1932

Abstract

Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.

Keyword(s): AsmALptOmpC-MlaTamBTol-PalYhdP
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-014507
2024-11-20
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-032521-014507.html?itemId=/content/journals/10.1146/annurev-micro-032521-014507&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D, et al. 2017.. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. . Nat. Microbiol. 2::161623
    [Crossref] [Google Scholar]
  2. 2.
    Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J, et al. 2018.. Getting drugs into Gram-negative bacteria: rational rules for permeation through general porins. . ACS Infect. Dis. 4::148798
    [Crossref] [Google Scholar]
  3. 3.
    Antunes LCS, Poppleton D, Klingl A, Criscuolo A, Dupuy B, et al. 2016.. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. . eLife 5::e14589
    [Crossref] [Google Scholar]
  4. 4.
    Asmar AT, Collet J-F. 2018.. Lpp, the Braun lipoprotein, turns 50—major achievements and remaining issues. . FEMS Microbiol. Lett. 365::fny199
    [Crossref] [Google Scholar]
  5. 5.
    Asmar AT, Ferreira JL, Cohen EJ, Cho S-H, Beeby M, et al. 2017.. Communication across the bacterial cell envelope depends on the size of the periplasm. . PLOS Biol. 15::e2004303
    [Crossref] [Google Scholar]
  6. 6.
    Benedet M, Falchi FA, Puccio S, Di Benedetto C, Peano C, et al. 2016.. The lack of the essential LptC protein in the trans-envelope lipopolysaccharide transport machine is circumvented by suppressor mutations in LptF, an inner membrane component of the Escherichia coli transporter. . PLOS ONE 11::e0161354
    [Crossref] [Google Scholar]
  7. 7.
    Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N, et al. 2021.. Phase separation in the outer membrane of Escherichia coli. . PNAS 118::e2112237118
    [Crossref] [Google Scholar]
  8. 8.
    Bernadac A, Gavioli M, Lazzaroni J-C, Raina S, Lloubès R. 1998.. Escherichia coli tol-pal mutants form outer membrane vesicles. . J. Bacteriol. 180::487278
    [Crossref] [Google Scholar]
  9. 9.
    Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CRH. 2000.. Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. . EMBO J. 19::507180
    [Crossref] [Google Scholar]
  10. 10.
    Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V, et al. 2020.. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. . Sci. Adv. 6::eaaz6333
    [Crossref] [Google Scholar]
  11. 11.
    Bos MP, Tefsen B, Geurtsen J, Tommassen J. 2004.. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. . PNAS 101::941722
    [Crossref] [Google Scholar]
  12. 12.
    Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, et al. 2016.. Structural and functional characterization of the LPS transporter LptDE from Gram-negative pathogens. . Structure 24::96576
    [Crossref] [Google Scholar]
  13. 13.
    Botte M, Ni D, Schenck S, Zimmermann I, Chami M, et al. 2022.. Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation. . Nat. Commun. 13::1826
    [Crossref] [Google Scholar]
  14. 14.
    Braun M, Silhavy TJ. 2002.. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. . Mol. Microbiol. 45::1289302
    [Crossref] [Google Scholar]
  15. 15.
    Cascales E, Bernadac A, Gavioli M, Lazzaroni J-C, Lloubes R. 2002.. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. . J. Bacteriol. 184::75459
    [Crossref] [Google Scholar]
  16. 16.
    Chen J, Fruhauf A, Fan C, Ponce J, Ueberheide B, et al. 2023.. Structure of an endogenous mycobacterial MCE lipid transporter. . Nature 620::44552
    [Crossref] [Google Scholar]
  17. 17.
    Chen Y, Wang Y, Chng S-S. 2023.. A conserved membrane protein negatively regulates Mce1 complexes in mycobacteria. . Nat. Commun. 14::5897
    [Crossref] [Google Scholar]
  18. 18.
    Chi X, Fan Q, Zhang Y, Liang K, Wan L, et al. 2020.. Structural mechanism of phospholipids translocation by MlaFEDB complex. . Cell Res. 30::112735
    [Crossref] [Google Scholar]
  19. 19.
    Chng S-S, Gronenberg LS, Kahne D. 2010.. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. . Biochemistry 49::456567
    [Crossref] [Google Scholar]
  20. 20.
