1932

Abstract

The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-110850
2024-11-20
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-032421-110850.html?itemId=/content/journals/10.1146/annurev-micro-032421-110850&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abelson PH, Aldous E. 1950.. Ion antagonisms in microorganisms; interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. . J. Bacteriol. 60::40113
    [Crossref] [Google Scholar]
  2. 2.
    Alexandre G, Greer-Phillips S, Zhulin IB. 2004.. Ecological role of energy taxis in microorganisms. . FEMS Microbiol. Rev. 28::11326
    [Crossref] [Google Scholar]
  3. 3.
    Alley MRK, Maddock JR, Shapiro L. 1992.. Polar localization of a bacterial chemoreceptor. . Genes Dev. 6::82536
    [Crossref] [Google Scholar]
  4. 4.
    Armitage JP. 2022.. Swimming using a unidirectionally rotating, single stopping flagellum in the alpha proteobacterium Rhodobacter sphaeroides. . Front. Microbiol. 13::893524
    [Crossref] [Google Scholar]
  5. 5.
    Armitage JP, Schmitt R. 1997.. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme?. Microbiology 143::367182
    [Crossref] [Google Scholar]
  6. 6.
    Berry MA, Andrianova EP, Zhulin IB. 2023.. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. . bioRxiv 2023.09.19.558490. https://doi.org/10.1101/2023.09.19.558490
  7. 7.
    Bi S, Jin F, Sourjik V. 2018.. Inverted signaling by bacterial chemotaxis receptors. . Nat. Commun. 9::2927
    [Crossref] [Google Scholar]
  8. 8.
    Bi S, Pollard AM, Yang Y, Jin F, Sourjik V. 2016.. Engineering hybrid chemotaxis receptors in bacteria. . ACS Synth. Biol. 5::9891001
    [Crossref] [Google Scholar]
  9. 9.
    Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL. 2006.. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. . PNAS 103::1150914
    [Crossref] [Google Scholar]
  10. 10.
    Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. 2019.. Structural and proteomic changes in viable but non-culturable Vibrio cholerae. . Front. Microbiol. 10::793
    [Crossref] [Google Scholar]
  11. 11.
    Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR. 2012.. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. . PNAS 109::376671
    [Crossref] [Google Scholar]
  12. 12.
    Briegel A, Ortega DR, Tocheva EI, Wuichet K, Zhuo L, et al. 2009.. Universal architecture of bacterial chemoreceptor arrays. . PNAS 106::1718186
    [Crossref] [Google Scholar]
  13. 13.
    Briegel A, Ortega DR, Huang A, Oikonomou CM, Gunsalus RP, Jensen GJ. 2015.. Structural conservation of chemotaxis machinery across Archaea and Bacteria. . Physiol. Behav. 7::41419
    [Google Scholar]
  14. 14.
    Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, et al. 2014.. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. . eLife 3::e02151
    [Crossref] [Google Scholar]
  15. 15.
    Briegel A, Ortega DR, Mann P, Kjær A, Ringgaard S, Jensen GJ. 2016.. Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM. . PNAS 113::1041217
    [Crossref] [Google Scholar]
  16. 16.
    Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M, et al. 2020.. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. . Nat. Commun. 11::743
    [Crossref] [Google Scholar]
  17. 17.
    Burt A, Cassidy CK, Stansfeld PJ, Gutsche I. 2021.. Alternative architecture of the E. coli chemosensory array. . Biomolecules 11::495
    [Crossref] [Google Scholar]
  18. 18.
    Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A. 2006.. Cholera stool bacteria repress chemotaxis to increase infectivity. . Mol. Microbiol. 60::417426
    [Crossref] [Google Scholar]
  19. 19.
    Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G, et al. 2015.. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. . eLife 4::e08419
    [Crossref] [Google Scholar]
  20. 20.
    Deleted in proof
  21. 21.
    Cassidy CK, Qin Z, Frosio T, Gosink K, Yang Z, et al. 2023.. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. . mBio 14::e0079323
    [Crossref] [Google Scholar]
  22. 22.
    Chao X, Muff TJ, Park S-Y, Zhang S, Pollard AM, et al. 2006.. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. . Cell 124::56171
    [Crossref] [Google Scholar]
  23. 23.
