1932

Abstract

Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament–like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: , the causative agent of malaria; , the causative agent of toxoplasmosis; and , a major cause of diarrhea.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-011539
2024-11-20
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-011539.html?itemId=/content/journals/10.1146/annurev-micro-041222-011539&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Absalon S, Dvorin JD. 2021.. Depletion of the mini-chromosome maintenance complex binding protein allows the progression of cytokinesis despite abnormal karyokinesis during the asexual development of Plasmodium falciparum. . Cell. Microbiol. 23::e13284
    [Crossref] [Google Scholar]
  2. 2.
    Al-Khattaf FS, Tremp AZ, Dessens JT. 2015.. Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains. . Parasitol. Res. 114::63139
    [Crossref] [Google Scholar]
  3. 3.
    Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M. 2013.. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. . Nat. Methods 10::12527
    [Crossref] [Google Scholar]
  4. 4.
    Andreadaki M, Morgan RN, Deligianni E, Kooij TW, Santos JM, et al. 2014.. Genetic crosses and complementation reveal essential functions for the Plasmodium stage-specific actin2 in sporogonic development. . Cell. Microbiol. 16::75167
    [Crossref] [Google Scholar]
  5. 5.
    Antunes AV, Shahinas M, Swale C, Farhat DC, Ramakrishnan C, et al. 2024.. In vitro production of cat-restricted Toxoplasma pre-sexual stages by epigenetic reprogramming. . Nature 625::36676
    [Crossref] [Google Scholar]
  6. 6.
    Aquilini E, Cova MM, Mageswaran SK, Dos Santos Pacheco N, Sparvoli D, et al. 2021.. An Alveolata secretory machinery adapted to parasite host cell invasion. . Nat. Microbiol. 6::42534
    [Crossref] [Google Scholar]
  7. 7.
    Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, et al. 2023.. IMC29 plays an important role in Toxoplasma endodyogeny and reveals new components of the daughter-enriched IMC proteome. . mBio 14::e0304222
    [Crossref] [Google Scholar]
  8. 8.
    Bane KS, Lepper S, Kehrer J, Sattler JM, Singer M, et al. 2016.. The actin filament–binding protein coronin regulates motility in Plasmodium sporozoites. . PLOS Pathog. 12::e1005710
    [Crossref] [Google Scholar]
  9. 9.
    Barkhuff WD, Gilk SD, Whitmarsh R, Tilley LD, Hunter C, Ward GE. 2011.. Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness. . PLOS ONE 6::e23977
    [Crossref] [Google Scholar]
  10. 10.
    Baum J, Tonkin CJ, Paul AS, Rug M, Smith BJ, et al. 2008.. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. . Cell Host Microbe 3::18898
    [Crossref] [Google Scholar]
  11. 11.
    Berry L, Chen CT, Francia ME, Guerin A, Graindorge A, et al. 2018.. Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. . Cell. Mol. Life Sci. 75::441743
    [Crossref] [Google Scholar]
  12. 12.
    Berry L, Chen CT, Reininger L, Carvalho TG, El Hajj H, et al. 2016.. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. . Cell. Microbiol. 18::110620
    [Crossref] [Google Scholar]
  13. 13.
    Bertiaux E, Balestra AC, Bournonville L, Louvel V, Maco B, et al. 2021.. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. . PLOS Biol. 19::e3001020
    [Crossref] [Google Scholar]
  14. 14.
    Bhargav SP, Vahokoski J, Kallio JP, Torda AE, Kursula P, Kursula I. 2015.. Two independently folding units of Plasmodium profilin suggest evolution via gene fusion. . Cell. Mol. Life Sci. 72::4193203
    [Crossref] [Google Scholar]
  15. 15.
    Blake TCA, Haase S, Baum J. 2020.. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. . PLOS Pathog. 16::e1009007
    [Crossref] [Google Scholar]
  16. 16.
    Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H, et al. 2017.. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. . J. Biol. Chem. 292::19290303
    [Crossref] [Google Scholar]
  17. 17.
    Brochet M, Balestra AC, Brusini L. 2021.. cGMP homeostasis in malaria parasites: the key to perceiving and integrating environmental changes during transmission to the mosquito. . Mol. Microbiol. 115::82938
    [Crossref] [Google Scholar]
  18. 18.