    Chng S-S, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. 2010.. Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. . PNAS 107::536368
    [Crossref] [Google Scholar]
  21. 21.
    Chng S-S, Xue M, Garner RA, Kadokura H, Boyd D, et al. 2012.. Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. . Science 337::166568
    [Crossref] [Google Scholar]
  22. 22.
    Chong Z-S, Woo W-F, Chng S-S. 2015.. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. . Mol. Microbiol. 98::113346
    [Crossref] [Google Scholar]
  23. 23.
    Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, et al. 2021.. A rooted phylogeny resolves early bacterial evolution. . Science 372::eabe0511
    [Crossref] [Google Scholar]
  24. 24.
    Cooper BF, Clark R, Kudhail A, Bhabha G, Ekiert DC, et al. 2023.. Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge. . bioRxiv 561070. https://doi.org/10.1101/2023.10.05.561070
  25. 25.
    Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, Ekiert DC. 2020.. Structure of bacterial phospholipid transporter MlaFEDB with substrate bound. . eLife 9::e62518
    [Crossref] [Google Scholar]
  26. 26.
    Dekker N. 2000.. Outer-membrane phospholipase A: known structure, unknown biological function. . Mol. Microbiol. 35::71117
    [Crossref] [Google Scholar]
  27. 27.
    Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, et al. 2014.. Structural basis for outer membrane lipopolysaccharide insertion. . Nature 511::5256
    [Crossref] [Google Scholar]
  28. 28.
    Dong H, Zhang Z, Tang X, Paterson NG, Dong C. 2017.. Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG. . Nat. Commun. 8::222
    [Crossref] [Google Scholar]
  29. 29.
    Donohue-Rolfe AM, Schaechter M. 1980.. Translocation of phospholipids from the inner to the outer membrane of Escherichia coli. . PNAS 77::186771
    [Crossref] [Google Scholar]
  30. 30.
    Douglass MV, Cléon F, Trent MS. 2021.. Cardiolipin aids in lipopolysaccharide transport to the gram-negative outer membrane. . PNAS 118::e2018329118
    [Crossref] [Google Scholar]
  31. 31.
    Douglass MV, McLean AB, Trent MS. 2022.. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. . PLOS Genet. 18::e1010096
    [Crossref] [Google Scholar]
  32. 32.
    Doyle MT, Bernstein HD. 2022.. Function of the Omp85 superfamily of outer membrane protein assembly factors and polypeptide transporters. . Annu. Rev. Microbiol. 76::25979
    [Crossref] [Google Scholar]
  33. 33.
    Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, et al. 2017.. Architectures of lipid transport systems for the bacterial outer membrane. . Cell 169::27385.e17
    [Crossref] [Google Scholar]
  34. 34.
    Emiola A, Andrews SS, Heller C, George J. 2016.. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli. . PNAS 113::310813
    [Crossref] [Google Scholar]
  35. 35.
    Ercan B, Low W-Y, Liu X, Chng S-S. 2018.. Characterization of interactions and phospholipid transfer between substrate binding proteins of the OmpC-Mla system. . Biochemistry 58::11419
    [Crossref] [Google Scholar]
  36. 36.
    Falchi FA, Taylor RJ, Rowe SJ, Moura E, Baeta T, et al. 2023.. Suppressor mutations in LptF bypass essentiality of LptC by forming a six-protein transenvelope bridge that efficiently transports lipopolysaccharide. . mBio 14::e02202-22
    [Crossref] [Google Scholar]
  37. 37.
    Fiorentino F, Sauer JB, Qiu X, Corey RA, Cassidy CK, et al. 2021.. Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. . Nat. Chem. Biol. 17::18795
    [Crossref] [Google Scholar]
  38. 38.
    Fivenson EM, Rohs PDA, Vettiger A, Sardis MF, Torres G, et al. 2023.. A role for the Gram-negative outer membrane in bacterial shape determination. . PNAS 120::e2301987120
    [Crossref] [Google Scholar]
  39. 39.
    Freinkman E, Chng S-S, Kahne D. 2011.. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. . PNAS 108::248691
    [Crossref] [Google Scholar]
  40. 40.
    Freinkman E, Okuda S, Ruiz N, Kahne D. 2012.. Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. . Biochemistry 51::48006
    [Crossref] [Google Scholar]
  41. 41.