    Charon MH, Wu LF, Piras C, De Pina K, Mandrand-Berthelot MA, Fontecilla-Camps JC. 1994.. Crystallization and preliminary X-ray diffraction study of the nickel-binding protein NikA of Escherichia coli. . J. Mol. Biol. 243: 35355
    [Crossref] [Google Scholar]
  24. 24.
    Charon NW, Greenberg EP, Koopman MBH, Limberger RJ. 1992.. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. . Res. Microbiol. 143::597603
    [Crossref] [Google Scholar]
  25. 25.
    Depelteau JS, Limpens R, Nag D, Koch BEV, Withey JH, et al. 2021.. Transition of Vibrio cholerae through a natural host induces resistance to environmental changes. . bioRxiv 2021.09.30.462513. https://doi.org/10.1101/2021.09.30.462513
  26. 26.
    Ding X, He Q, Shen F, Dahlquist FW, Wang X. 2018.. Regulatory role of an interdomain linker in the bacterial chemotaxis histidine kinase CheA. . J. Bacteriol. 200::e00052
    [Crossref] [Google Scholar]
  27. 27.
    Djordjevic S, Stock MA. 1998.. Chemotaxis receptor recognition by protein methyltransferase CheR. . Nat. Struct. Biol. 5::44650
    [Crossref] [Google Scholar]
  28. 28.
    Doetsch RN. 1972.. A unified theory of bacterial motile behavior. . J. Theor. Biol. 35::5566
    [Crossref] [Google Scholar]
  29. 29.
    Eisenbach M, Constantinou C, Aloni H, Shinitzky M. 1990.. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis. . J. Bacteriol. 172::521824
    [Crossref] [Google Scholar]
  30. 30.
    Englert DL, Adase CA, Jayaraman A, Manson MD. 2010.. Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein. . J. Bacteriol. 192::263337
    [Crossref] [Google Scholar]
  31. 31.
    Erbse AH, Falke JJ. 2009.. The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. . Biochemistry 48::697587
    [Crossref] [Google Scholar]
  32. 32.
    Flack CE, Parkinson JS. 2022.. Structural signatures of Escherichia coli chemoreceptor signaling states revealed by cellular crosslinking. . PNAS 119::e2204161119
    [Crossref] [Google Scholar]
  33. 33.
    Fredrick KL, Helmann JD. 1994.. Dual chemotaxis signaling pathways in Bacillus subtilis: A σD-dependent gene encodes a novel protein with both CheW and CheY homologous domains. . J. Bacteriol. 176::272735
    [Crossref] [Google Scholar]
  34. 34.
    Gegner JA, Graham DR, Roth AF, Dahlquist FW. 1992.. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. . Cell 70::97582
    [Crossref] [Google Scholar]
  35. 35.
    Hazelbauer GL, Falke JJ, Parkinson JS. 2007.. Bacterial chemoreceptors: high-performance signaling in networked arrays. . Trends Biochem. Sci. 33::919
    [Crossref] [Google Scholar]
  36. 36.
    Hu B, Tu Y. 2013.. Precision sensing by two opposing gradient sensors: How does Escherichia coli find its preferred pH level?. Biophys. J. 105::27685
    [Crossref] [Google Scholar]
  37. 37.
    Kan B, Habibi H, Schmid M, Liang W, Wang R, et al. 2004.. Proteome comparison of Vibrio cholerae cultured in aerobic and anaerobic conditions. . Proteomics 4::306167
    [Crossref] [Google Scholar]
  38. 38.
    Kehry MR, Dahlquist FW. 1982.. Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducer proteins. . Cell 29::76172
    [Crossref] [Google Scholar]
  39. 39.
    Khursigara CM, Wu X, Zhang P, Lefman J, Subramaniam S. 2008.. Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors. . PNAS 105::1655560
    [Crossref] [Google Scholar]
  40. 40.
    Kirby JR, Saulmon MM, Kristich CJ, Ordal GW. 1999.. CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis. . J. Biol. Chem. 274::11092100
    [Crossref] [Google Scholar]
  41. 41.
    Kondoh H, Ball CB, Adler J. 1978.. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. . PNAS 76::26064
    [Crossref] [Google Scholar]
  42. 42.
    Kristich CJ, Glekas GD, Ordal GW. 2003.. The conserved cytoplasmic module of the transmembrane chemoreceptor McpC mediates carbohydrate chemotaxis in Bacillus subtilis. . Mol. Microbiol. 47::135366
    [Crossref] [Google Scholar]
  43. 43.