    Brusini L, Dos Santos Pacheco N, Tromer EC, Soldati-Favre D, Brochet M. 2022.. Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. . J. Cell Biol. 221::e202111084
    [Crossref] [Google Scholar]
  19. 19.
    Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, et al. 2009.. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane–anchoring role. . J. Biol. Chem. 284::2535363
    [Crossref] [Google Scholar]
  20. 20.
    Bushell ES, Ecker A, Schlegelmilch T, Goulding D, Dougan G, et al. 2009.. Paternal effect of the nuclear formin-like protein MISFIT on Plasmodium development in the mosquito vector. . PLOS Pathog. 5::e1000539
    [Crossref] [Google Scholar]
  21. 21.
    Bütschli O. 1880.. Protozoa: Abt. Sarkodina und Sporozoa. Leipzig/Heidelberg, Ger.:: CF Winter
    [Google Scholar]
  22. 22.
    Carmeille R, Schiano Lomoriello P, Devarakonda PM, Kellermeier JA, Heaslip AT. 2021.. Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii. . PLOS Pathog. 17::e1008787
    [Crossref] [Google Scholar]
  23. 23.
    Chen AL, Kim EW, Toh JY, Vashisht AA, Rashoff AQ, et al. 2015.. Novel components of the Toxoplasma inner membrane complex revealed by BioID. . mBio 6::e02357-14
    [Google Scholar]
  24. 24.
    Chen AL, Moon AS, Bell HN, Huang AS, Vashisht AA, et al. 2017.. Novel insights into the composition and function of the Toxoplasma IMC sutures. . Cell. Microbiol. 19::e12678. https://doi.org/10.1111/cmi.12678
    [Crossref] [Google Scholar]
  25. 25.
    Collier S, Pietsch E, Dans M, Ling D, Tavella TA, et al. 2023.. Plasmodium falciparum formins are essential for invasion and sexual stage development. . Commun. Biol. 6::861
    [Crossref] [Google Scholar]
  26. 26.
    Cowman AF, Healer J, Marapana D, Marsh K. 2016.. Malaria: biology and disease. . Cell 167::61024
    [Crossref] [Google Scholar]
  27. 27.
    Cyrklaff M, Kudryashev M, Leis A, Leonard K, Baumeister W, et al. 2007.. Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. . J. Exp. Med. 204::128187
    [Crossref] [Google Scholar]
  28. 28.
    Dans MG, Piirainen H, Nguyen W, Khurana S, Mehra S, et al. 2023.. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics. . PLOS Biol. 21::e3002066
    [Crossref] [Google Scholar]
  29. 29.
    Das S, Lemgruber L, Tay CL, Baum J, Meissner M. 2017.. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development. . BMC Biol. 15::70
    [Crossref] [Google Scholar]
  30. 30.
    de Leon JC, Scheumann N, Beatty W, Beck JR, Tran JQ, et al. 2013.. A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components. . Eukaryot. Cell 12::100919
    [Crossref] [Google Scholar]
  31. 31.
    Del Carmen MG, Mondragon M, Gonzalez S, Mondragon R. 2009.. Induction and regulation of conoid extrusion in Toxoplasma gondii. . Cell. Microbiol. 11::96782
    [Crossref] [Google Scholar]
  32. 32.
    Del Rosario M, Periz J, Pavlou G, Lyth O, Latorre-Barragan F, et al. 2019.. Apicomplexan F-actin is required for efficient nuclear entry during host cell invasion. . EMBO Rep. 20::e48896
    [Crossref] [Google Scholar]
  33. 33.
    Deligianni E, Morgan RN, Bertuccini L, Wirth CC, Silmon de Monerri NC, et al. 2013.. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. . Cell. Microbiol. 15::143855
    [Crossref] [Google Scholar]
  34. 34.
    Demas AR, Sharma AI, Wong W, Early AM, Redmond S, et al. 2018.. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. . PNAS 115::12799804
    [Crossref] [Google Scholar]
  35. 35.