    Funahara Y, Nikaido H. 1980.. Asymmetric localization of lipopolysaccharides on the outer membrane of Salmonella typhimurium. . J. Bacteriol. 141::146365
    [Crossref] [Google Scholar]
  42. 42.
    Gerding MA, Ogata Y, Pecora ND, Niki H, De Boer PAJ. 2007.. The trans-envelope Tol–Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. . Mol. Microbiol. 63::100825
    [Crossref] [Google Scholar]
  43. 43.
    Godessart P, Lannoy A, Dieu M, Van der Verren SE, Soumillion P, et al. 2021. β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. . Nat. Microbiol. 6::2733
    [Crossref] [Google Scholar]
  44. 44.
    Grasekamp KP, Benyahia BB, Taib N, Audrain B, Bardiaux B, et al. 2023.. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. . Nat. Commun. 14::7642
    [Crossref] [Google Scholar]
  45. 45.
    Grimm J, Shi H, Wang W, Mitchell AM, Wingreen NS, et al. 2020.. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. . PNAS 117::2690714
    [Crossref] [Google Scholar]
  46. 46.
    Guest RL, Lee MJ, Wang W, Silhavy TJ. 2023.. A periplasmic phospholipase that maintains outer membrane lipid asymmetry in Pseudomonas aeruginosa. . PNAS 120::e2302546120
    [Crossref] [Google Scholar]
  47. 47.
    Guest RL, Rutherford ST, Silhavy TJ. 2021.. Border control: regulating LPS biogenesis. . Trends Microbiol. 29::33445
    [Crossref] [Google Scholar]
  48. 48.
    Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT, et al. 2018.. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. . Cell Rep. 23::278294
    [Crossref] [Google Scholar]
  49. 49.
    Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, et al. 1997.. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. . Science 276::25053
    [Crossref] [Google Scholar]
  50. 50.
    Hale CA, Persons L, de Boer PAJ. 2022.. Recruitment of the TolA protein to cell constriction sites in Escherichia coli via three separate mechanisms, and a critical role for FtsWI activity in recruitment of both TolA and TolQ. . J. Bacteriol. 204::e00464-21
    [Crossref] [Google Scholar]
  51. 51.
    Hanna M, Guillén-Samander A, De Camilli P. 2023.. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. . Annu. Rev. Cell Dev. Biol. 39::40934
    [Crossref] [Google Scholar]
  52. 52.
    Hirschberg CB, Kennedy EP. 1972.. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. . PNAS 69::64851
    [Crossref] [Google Scholar]
  53. 53.
    Hölzl G, Dörmann P. 2019.. Chloroplast lipids and their biosynthesis. . Annu. Rev. Plant Biol. 70::5181
    [Crossref] [Google Scholar]
  54. 54.
    Huang YM, Miao Y, Munguia J, Lin L, Nizet V, McCammon JA. 2016.. Molecular dynamic study of MlaC protein in Gram-negative bacteria: conformational flexibility, solvent effect and protein-phospholipid binding. . Protein Sci. 25::143037
    [Crossref] [Google Scholar]
  55. 55.
    Hughes GW, Hall SC, Laxton CS, Sridhar P, Mahadi AH, et al. 2019.. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. . Nat. Microbiol. 4::1692705
    [Crossref] [Google Scholar]
  56. 56.
    Ishinaga M, Kanamoto R, Kito M. 1979.. Distribution of phospholipid molecular species in outer and cytoplasmic membranes of Escherichia coli. . J. Biochem. 86::16165
    [Google Scholar]
  57. 57.
    Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, Bhabha G. 2020.. LetB structure reveals a tunnel for lipid transport across the bacterial envelope. . Cell 181::65364.e19
    [Crossref] [Google Scholar]
  58. 58.
    Isom GL, Davies NJ, Chong Z-S, Bryant JA, Jamshad M, et al. 2017.. MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. . Sci. Rep. 7::8608
    [Crossref] [Google Scholar]
  59. 59.
    Jia W, Zoeiby AE, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE. 2004.. Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. . J. Biol. Chem. 279::4496675
    [Crossref] [Google Scholar]
  60. 60.