    Kristich CJ, Ordal GW. 2002.. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. . J. Biol. Chem. 277::2535662
    [Crossref] [Google Scholar]
  44. 44.
    Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T. 2010.. Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. . Environ. Microbiol. 12::287384
    [Crossref] [Google Scholar]
  45. 45.
    Lai R-Z, Gosink K, Parkinson JS. 2017.. Signaling consequences of structural lesions that alter the stability of chemoreceptor trimers of dimers. . J. Mol. Biol. 429::82335
    [Crossref] [Google Scholar]
  46. 46.
    Li H, Zhang C, Chen X, You H, Lai L. 2022.. Tailoring Escherichia coli chemotactic sensing towards cadmium by computational redesign of ribose-binding protein. . mSystems 7::01084
    [Google Scholar]
  47. 47.
    Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, et al. 2013.. The 3.2 Å resolution structure of a receptor:CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. . Biochemistry 52::385265
    [Crossref] [Google Scholar]
  48. 48.
    Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ. 2010.. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. . J. Mol. Biol. 403::54661
    [Crossref] [Google Scholar]
  49. 49.
    Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W. 2012.. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. . PNAS 109::E148188
    [Google Scholar]
  50. 50.
    Liu J, Parkinson JS. 1989.. Role of the CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. . PNAS 86::87037
    [Crossref] [Google Scholar]
  51. 51.
    Liu J, Parkinson JS. 1991.. Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli. . J. Bacteriol. 173::494151
    [Crossref] [Google Scholar]
  52. 52.
    Lopes JG, Sourjik V. 2018.. Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. . ISME J. 12::273647
    [Crossref] [Google Scholar]
  53. 53.
    Maddock JR, Shapiro L. 1993.. Polar location of the chemoreceptor complex in the Escherichia coli cell. . Science 259::171723
    [Crossref] [Google Scholar]
  54. 54.
    Manson MD, Blank V, Brade G, Higgins CF. 1986.. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. . Nature 321::25356
    [Crossref] [Google Scholar]
  55. 55.
    Maschmann ZA, Chua TK, Chandrasekaran S, Ibáñez H, Crane BR. 2022.. Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. . J. Biol. Chem. 298::102598
    [Crossref] [Google Scholar]
  56. 56.
    Matilla MA, Krell T. 2018.. The effect of bacterial chemotaxis on host infection and pathogenicity. . FEMS Microbiol. Rev. 42::4067
    [Crossref] [Google Scholar]
  57. 57.
    Mesibov R, Adler J. 1972.. Chemotaxis toward amino acids in Escherichia coli. . J. Bacteriol. 112::31526
    [Crossref] [Google Scholar]
  58. 58.
    Minato Y, Ueda T, Machiyama A, Iwaï H, Shimada I. 2017.. Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR. . Sci. Rep. 7::16462
    [Crossref] [Google Scholar]
  59. 59.
    Moulton RC, Montie TC. 1979.. Chemotaxis by Pseudomonas aeruginosa. . J. Bacteriol. 137::27480
    [Crossref] [Google Scholar]
  60. 60.
    Muff TJ, Ordal GW. 2007.. The CheC phosphatase regulates chemotactic adaptation through CheD. . J. Biol. Chem. 282::3412028
    [Crossref] [Google Scholar]
  61. 61.
    Muñoz AW, Hoyer E, Schumacher K, Grognot M, Taute KM, et al. 2022.. Eukaryotic catecholamine hormones influence the chemotactic control of Vibrio campbellii by binding to the coupling protein CheW. . PNAS 119::e2118227119
    [Crossref] [Google Scholar]
  62. 62.
    Muok AR, Briegel A, Crane BR. 2019.. Regulation of the chemotaxis histidine kinase CheA: a structural perspective. . Biochim. Biophys. Acta Biomembr. 1862::183030
    [Crossref] [Google Scholar]
  63. 63.
    Muok AR, Chua TK, Srivastava M, Yang W, Maschmann Z, et al. 2020.. Engineered chemotaxis core signaling units indicate a constrained kinase-off state. . Sci. Signal. 13::eabc1328
    [Crossref] [Google Scholar]
  64. 64.