    Devarakonda PM, Sarmiento V, Heaslip AT. 2023.. F-actin and myosin F control apicoplast elongation dynamics which drive apicoplast-centrosome association in Toxoplasma gondii. . mBio 14::e0164023
    [Crossref] [Google Scholar]
  36. 36.
    Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, et al. 2022.. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. . Nat. Microbiol. 7::177790
    [Crossref] [Google Scholar]
  37. 37.
    Dos Santos Pacheco N, Tell IPA, Guerin A, Martinez M, Maco B, et al. 2024.. Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins. . Nat. Commun. 15::379
    [Crossref] [Google Scholar]
  38. 38.
    Dos Santos Pacheco N, Tosetti N, Koreny L, Waller RF, Soldati-Favre D. 2020.. Evolution, composition, assembly, and function of the conoid in Apicomplexa. . Trends Parasitol. 36::688704
    [Crossref] [Google Scholar]
  39. 39.
    Douglas RG, Nandekar P, Aktories JE, Kumar H, Weber R, et al. 2018.. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. . PLOS Biol. 16::e2005345
    [Crossref] [Google Scholar]
  40. 40.
    Dubois DJ, Soldati-Favre D. 2019.. Biogenesis and secretion of micronemes in Toxoplasma gondii. . Cell. Microbiol. 21::e13018
    [Crossref] [Google Scholar]
  41. 41.
    Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, et al. 2014.. The Toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. . PLOS ONE 9::e91819
    [Crossref] [Google Scholar]
  42. 42.
    Engelberg K, Chen CT, Bechtel T, Sanchez Guzman V, Drozda AA, et al. 2020.. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. . Cell. Microbiol. 22::e13112
    [Crossref] [Google Scholar]
  43. 43.
    Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. 2020.. The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite. . Front. Cell Infect. Microbiol. 10::611801
    [Crossref] [Google Scholar]
  44. 44.
    Ferreira JL, Prazak V, Vasishtan D, Siggel M, Hentzschel F, et al. 2023.. Variable microtubule architecture in the malaria parasite. . Nat. Commun. 14::1216
    [Crossref] [Google Scholar]
  45. 45.
    Foth BJ, Goedecke MC, Soldati D. 2006.. New insights into myosin evolution and classification. . PNAS 103::368186
    [Crossref] [Google Scholar]
  46. 46.
    Francia ME, Bhavsar S, Ting LM, Croken MM, Kim K, et al. 2020.. A homolog of structural maintenance of chromosome 1 is a persistent centromeric protein which associates with nuclear pore components in Toxoplasma gondii. . Front. Cell Infect. Microbiol. 10::295
    [Crossref] [Google Scholar]
  47. 47.
    Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, et al. 2012.. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. . PLOS Biol. 10::e1001444
    [Crossref] [Google Scholar]
  48. 48.
    Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. 2010.. Functional dissection of the apicomplexan glideosome molecular architecture. . Cell Host Microbe 8::34357
    [Crossref] [Google Scholar]
  49. 49.
    Ganter M, Rizopoulos Z, Schuler H, Matuschewski K. 2015.. Pivotal and distinct role for Plasmodium actin capping protein α during blood infection of the malaria parasite. . Mol. Microbiol. 96::8494
    [Crossref] [Google Scholar]
  50. 50.
    Ganter M, Schuler H, Matuschewski K. 2009.. Vital role for the Plasmodium actin capping protein (CP) β-subunit in motility of malaria sporozoites. . Mol. Microbiol. 74::135667
    [Crossref] [Google Scholar]
  51. 51.
    Gao H, Yang Z, Wang X, Qian P, Hong R, et al. 2018.. ISP1-anchored polarization of GCβ/CDC50A complex initiates malaria ookinete gliding motility. . Curr. Biol. 28::276376.e6
    [Crossref] [Google Scholar]
  52. 52.
    Gilk SD, Raviv Y, Hu K, Murray JM, Beckers CJ, Ward GE. 2006.. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. . Eukaryot. Cell 5::162234
    [Crossref] [Google Scholar]
  53. 53.
    Goodenough UW, Weiss RL. 1978.. Interrelationships between microtubules, a striated fiber, and the gametic mating structure of Chlamydomonas reinhardi. . J. Cell Biol. 76::43038
    [Crossref] [Google Scholar]
  54. 54.