    Jiang XE, Tan WB, Shrivastava R, Seow DCS, Chen SL, et al. 2020.. Mutations in enterobacterial common antigen biosynthesis restore outer membrane barrier function in Escherichia coli tol-pal mutants. . Mol. Microbiol. 114::9911005
    [Crossref] [Google Scholar]
  61. 61.
    Jones NC, Osborn M. 1977.. Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium. . J. Biol. Chem. 252::740512
    [Crossref] [Google Scholar]
  62. 62.
    Josts I, Stubenrauch CJ, Vadlamani G, Mosbahi K, Walker D, et al. 2017.. The structure of a conserved domain of TamB reveals a hydrophobic β taco fold. . Structure 25::1898906.e5
    [Crossref] [Google Scholar]
  63. 63.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  64. 64.
    Kamio Y, Nikaido H. 1976.. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. . Biochemistry 15::256170
    [Crossref] [Google Scholar]
  65. 65.
    Kolich LR, Chang Y-T, Coudray N, Giacometti SI, MacRae MR, et al. 2020.. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. . eLife 9::e60030
    [Crossref] [Google Scholar]
  66. 66.
    Kumar S, Ruiz N. 2023.. Bacterial AsmA-like proteins: bridging the gap in intermembrane phospholipid transport. . Contact 6::25152564231185931
    [Crossref] [Google Scholar]
  67. 67.
    Laguri C, Sperandeo P, Pounot K, Ayala I, Silipo A, et al. 2017.. Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly. . Sci. Rep. 7::9715
    [Crossref] [Google Scholar]
  68. 68.
    Langley K, Hawrot E, Kennedy E. 1982.. Membrane assembly: movement of phosphatidylserine between the cytoplasmic and outer membranes of Escherichia coli. . J. Bacteriol. 152::103341
    [Crossref] [Google Scholar]
  69. 69.
    Levine TP. 2019.. Remote homology searches identify bacterial homologues of eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and AsmA and Mdm31p. . BMC Mol. Cell Biol. 20::43
    [Crossref] [Google Scholar]
  70. 70.
    Li X, Gu Y, Dong H, Wang W, Dong C. 2015.. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. . Sci. Rep. 5::11883
    [Crossref] [Google Scholar]
  71. 71.
    Li Y, Orlando BJ, Liao M. 2019.. Structural basis of lipopolysaccharide extraction by the LptB2FGC complex. . Nature 567::48690
    [Crossref] [Google Scholar]
  72. 72.
    Lloubès R, Cascales E, Walburger A, Bouveret E, Lazdunski C, et al. 2001.. The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?. Res. Microbiol. 152::52329
    [Crossref] [Google Scholar]
  73. 73.
    Lo Sciuto A, Fernández-Piñar R, Bertuccini L, Iosi F, Superti F, Imperi F. 2014.. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa. . PLOS ONE 9::e103784
    [Crossref] [Google Scholar]
  74. 74.
    Low W-Y, Chng S-S. 2021.. Current mechanistic understanding of intermembrane lipid trafficking important for maintenance of bacterial outer membrane lipid asymmetry. . Curr. Opin. Chem. Biol. 65::16371
    [Crossref] [Google Scholar]
  75. 75.
    Low W-Y, Thong S, Chng S-S. 2021.. ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. . PNAS 118::e2110055118
    [Crossref] [Google Scholar]
  76. 76.
    Lundstedt E, Kahne D, Ruiz N. 2021.. Assembly and maintenance of lipids at the bacterial outer membrane. . Chem. Rev. 121::5098123
    [Crossref] [Google Scholar]
  77. 77.
    Lundstedt EA, Simpson BW, Ruiz N. 2020.. Lipopolysaccharide transport involves long-range coupling between cytoplasmic and periplasmic domains of the LptB2FGC extractor. . J. Bacteriol. 203::e00618-20
    [Google Scholar]
  78. 78.
    Lundstedt EA, Simpson BW, Ruiz N. 2020.. LptB-LptF coupling mediates the closure of the substrate-binding cavity in the LptB2FGC transporter through a rigid-body mechanism to extract LPS. . Mol. Microbiol. 114::20013
    [Crossref] [Google Scholar]
  79. 79.
    Luo Q, Yang X, Yu S, Shi H, Wang K, et al. 2017.. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. . Nat. Struct. Mol. Biol. 24::46974
    [Crossref] [Google Scholar]
  80. 80.