    Muok AR, Claessen D, Briegel A. 2020.. Microbial piggy-back: how Streptomyces spores are transported by motile soil bacteria. . bioRxiv 2020.06.18.158626. https://doi.org/10.1101/2020.06.18.158626
  65. 65.
    Muok AR, Deng Y, Gumerov VM, Chong JE, DeRosa JR, et al. 2019.. A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. . PNAS 116::1495560
    [Crossref] [Google Scholar]
  66. 66.
    Muok AR, Kurniyati K, Cassidy CK, Olsthoorn FA, Ortega DR, et al. 2023.. A new class of protein sensor links spirochete pleomorphism, persistence, and chemotaxis. . mBio 14::01598
    [Crossref] [Google Scholar]
  67. 67.
    Muok AR, Ortega DR, Kurniyati K, Yang W, Mabrouk AS. 2020.. Atypical chemoreceptor arrays accommodate high membrane curvature. . Nat. Commun. 11::5763
    [Crossref] [Google Scholar]
  68. 68.
    Navarro C, Wu L-F, Mandrand-Berthelot M-A. 1993.. The nik operon of Escherichia coli encodes a periplasmic binding protein–dependent transport system for nickel. . Mol. Microbiol. 9::118191
    [Crossref] [Google Scholar]
  69. 69.
    Neumann S, Grosse K, Sourjik V. 2012.. Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. . PNAS 109::1215964
    [Crossref] [Google Scholar]
  70. 70.
    O'Neal L, Vo L, Alexandre G. 2020.. Specific root exudate compounds sensed by dedicated chemoreceptors shape Azospirillum brasilense chemotaxis in the rhizosphere. . Appl. Environ. Microbiol. 86::e01026
    [Google Scholar]
  71. 71.
    Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E, et al. 2011.. Thermal robustness of signaling in bacterial chemotaxis. . Cell 145::31221
    [Crossref] [Google Scholar]
  72. 72.
    Orr AA, Jayaraman A, Tamamis P. 2018.. Molecular modeling of chemoreceptor:ligand interactions. . Methods Mol. Biol. 1729::35372
    [Crossref] [Google Scholar]
  73. 73.
    Ortega Á, Zhulin IB, Krell T. 2017.. Sensory repertoire of bacterial chemoreceptors. . Microbiol. Mol. Biol. Rev. 81::e00033
    [Crossref] [Google Scholar]
  74. 74.
    Ortega DR, Kjaer A, Briegel A. 2020.. The chemosensory systems of Vibrio cholerae. . Mol. Microbiol. 114::36776
    [Crossref] [Google Scholar]
  75. 75.
    Ortega DR, Mo G, Lee K, Zhou H, Baudry J, et al. 2013.. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein. . PLOS Comput. Biol. 9::2224
    [Crossref] [Google Scholar]
  76. 76.
    Ortega DR, Zhulin IB. 2016.. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. . PLOS Comput. Biol. 12::e1004723
    [Crossref] [Google Scholar]
  77. 77.
    Park SY, Chao X, Gonzalez-Bonet G, Beel BD, Bilwes AM, Crane BR. 2004.. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. . Mol. Cell 16::56374
    [Google Scholar]
  78. 78.
    Parkinson JS. 2010.. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. . Annu. Rev. Microbiol. 64::10122
    [Crossref] [Google Scholar]
  79. 79.
    Parkinson JS, Ames P, Studdert CA. 2005.. Collaborative signaling by bacterial chemoreceptors. . Curr. Opin. Microbiol. 8::11621
    [Crossref] [Google Scholar]
  80. 80.
    Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A, Manson MD. 2014.. Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. . J. Bacteriol. 196::39924000
    [Crossref] [Google Scholar]
  81. 81.
    Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A, et al. 2017.. Mechanism of bidirectional thermotaxis in Escherichia coli. . eLife 6::e26607
    [Crossref] [Google Scholar]
  82. 82.
    Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, et al. 2021.. Bacterial inflammation sensor regulates c-di-GMP signaling, adhesion, and biofilm formation. . mBio 12::e0017321
    [Crossref] [Google Scholar]
  83. 83.
    Piñas GE, DeSantis MD, Cassidy CK, Parkinson JS. 2022.. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. . Sci. Signal. 15::eabj1737
    [Crossref] [Google Scholar]
  84. 84.