    Gordon JL, Sibley LD. 2005.. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. . BMC Genom. 6::179
    [Crossref] [Google Scholar]
  55. 55.
    Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF. 2008.. Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. . Mol. Biol. Evol. 25::121930
    [Crossref] [Google Scholar]
  56. 56.
    Graindorge A, Frenal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. 2016.. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells. . PLOS Pathog. 12::e1005388
    [Crossref] [Google Scholar]
  57. 57.
    Guerin A, Striepen B. 2020.. The biology of the intestinal intracellular parasite Cryptosporidium. . Cell Host Microbe 28::50915
    [Crossref] [Google Scholar]
  58. 58.
    Gui L, O'Shaughnessy WJ, Cai K, Reetz E, Reese ML, Nicastro D. 2023.. Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery. . Nat. Commun. 14::1775
    [Crossref] [Google Scholar]
  59. 59.
    Harding CR, Egarter S, Gow M, Jimenez-Ruiz E, Ferguson DJ, Meissner M. 2016.. Gliding associated proteins play essential roles during the formation of the inner membrane complex of Toxoplasma gondii. . PLOS Pathog. 12::e1005403
    [Crossref] [Google Scholar]
  60. 60.
    Harding CR, Frischknecht F. 2020.. The riveting cellular structures of apicomplexan parasites. . Trends Parasitol. 36::97991
    [Crossref] [Google Scholar]
  61. 61.
    Harding CR, Gow M, Kang JH, Shortt E, Manalis SR, et al. 2019.. Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii. . Nat. Commun. 10::401
    [Crossref] [Google Scholar]
  62. 62.
    Hatch AL, Gurel PS, Higgs HN. 2014.. Novel roles for actin in mitochondrial fission. . J. Cell Sci. 127::454960
    [Google Scholar]
  63. 63.
    Hawkins LM, Naumov AV, Batra M, Wang C, Chaput D, Suvorova ES. 2021.. Novel CRK-cyclin complex controls spindle assembly checkpoint in Toxoplasma endodyogeny. . mBio 13::e0356121
    [Crossref] [Google Scholar]
  64. 64.
    Heaslip AT, Nelson SR, Warshaw DM. 2016.. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. . Mol. Biol. Cell 27::208089
    [Crossref] [Google Scholar]
  65. 65.
    Heintzelman MB. 2015.. Gliding motility in apicomplexan parasites. . Semin. Cell Dev. Biol. 46::13542
    [Crossref] [Google Scholar]
  66. 66.
    Hentzschel F, Binder AM, Dorner LP, Herzel L, Nuglish F, et al. 2023.. Microtubule inner proteins of Plasmodium are essential for transmission of malaria parasites. . bioRxiv 2023.10.19.562943
  67. 67.
    Hentzschel F, Jewanski D, Sokolowski Y, Agarwal P, Kraeft A, et al. 2023.. A non-canonical Arp2/3 complex is essential for Plasmodium DNA segregation and transmission of malaria. . bioRxiv 2023.10.25.563799
  68. 68.
    Hirst WG, Fachet D, Kuropka B, Weise C, Saliba KJ, Reber S. 2022.. Purification of functional Plasmodium falciparum tubulin allows for the identification of parasite-specific microtubule inhibitors. . Curr. Biol. 32::91926.e6
    [Crossref] [Google Scholar]
  69. 69.
    Hliscs M, Sattler JM, Tempel W, Artz JD, Dong A, et al. 2010.. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector. . J. Biol. Chem. 285::1157283
    [Crossref] [Google Scholar]
  70. 70.
    Hu K, Roos DS, Murray JM. 2002.. A novel polymer of tubulin forms the conoid of Toxoplasma gondii. . J. Cell Biol. 156::103950
    [Crossref] [Google Scholar]
  71. 71.
    Hueschen CL, Segev Zarko L-a, Chen J-H, LeGros MA, Larabell CA, et al. 2022.. Emergent actin flows explain diverse parasite gliding modes. . bioRxiv 2022.06.08.495399
  72. 72.