    MacRae MR, Puvanendran D, Haase MAB, Coudray N, Kolich L, et al. 2023.. Protein–protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning. . J. Biol. Chem. 299::104744
    [Crossref] [Google Scholar]
  81. 81.
    Malinverni JC, Silhavy TJ. 2009.. An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. . PNAS 106::800914
    [Crossref] [Google Scholar]
  82. 82.
    Malojčić G, Andres D, Grabowicz M, George AH, Ruiz N, et al. 2014.. LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface. . PNAS 111::946772
    [Crossref] [Google Scholar]
  83. 83.
    Mann D, Fan J, Somboon K, Farrell DP, Muenks A, et al. 2021.. Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A. baumannii. . Commun. Biol. 4::817
    [Crossref] [Google Scholar]
  84. 84.
    Masilamani R, Cian MB, Dalebroux ZD. 2018.. Salmonella Tol-Pal reduces outer membrane glycerophospholipid levels for envelope homeostasis and survival during bacteremia. . Infect. Immun. 86::e00173-18
    [Crossref] [Google Scholar]
  85. 85.
    May KL, Silhavy TJ. 2018.. The Escherichia coli phospholipase PldA regulates outer membrane homeostasis via lipid signaling. . mBio 9::e00379-18. Erratum . 2018.. mBio 9::e00718-18
    [Google Scholar]
  86. 86.
    McDonnell RT, Patel N, Wehrspan ZJ, Elcock AH. 2023.. Atomic models of all major trans-envelope complexes involved in lipid trafficking in Escherichia coli constructed using a combination of AlphaFold2, AF2Complex, and membrane morphing simulations. . bioRxiv 538765. https://doi.org/10.1101/2023.04.28.538765
  87. 87.
    Mikheyeva IV, Sun J, Huang KC, Silhavy TJ. 2023.. Mechanism of outer membrane destabilization by global reduction of protein content. . Nat. Commun. 14::5715
    [Crossref] [Google Scholar]
  88. 88.
    Misra R. 1993.. OmpF assembly mutants of Escherichia coli K-12: isolation, characterization, and suppressor analysis. . J. Bacteriol. 175::504956
    [Crossref] [Google Scholar]
  89. 89.
    Misra R, Miao Y. 1995.. Molecular analysis of asmA, a locus identified as the suppressor of OmpF assembly mutants of Escherichia coli K-12. . Mol. Microbiol. 16::77988
    [Crossref] [Google Scholar]
  90. 90.
    Mitchell AM, Srikumar T, Silhavy TJ. 2018.. Cyclic enterobacterial common antigen maintains the outer membrane permeability barrier of Escherichia coli in a manner controlled by YhdP. . mBio 9::01321-18
    [Crossref] [Google Scholar]
  91. 91.
    Mitchell AM, Wang W, Silhavy TJ. 2017.. Novel RpoS-dependent mechanisms strengthen the envelope permeability barrier during stationary phase. . J. Bacteriol. 199::e00708-16
    [Crossref] [Google Scholar]
  92. 92.
    Mühlradt PF, Golecki JR. 1975.. Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. . Eur. J. Biochem. 51::34352
    [Crossref] [Google Scholar]
  93. 93.
    Nagel de Zwaig R, Luria SE. 1967.. Genetics and physiology of colicin-tolerant mutants of Escherichia coli. . J. Bacteriol. 94::111223
    [Crossref] [Google Scholar]
  94. 94.
    Narita S, Tokuda H. 2009.. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. . FEBS Lett. 583::216064
    [Crossref] [Google Scholar]
  95. 95.
    Nikaido H. 2003.. Molecular basis of bacterial outer membrane permeability revisited. . Microbiol. Mol. Biol. Rev. 67::593656
    [Crossref] [Google Scholar]
  96. 96.
    Okuda S, Freinkman E, Kahne D. 2012.. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. . Science 338::121417
    [Crossref] [Google Scholar]
  97. 97.
    Okuda S, Tokuda H. 2011.. Lipoprotein sorting in bacteria. . Annu. Rev. Microbiol. 65::23959
    [Crossref] [Google Scholar]
  98. 98.