    Piñas GE, Frank V, Vaknin A, Parkinson JS. 2016.. The source of high signal cooperativity in bacterial chemosensory arrays. . PNAS 113::333540
    [Crossref] [Google Scholar]
  85. 85.
    Porter SL, Wadhams GH, Armitage JP. 2008.. Rhodobacter sphaeroides: complexity in chemotactic signalling. . Trends Microbiol. 16::25160
    [Crossref] [Google Scholar]
  86. 86.
    Porter SL, Wadhams GH, Armitage JP. 2011.. Signal processing in complex chemotaxis pathways. . Nat. Rev. Microbiol. 9::15365
    [Crossref] [Google Scholar]
  87. 87.
    Qin Z, Zhang P. 2021.. Studying bacterial chemosensory array with CryoEM. . Biochem. Soc. Trans. 49::208189
    [Crossref] [Google Scholar]
  88. 88.
    Raddi G, Morado DR, Yan J, Haake DA, Yang XF, Liu J. 2012.. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. . J. Bacteriol. 194::1299306
    [Crossref] [Google Scholar]
  89. 89.
    Rao CV, Glekas GD, Ordal GW. 2008.. The three adaptation systems of Bacillus subtilis chemotaxis. . Trends Microbiol. 16::48087
    [Crossref] [Google Scholar]
  90. 90.
    Ringgaard S, Schirner K, Davis BM, Waldor MK. 2011.. A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. . Genes Dev. 25::154455
    [Crossref] [Google Scholar]
  91. 91.
    Ringgaard S, Yang W, Alvarado A, Schirner K, Briegel A. 2018.. Chemotaxis arrays in Vibrio species and their intracellular positioning by the ParC/ParP system. . J. Bacteriol. 200::e00793
    [Crossref] [Google Scholar]
  92. 92.
    Roggo C, Picioreanu C, Richard X, Mazza C, van Lintel H, van der Meer JR. 2018.. Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips. . Environ. Microbiol. 20::24158
    [Crossref] [Google Scholar]
  93. 93.
    Samanta D, Widom J, Borbat PP, Freed JH, Crane BR. 2016.. Bacterial energy sensor Aer modulates the activity of the chemotaxis kinase CheA based on the redox state of the flavin cofactor. . J. Biol. Chem. 291::2580914
    [Crossref] [Google Scholar]
  94. 94.
    Scharf BE, Hynes MF, Alexandre GM. 2016.. Chemotaxis signaling systems in model beneficial plant-bacteria associations. . Plant Mol. Biol. 90::54959
    [Crossref] [Google Scholar]
  95. 95.
    Seymour FWK, Doetsch RN. 1973.. Chemotactic responses by motile bacteria. . J. Gen. Microbiol. 78::28796
    [Crossref] [Google Scholar]
  96. 96.
    Shu R, Yuan C, Liu B, Song Y, Hou L, et al. 2022.. PAS domain–containing chemoreceptors influence the signal sensing and intestinal colonization of Vibrio cholerae. . Genes 13::2224
    [Crossref] [Google Scholar]
  97. 97.
    Sircar R, Greenswag AR, Bilwes AM, Gonzalez-Bonet G, Crane BR. 2013.. Structure and activity of the flagellar rotor protein fliy: a member of the CheC phosphatase family. . J. Biol. Chem. 288::13493502
    [Crossref] [Google Scholar]
  98. 98.
    Sourjik V, Berg HC. 2002.. Receptor sensitivity in bacterial chemotaxis. . Biochemistry 99::12327
    [Google Scholar]
  99. 99.
    Stocker R, Seymour JR. 2012.. Ecology and physics of bacterial chemotaxis in the ocean. . Microbiol. Mol. Biol. Rev. 76::792812
    [Crossref] [Google Scholar]
  100. 100.
    Sule N, Pasupuleti S, Kohli N, Menon R, Dangott LJ, et al. 2017.. The norepinephrine metabolite 3,4-dihydroxymandelic acid is produced by the commensal microbiota and promotes chemotaxis and virulence gene expression in enterohemorrhagic Escherichia coli. . Infect. Immun. 85::e00431
    [Crossref] [Google Scholar]
  101. 101.
    Sze CW, Zhang K, Kariu T, Pal U, Li C. 2012.. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. . Infect. Immun. 80::248592
    [Crossref] [Google Scholar]
  102. 102.