    Hunt A, Russell MRG, Wagener J, Kent R, Carmeille R, et al. 2019.. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. . eLife 8::e50598
    [Crossref] [Google Scholar]
  73. 73.
    Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. 2024.. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. . Nat. Commun. 15::1840
    [Crossref] [Google Scholar]
  74. 74.
    Jacot D, Daher W, Soldati-Favre D. 2013.. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. . EMBO J. 32::170216
    [Crossref] [Google Scholar]
  75. 75.
    Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, et al. 2016.. An apicomplexan actin-binding protein serves as a connector and lipid sensor to coordinate motility and invasion. . Cell Host Microbe 20::73143
    [Crossref] [Google Scholar]
  76. 76.
    Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. 2015.. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. . eLife 4::e11553
    [Crossref] [Google Scholar]
  77. 77.
    Katris NJ, van Dooren GG, McMillan PJ, Hanssen E, Tilley L, Waller RF. 2014.. The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma. . PLOS Pathog. 10::e1004074
    [Crossref] [Google Scholar]
  78. 78.
    Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, et al. 2022.. Plasmodium sporozoite disintegration during skin passage limits malaria parasite transmission. . EMBO Rep. 23::e54719
    [Crossref] [Google Scholar]
  79. 79.
    Kelsen A, Kent RS, Snyder AK, Wehri E, Bishop SJ, et al. 2023.. MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii. . PLOS Biol. 21::e3002110
    [Crossref] [Google Scholar]
  80. 80.
    Khater EI, Sinden RE, Dessens JT. 2004.. A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. . J. Cell Biol. 167::42532
    [Crossref] [Google Scholar]
  81. 81.
    Klaus S, Binder P, Kim J, Machado M, Funaya C, et al. 2022.. Asynchronous nuclear cycles in multinucleated Plasmodium falciparum facilitate rapid proliferation. . Sci. Adv. 8::eabj5362
    [Crossref] [Google Scholar]
  82. 82.
    Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, et al. 2023.. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. . Nat. Commun. 14::2167
    [Crossref] [Google Scholar]
  83. 83.
    Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, et al. 2021.. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. . PLOS Biol. 19::e3001081
    [Crossref] [Google Scholar]
  84. 84.
    Kudryashev M, Lepper S, Baumeister W, Cyrklaff M, Frischknecht F. 2010.. Geometric constrains for detecting short actin filaments by cryogenic electron tomography. . PMC Biophys. 3::6
    [Crossref] [Google Scholar]
  85. 85.
    Kudryashev M, Lepper S, Stanway R, Bohn S, Baumeister W, et al. 2010.. Positioning of large organelles by a membrane-associated cytoskeleton in Plasmodium sporozoites. . Cell. Microbiol. 12::36271
    [Crossref] [Google Scholar]
  86. 86.
    Kuhni-Boghenbor K, Ma M, Lemgruber L, Cyrklaff M, Frischknecht F, et al. 2012.. Actin-mediated plasma membrane plasticity of the intracellular parasite Theileria annulata. . Cell. Microbiol. 14::186779
    [Crossref] [Google Scholar]
  87. 87.
    Kumar A, Vadas O, Dos Santos Pacheco N, Zhang X, Chao K, et al. 2023.. Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii. . eLife 12::e86049
    [Crossref] [Google Scholar]
  88. 88.
    Kursula I, Kursula P, Ganter M, Panjikar S, Matuschewski K, Schuler H. 2008.. Structural basis for parasite-specific functions of the divergent profilin of Plasmodium falciparum. . Structure 16::163848
    [Crossref] [Google Scholar]
  89. 89.
    Lechtreck KF. 1998.. Analysis of striated fiber formation by recombinant SF-assemblin in vitro. . J. Mol. Biol. 279::42338
    [Crossref] [Google Scholar]
  90. 90.
    Lechtreck KF, Melkonian M. 1991.. An update on fibrous flagellar roots in green algae. . Protoplasma 164::3844
    [Crossref] [Google Scholar]
  91. 91.
    Leung JM, Nagayasu E, Hwang YC, Liu J, Pierce PG, et al. 2020.. A doublecortin-domain protein of Toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers. . BMC Mol. Cell Biol. 21::8
    [Crossref] [Google Scholar]
  92. 92.