    Osborn M, Gander J, Parisi E, Carson J. 1972.. Mechanism of assembly of the outer membrane of Salmonella typhimurium: isolation and characterization of cytoplasmic and outer membrane. . J. Biol. Chem. 247::396272
    [Crossref] [Google Scholar]
  99. 99.
    Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, et al. 2019.. Structural basis of unidirectional export of lipopolysaccharide to the cell surface. . Nature 567::55053
    [Crossref] [Google Scholar]
  100. 100.
    Peng D, Hong W, Choudhury BP, Carlson RW, Gu X-X. 2005.. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. . Infect. Immun. 73::756977
    [Crossref] [Google Scholar]
  101. 101.
    Petiti M, Serrano B, Faure L, Lloubes R, Mignot T, Duché D. 2019.. Tol energy-driven localization of Pal and anchoring to the peptidoglycan promote outer-membrane constriction. . J. Mol. Biol. 431::327588
    [Crossref] [Google Scholar]
  102. 102.
    Powers MJ, Simpson BW, Trent MS. 2020.. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. . eLife 9::e56571
    [Crossref] [Google Scholar]
  103. 103.
    Powers MJ, Trent MS. 2018.. Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin. . Mol. Microbiol. 107::4756
    [Crossref] [Google Scholar]
  104. 104.
    Powers MJ, Trent MS. 2018.. Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. . PNAS 115::E851827
    [Crossref] [Google Scholar]
  105. 105.
    Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. 2014.. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. . Nature 511::10811
    [Crossref] [Google Scholar]
  106. 106.
    Raetz C, Dowhan W. 1990.. Biosynthesis and function of phospholipids in Escherichia coli. . J. Biol. Chem. 265::123538
    [Crossref] [Google Scholar]
  107. 107.
    Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, et al. 2015.. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. . Nature 523::33336
    [Crossref] [Google Scholar]
  108. 108.
    Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, et al. 2018.. The outer membrane is an essential load-bearing element in Gram-negative bacteria. . Nature 559::61721
    [Crossref] [Google Scholar]
  109. 109.
    Roney IJ, Rudner DZ. 2023.. The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes. . PNAS 120::e2301979120
    [Crossref] [Google Scholar]
  110. 110.
    Ruiz N, Chng S-S, Hiniker A, Kahne D, Silhavy TJ. 2010.. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. . PNAS 107::1224550
    [Crossref] [Google Scholar]
  111. 111.
    Ruiz N, Davis RM, Kumar S. 2021.. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the Gram-negative outer membrane. . mBio 12::e02714-21
    [Crossref] [Google Scholar]
  112. 112.
    Ruiz N, Gronenberg LS, Kahne D, Silhavy TJ. 2008.. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. . PNAS 105::553742
    [Crossref] [Google Scholar]
  113. 113.
    Sandoz KM, Moore RA, Beare PA, Patel AV, Smith RE, et al. 2021.. β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. . Nat. Microbiol. 6::1926
    [Crossref] [Google Scholar]
  114. 114.
    Schultz KM, Klug CS. 2018.. Characterization of and lipopolysaccharide binding to the E. coli LptC protein dimer. . Protein Sci. 27::38189
    [Crossref] [Google Scholar]
  115. 115.
    Schultz KM, Lundquist TJ, Klug CS. 2017.. Lipopolysaccharide binding to the periplasmic protein LptA. . Protein Sci. 26::151723
    [Crossref] [Google Scholar]
  116. 116.
    Selkrig J, Mosbahi K, Webb CT, Belousoff MJ, Perry AJ, et al. 2012.. Discovery of an archetypal protein transport system in bacterial outer membranes. . Nat. Struct. Mol. Biol. 19::50610
    [Crossref] [Google Scholar]
  117. 117.
    Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, et al. 2018.. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. . Science 359::798801
    [Crossref] [Google Scholar]
  118. 118.
    Shrivastava R, Chng S-S. 2019.. Lipid trafficking across the Gram-negative cell envelope. . J. Biol. Chem. 294::1417584
    [Crossref] [Google Scholar]
  119. 119.
    Shrivastava R, Jiang XE, Chng S-S. 2017.. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli. . Mol. Microbiol. 106::395408
    [Crossref] [Google Scholar]
  120. 120.