    Szurmant H, Bunn MW, Cannistraro VJ, Ordal GW. 2003.. Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch. . J. Biol. Chem. 278::4861116
    [Crossref] [Google Scholar]
  103. 103.
    Taylor BL, Zhulin IB. 1999.. PAS domains: internal sensors of oxygen, redox potential, and light. . Microbiol. Mol. Biol. Rev. 63::479506
    [Crossref] [Google Scholar]
  104. 104.
    Thoelke MS, Kirby JR, Ordal GW. 1989.. Novel methyl transfer during chemotaxis in Bacillus subtilis. . Biochemistry 28::558589
    [Crossref] [Google Scholar]
  105. 105.
    Tohidifar P, Bodhankar GA, Pei S, Cassidy CK, Walukiewicz HE, et al. 2020.. The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. . mBio 11::e02177
    [Crossref] [Google Scholar]
  106. 106.
    Trana T, Karunanayake Mudiyanselage APKK, Eyles SJ, Thompson LK. 2023.. Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA. . PNAS 120::e2218467120
    [Crossref] [Google Scholar]
  107. 107.
    Tsai AYL, Oota M, Sawa S. 2020.. Chemotactic host-finding strategies of plant endoparasites and endophytes. . Front. Plant Sci. 11::1167
    [Crossref] [Google Scholar]
  108. 108.
    Tso WW, Adler J. 1974.. Negative chemotaxis in Escherichia coli. . J. Bacteriol. 118::56076
    [Crossref] [Google Scholar]
  109. 109.
    Umemura T, Matsumoto Y, Ohnishi K, Homma M, Kawagishi I. 2002.. Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. . J. Biol. Chem. 277::159398
    [Crossref] [Google Scholar]
  110. 110.
    Vaknin A, Berg HC. 2006.. Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli. . PNAS 103::59296
    [Crossref] [Google Scholar]
  111. 111.
    Wadhams GH, Armitage JP. 2004.. Making sense of it all: bacterial chemotaxis. . Nat. Rev. Mol. Cell Biol. 5::102437
    [Crossref] [Google Scholar]
  112. 112.
    Wadhams GH, Martin AC, Porter SL, Maddock JR, Mantotta JC, et al. 2002.. TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. . Mol. Microbiol. 46::121121
    [Crossref] [Google Scholar]
  113. 113.
    Wadhams GH, Warren AV, Martin AC, Armitage JP. 2003.. Targeting of two signal transduction pathways to different regions of the bacterial cell. . Mol. Microbiol. 50::76370
    [Crossref] [Google Scholar]
  114. 114.
    Xing J, Gumerov VM, Zhulin IB. 2023.. Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor. . Sci. Adv. 9::eadi4517
    [Crossref] [Google Scholar]
  115. 115.
    Xu H, Raddi G, Liu J, Charon NW, Li C. 2011.. Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. . J. Bacteriol. 193::265256
    [Crossref] [Google Scholar]
  116. 116.
    Yang W, Alvarado A, Glatter T, Ringgaard S, Briegel A. 2018.. Baseplate variability of Vibrio cholerae chemoreceptor arrays. . PNAS 115::1336570
    [Crossref] [Google Scholar]
  117. 117.
    Yang W, Cassidy CK, Ames P, Diebolder CA, Schulten K, et al. 2019.. In situ conformational changes of the Escherichia coli serine chemoreceptor in different signaling states. . mBio 10::00973
    [Google Scholar]
  118. 118.
    Yang Y, Pollard AM, Höfler C, Poschet G, Wirtz M, et al. 2015.. Relation between chemotaxis and consumption of amino acids in bacteria. . Mol. Microbiol. 96::127282
    [Crossref] [Google Scholar]
  119. 119.
    Yang Y, Sourjik V. 2012.. Opposite responses by different chemoreceptors set a tunable preference point in Escherichia coli pH taxis. . Mol. Microbiol. 86::148289
    [Crossref] [Google Scholar]
  120. 120.
    Yao J, Allen C. 2006.. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. . J. Bacteriol. 188::3697708
    [Crossref] [Google Scholar]
  121. 121.
    Zhang K, Liu J, Tu Y, Xu H, Charon NW, Li C. 2012.. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. . Mol. Microbiol. 85::78294
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-110850
Loading
/content/journals/10.1146/annurev-micro-032421-110850
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error