    Leung JM, Rould MA, Konradt C, Hunter CA, Ward GE. 2014.. Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. . PLOS ONE 9::e85763
    [Crossref] [Google Scholar]
  93. 93.
    Li J, Shami GJ, Cho E, Liu B, Hanssen E, et al. 2022.. Repurposing the mitotic machinery to drive cellular elongation and chromatin reorganisation in Plasmodium falciparum gametocytes. . Nat. Commun. 13::5054
    [Crossref] [Google Scholar]
  94. 94.
    Li W, Grech J, Stortz JF, Gow M, Periz J, et al. 2022.. A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. . Nat. Microbiol. 7::88295
    [Crossref] [Google Scholar]
  95. 95.
    Li Z, Du W, Yang J, Lai DH, Lun ZR, Guo Q. 2023.. Cryo-electron tomography of Toxoplasma gondii indicates that the conoid fiber may be derived from microtubules. . Adv. Sci. 10::e2206595
    [Crossref] [Google Scholar]
  96. 96.
    Link F, Borges AR, Jones NG, Engstler M. 2021.. To the surface and back: exo- and endocytic pathways in Trypanosoma brucei. . Front. Cell Dev. Biol. 9::720521
    [Crossref] [Google Scholar]
  97. 97.
    Liu J, Wetzel L, Zhang Y, Nagayasu E, Ems-McClung S, et al. 2013.. Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii. . Eukaryot. Cell 12::158899
    [Crossref] [Google Scholar]
  98. 98.
    Long S, Anthony B, Drewry LL, Sibley LD. 2017.. A conserved ankyrin repeat–containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. . Nat. Commun. 8::2236
    [Crossref] [Google Scholar]
  99. 99.
    Long S, Brown KM, Drewry LL, Anthony B, Phan IQH, Sibley LD. 2017.. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. . PLOS Pathog. 13::e1006379
    [Crossref] [Google Scholar]
  100. 100.
    Lopaticki S, McConville R, John A, Geoghegan N, Mohamed SD, et al. 2022.. Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. . Nat. Commun. 13::4400
    [Crossref] [Google Scholar]
  101. 101.
    Lopez AJ, Andreadaki M, Vahokoski J, Deligianni E, Calder LJ, et al. 2023.. Structure and function of Plasmodium actin II in the parasite mosquito stages. . PLOS Pathog. 19::e1011174
    [Crossref] [Google Scholar]
  102. 102.
    Ma C, Li C, Ganesan L, Oak J, Tsai S, et al. 2007.. Mutations in α-tubulin confer dinitroaniline resistance at a cost to microtubule function. . Mol. Biol. Cell 18::471120
    [Crossref] [Google Scholar]
  103. 103.
    Machado M, Klaus S, Klaschka D, Guizetti J, Ganter M. 2023.. Plasmodium falciparum CRK4 links early mitotic events to the onset of S-phase during schizogony. . mBio 14::e0077923
    [Crossref] [Google Scholar]
  104. 104.
    Mageswaran SK, Guerin A, Theveny LM, Chen WD, Martinez M, et al. 2021.. In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems. . Nat. Commun. 12::4983
    [Crossref] [Google Scholar]
  105. 105.
    Mahe F, de Vargas C, Bass D, Czech L, Stamatakis A, et al. 2017.. Parasites dominate hyperdiverse soil protist communities in neotropical rainforests. . Nat. Ecol. Evol. 1::91
    [Crossref] [Google Scholar]
  106. 106.
    Makkonen M, Bertling E, Chebotareva NA, Baum J, Lappalainen P. 2013.. Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism. . J. Biol. Chem. 288::98494
    [Crossref] [Google Scholar]
  107. 107.
    Mann T, Beckers C. 2001.. Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. . Mol. Biochem. Parasitol. 115::25768
    [Crossref] [Google Scholar]
  108. 108.
    Marques SR, Ramakrishnan C, Carzaniga R, Blagborough AM, Delves MJ, et al. 2015.. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission. . Cell. Microbiol. 17::191206
    [Crossref] [Google Scholar]
  109. 109.