    Sohlenkamp C, Geiger O. 2016.. Bacterial membrane lipids: diversity in structures and pathways. . FEMS Microbiol. Rev. 40::13359
    [Crossref] [Google Scholar]
  121. 121.
    Sperandeo P, Cescutti R, Villa R, Di Benedetto C, Candia D, et al. 2007.. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. . J. Bacteriol. 189::24453
    [Crossref] [Google Scholar]
  122. 122.
    Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, et al. 2008.. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. . J. Bacteriol. 190::446069
    [Crossref] [Google Scholar]
  123. 123.
    Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P. 1998.. Meningitis bacterium is viable without endotoxin. . Nature 392::44950
    [Crossref] [Google Scholar]
  124. 124.
    Stubenrauch CJ, Lithgow T. 2019.. The TAM: a translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. . EcoSal Plus 8::0036-2018
    [Crossref] [Google Scholar]
  125. 125.
    Suits MDL, Sperandeo P, Dehò G, Polissi A, Jia Z. 2008.. Novel structure of the conserved Gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. . J. Mol. Biol. 380::47688
    [Crossref] [Google Scholar]
  126. 126.
    Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2022.. Physical properties of the bacterial outer membrane. . Nat. Rev. Microbiol. 20::23648
    [Crossref] [Google Scholar]
  127. 127.
    Sutcliffe IC. 2010.. A phylum level perspective on bacterial cell envelope architecture. . Trends Microbiol. 18::46470
    [Crossref] [Google Scholar]
  128. 128.
    Sutterlin HA, Shi H, May KL, Miguel A, Khare S, et al. 2016.. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. . PNAS 113::E156574
    [Crossref] [Google Scholar]
  129. 129.
    Szczepaniak J, Holmes P, Rajasekar K, Kaminska R, Samsudin F, et al. 2020.. The lipoprotein Pal stabilises the bacterial outer membrane during constriction by a mobilisation-and-capture mechanism. . Nat. Commun. 11::1305
    [Crossref] [Google Scholar]
  130. 130.
    Taib N, Megrian D, Witwinowski J, Adam P, Poppleton D, et al. 2020.. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. . Nat. Ecol. Evol. 4::166172
    [Crossref] [Google Scholar]
  131. 131.
    Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z. 2012.. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. . PNAS 109::165049
    [Crossref] [Google Scholar]
  132. 132.
    Tan WB, Chng S-S. 2022.. Genetic interaction mapping highlights key roles of the Tol-Pal complex. . Mol. Microbiol. 117::92136
    [Crossref] [Google Scholar]
  133. 133.
    Tan WB, Chng S-S. 2024.. Primary role of the Tol-Pal complex in bacterial outer membrane lipid homeostasis. . bioRxiv 593160. https://doi.org/10.1101/2024.05.08.593160
  134. 134.
    Tang X, Chang S, Luo Q, Zhang Z, Qiao W, et al. 2019.. Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. . Nat. Commun. 10::4175
    [Crossref] [Google Scholar]
  135. 135.
    Tang X, Chang S, Qiao W, Luo Q, Chen Y, et al. 2021.. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. . Nat. Struct. Mol. Biol. 28::8191
    [Crossref] [Google Scholar]
  136. 136.
    Thong S, Ercan B, Torta F, Fong ZY, Wong HYA, et al. 2016.. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. . eLife 5::e19042
    [Crossref] [Google Scholar]
  137. 137.
    Todor H, Herrera N, Gross CA. 2023.. Three bacterial DedA subfamilies with distinct functions and phylogenetic distribution. . mBio 14::e0002823
    [Crossref] [Google Scholar]
  138. 138.
    Törk L, Moffatt CB, Bernhardt TG, Garner EC, Kahne D. 2023.. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. . Nature 623::81419
    [Crossref] [Google Scholar]
  139. 139.
    Tran AX, Dong C, Whitfield C. 2010.. Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. . J. Biol. Chem. 285::3352939. Correction . 2017.. J. Biol. Chem. 292::18731
    [Google Scholar]
  140. 140.
    Tran AX, Trent MS, Whitfield C. 2008.. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. . J. Biol. Chem. 283::2034249
    [Crossref] [Google Scholar]
  141. 141.
    Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M, et al. 2013.. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains. . J. Bacteriol. 195::11008
    [Crossref] [Google Scholar]
  142. 142.
