sen U, Sen R. 99.  2013. Structural and mechanistic basis of anti-termination of Rho-dependent transcription termination by bacteriophage P4 capsid protein Psu. Nucleic Acids Res 41:6839–56 [Google Scholar]
  100. Ray-Soni A, Bellecourt MJ, Landick R. 100.  2016. Mechanisms of bacterial transcription termination: all good things must end. Annu. Rev. Biochem. 85:319–47 [Google Scholar]
  101. Richardson JP. 101.  2002. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577:251–60 [Google Scholar]
  102. Richardson JP, Conaway R. 102.  1980. Ribonucleic acid release activity of transcription termination protein rho is dependent on the hydrolysis of nucleoside triphosphates. Biochemistry 19:4293–99 [Google Scholar]
  103. Richardson JP, Grimley C, Lowery C. 103.  1975. Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations. PNAS 72:1725–28 [Google Scholar]
  104. Richardson LV, Richardson JP. 104.  1992. Cytosine nucleoside inhibition of the ATPase of Escherichia coli termination factor rho: evidence for a base specific interaction between rho and RNA. Nucleic Acids Res 20:5383–87 [Google Scholar]
  105. Roberts JW. 105.  1969. Termination factor for RNA synthesis. Nature 224:1168–74 [Google Scholar]
  106. Sauer B, Ow D, Ling L, Calendar R. 106.  1981. Mutants of satellite bacteriophage P4 that are defective in the suppression of transcriptional polarity. J. Mol. Biol. 145:29–46 [Google Scholar]
  107. Schmidt MC, Chamberlin MJ. 107.  1984. Binding of rho factor to Escherichia coli RNA polymerase mediated by nusA protein. J. Biol. Chem. 259:15000–2 [Google Scholar]
  108. Schwartz A, Margeat E, Rahmouni AR, Boudvillain M. 108.  2007. Transcription termination factor rho can displace streptavidin from biotinylated RNA. J. Biol. Chem. 282:31469–76 [Google Scholar]
  109. Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J. 109.  et al. 2016. sRNA-mediated control of transcription termination in E. coli. Cell 167:111–21.e13 [Google Scholar]
  110. Sen R, Chalissery J, Qayyum MZ, Vishalini V, Muteeb G. 110.  2014. Nus factors of Escherichia coli. EcoSal Plus 6:ESP–0008-2013 [Google Scholar]
  111. Serganov A, Nudler E. 111.  2013. A decade of riboswitches. Cell 152:17–24 [Google Scholar]
  112. Sevostyanova A, Groisman EA. 112.  2015. An RNA motif advances transcription by preventing Rho-dependent termination. PNAS 112:E6835–43 [Google Scholar]
  113. Sharma UK, Chatterji D. 113.  2010. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMSMicrobiol. Rev. 34:646–57 [Google Scholar]
  114. Shashni R, Mishra S, Kalayani BS, Sen R. 114.  2012. Suppression of in vivo Rho-dependent transcription termination defects: evidence for kinetically controlled steps. Microbiology 158:1468–81 [Google Scholar]
  115. Shashni R, Qayyum MZ, Vishalini V, Dey D, Sen R. 115.  2014. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Res 42:9677–90 [Google Scholar]
  116. Shigesada K, Wu CW. 116.  1980. Studies of RNA release reaction catalyzed by E. coli transcription termination factor rho using isolated ternary transcription complexes. Nucleic Acids Res 8:3355–69 [Google Scholar]
  117. Skordalakes E, Berger JM. 117.  2003. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114:135–46 [Google Scholar]
  118. Skordalakes E, Berger JM. 118.  2006. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination factor. Cell 127:553–64 [Google Scholar]
  119. Skordalakes E, Brogan AP, Park BS, Kohn H, Berger JM. 119.  2005. Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin. Structure 13:99–109 [Google Scholar]
  120. Steinmetz EJ, Platt T. 120.  1994. Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. PNAS 91:1401–5 [Google Scholar]
  121. Stitt BL. 121.  1988. Escherichia coli transcription termination protein rho has three hydrolytic sites for ATP. J. Biol. Chem. 263:11130–37 [Google Scholar]
  122. Sullivan SL, Gottesman ME. 122.  1992. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68:989–94 [Google Scholar]
  123. Sullivan SL, Ward DF, Gottesman ME. 123.  1992. Effect of Escherichia colinus G function on λ N-mediated transcription antitermination. J. Bacteriol. 174:1339–44 [Google Scholar]
  124. Sunshine M, Six E. 124.  1976. Relief of P2 bacteriophage amber mutant polarity by the satellite bacteriophage P4. J. Mol. Biol. 106:673–82 [Google Scholar]
  125. Takemoto N, Tanaka Y, Inui M. 125.  2015. Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic Acids Res. 43:520–29 [Google Scholar]
  126. Thomsen ND, Berger JM. 126.  2009. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–34 [Google Scholar]
  127. Thomsen ND, Lawson MR, Witkowsky LB, Qu S, Berger JM. 127.  2016. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. PNAS 113:E7691–700 [Google Scholar]
  128. Tomar SK, Artsimovitch I. 128.  2013. NusG-Spt5 proteins—universal tools for transcription modification and communication. Chem. Rev. 113:8604–19 [Google Scholar]
  129. Tsurushita N, Shigesada K, Imai M. 129.  1989. Mutant rho factors with increased transcription termination activities: I. Functional correlations of the primary and secondary polynucleotide binding sites with the efficiency and site-selectivity of rho-dependent termination. J. Mol. Biol. 210:23–37 [Google Scholar]
  130. Valabhoju V, Agrawal S, Sen R. 130.  2016. Molecular basis of NusG-mediated regulation of Rho-dependent transcription termination in bacteria. J. Biol. Chem. 291:22386–403 [Google Scholar]
  131. Voigt K, Sharma CM, Mitschke J, Lambrecht SJ, Voss B. 131.  et al. 2014. Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity. ISME J 8:2056–68 [Google Scholar]
  132. Wade JT, Grainger DC. 132.  2014. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat. Rev. Microbiol. 12:647–53 [Google Scholar]
  133. Wang Y, von Hippel PH. 133.  1993. Escherichia coli transcription termination factor rho: II. Binding of oligonucleotide cofactors. J. Biol. Chem. 268:13947–55 [Google Scholar]
  134. Washburn RS, Gottesman ME. 134.  2011. Transcription termination maintains chromosome integrity. PNAS 108:792–97 [Google Scholar]
  135. Yuan AH, Hochschild A. 135.  2017. A bacterial global regulator forms a prion. Science 355:6321198–201 [Google Scholar]
  136. Zwiefka A, Kohn H, Widger WR. 136.  1993. Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli. Biochemistry 32:3564–70 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error