    Voss BJ, Trent MS. 2018.. LPS transport: flipping out over MsbA. . Curr. Biol. 28::R3033
    [Crossref] [Google Scholar]
  143. 143.
    Webby MN, Oluwole AO, Pedebos C, Inns PG, Olerinyova A, et al. 2022.. Lipids mediate supramolecular outer membrane protein assembly in bacteria. . Sci. Adv. 8::eadc9566
    [Crossref] [Google Scholar]
  144. 144.
    Webby MN, Williams-Jones DP, Press C, Kleanthous C. 2022.. Force-generation by the trans-envelope Tol-Pal system. . Front. Microbiol. 13::852176
    [Crossref] [Google Scholar]
  145. 145.
    Whitfield C, Trent MS. 2014.. Biosynthesis and export of bacterial lipopolysaccharides. . Annu. Rev. Biochem. 83::99128
    [Crossref] [Google Scholar]
  146. 146.
    Wilson A, Ruiz N. 2022.. The transmembrane α-helix of LptC participates in LPS extraction by the LptB2FGC transporter. . Mol. Microbiol. 118::6176
    [Crossref] [Google Scholar]
  147. 147.
    Witwinowski J, Sartori-Rupp A, Taib N, Pende N, Tham TN, et al. 2022.. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. . Nat. Microbiol. 7::41122
    [Crossref] [Google Scholar]
  148. 148.
    Wu T, McCandlish AC, Gronenberg LS, Chng S-S, Silhavy TJ, Kahne D. 2006.. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. . PNAS 103::1175459
    [Crossref] [Google Scholar]
  149. 149.
    Xie R, Taylor RJ, Kahne D. 2018.. Outer membrane translocon communicates with inner membrane ATPase to stop lipopolysaccharide transport. . J. Am. Chem. Soc. 140::1269194
    [Crossref] [Google Scholar]
  150. 150.
    Yakhnina AA, Bernhardt TG. 2020.. The Tol-Pal system is required for peptidoglycan-cleaving enzymes to complete bacterial cell division. . PNAS 117::677783
    [Crossref] [Google Scholar]
  151. 151.
    Yeh YC, Comolli LR, Downing KH, Shapiro L, McAdams HH. 2010.. The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. . J. Bacteriol. 192::484758
    [Crossref] [Google Scholar]
  152. 152.
    Yeow J, Chng S-S. 2022.. Of zones, bridges and chaperones – phospholipid transport in bacterial outer membrane assembly and homeostasis. . Microbiology 168::001177
    [Crossref] [Google Scholar]
  153. 153.
    Yeow J, Luo M, Chng S-S. 2023.. Molecular mechanism of phospholipid transport at the bacterial outer membrane interface. . Nat. Commun. 14::8285
    [Crossref] [Google Scholar]
  154. 154.
    Yeow J, Tan KW, Holdbrook DA, Chong Z-S, Marzinek JK, et al. 2018.. The architecture of the OmpC–MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli. . J. Biol. Chem. 293::1132540
    [Crossref] [Google Scholar]
  155. 155.
    Yero D, Díaz-Lobo M, Costenaro L, Conchillo-Solé O, Mayo A, et al. 2021.. The Pseudomonas aeruginosa substrate-binding protein Ttg2D functions as a general glycerophospholipid transporter across the periplasm. . Commun. Biol. 4::448
    [Crossref] [Google Scholar]
  156. 156.
    Zhang Y, Fan Q, Chi X, Zhou Q, Li Y. 2020.. Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter. . Cell. Discov. 6::86
    [Crossref] [Google Scholar]
  157. 157.
    Zhou C, Shi H, Zhang M, Zhou L, Xiao L, et al. 2021.. Structural insight into phospholipid transport by the MlaFEBD complex from P. aeruginosa. . J. Mol. Biol. 433::166986
    [Crossref] [Google Scholar]
  158. 158.
    Zik JJ, Yoon SH, Guan Z, Stankeviciute Skidmore G, Gudoor RR, et al. 2022.. Caulobacter lipid A is conditionally dispensable in the absence of fur and in the presence of anionic sphingolipids. . Cell Rep. 39::110888
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-014507
Loading
/content/journals/10.1146/annurev-micro-032521-014507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error