    Martinez M, Chen WD, Cova MM, Molnar P, Mageswaran SK, et al. 2022.. Rhoptry secretion system structure and priming in Plasmodium falciparum revealed using in situ cryo-electron tomography. . Nat. Microbiol. 7::123038
    [Crossref] [Google Scholar]
  110. 110.
    Martinez M, Mageswaran SK, Guerin A, Chen WD, Thompson CP, et al. 2023.. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. . Nat. Commun. 14::4800
    [Crossref] [Google Scholar]
  111. 111.
    Mauer S, Camargo N, Abatiyow BA, Gargaro OR, Kappe SHI, Kumar S. 2023.. Plasmodium microtubule-binding protein EB1 is critical for partitioning of nuclei in male gametogenesis. . mBio 14::e0082223
    [Crossref] [Google Scholar]
  112. 112.
    Mehta S, Sibley LD. 2010.. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. . J. Biol. Chem. 285::683547
    [Crossref] [Google Scholar]
  113. 113.
    Mehta S, Sibley LD. 2011.. Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. . Mol. Biol. Cell 22::129099
    [Crossref] [Google Scholar]
  114. 114.
    Meissner M, Schluter D, Soldati D. 2002.. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. . Science 298::83740
    [Crossref] [Google Scholar]
  115. 115.
    Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, et al. 2009.. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. . PLOS Pathog. 5::e1000599
    [Crossref] [Google Scholar]
  116. 116.
    Morahan BJ, Abrie C, Al-Hasani K, Batty MB, Corey V, et al. 2020.. Human Aurora kinase inhibitor Hesperadin reveals epistatic interaction between Plasmodium falciparum PfArk1 and PfNek1 kinases. . Commun. Biol. 3::701
    [Crossref] [Google Scholar]
  117. 117.
    Moreau CA, Bhargav SP, Kumar H, Quadt KA, Piirainen H, et al. 2017.. A unique profilin-actin interface is important for malaria parasite motility. . PLOS Pathog. 13::e1006412
    [Crossref] [Google Scholar]
  118. 118.
    Moussaoui D, Robblee JP, Auguin D, Krementsova EB, Haase S, et al. 2020.. Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets. . eLife 9::e60581
    [Crossref] [Google Scholar]
  119. 119.
    Moussaoui D, Robblee JP, Robert-Paganin J, Auguin D, Fisher F, et al. 2023.. Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design. . Nat. Commun. 14::3463
    [Crossref] [Google Scholar]
  120. 120.
    Muthinja MJ, Ripp J, Hellmann JK, Haraszti T, Dahan N, et al. 2017.. Microstructured blood vessel surrogates reveal structural tropism of motile malaria parasites. . Adv. Healthc. Mater. 6::1601178
    [Crossref] [Google Scholar]
  121. 121.
    Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. 2019.. Revisiting gametocyte biology in malaria parasites. . FEMS Microbiol. Rev. 43::40114
    [Crossref] [Google Scholar]
  122. 122.
    Parkyn Schneider M, Liu B, Glock P, Suttie A, McHugh E, et al. 2017.. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. . PLOS Pathog. 13::e1006659
    [Crossref] [Google Scholar]
  123. 123.
    Patra P, Beyer K, Jaiswal A, Battista A, Rohr K, et al. 2022.. Collective migration reveals mechanical flexibility of malaria parasites. . Nat. Phys. 18::58694
    [Crossref] [Google Scholar]
  124. 124.
    Periz J, Del Rosario M, McStea A, Gras S, Loney C, et al. 2019.. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. . Nat. Commun. 10::4183
    [Crossref] [Google Scholar]
  125. 125.
    Periz J, Whitelaw J, Harding C, Gras S, Del Rosario Minina MI, et al. 2017.. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. . eLife 6::e24119
    [Crossref] [Google Scholar]
  126. 126.
    Perrin AJ, Bisson C, Faull PA, Renshaw MJ, Lees RA, et al. 2021.. Malaria parasite schizont egress antigen-1 plays an essential role in nuclear segregation during schizogony. . mBio 12::e0337720
    [Crossref] [Google Scholar]
  127. 127.
    Perrin AJ, Patel A, Flueck C, Blackman MJ, Baker DA. 2020.. cAMP signalling and its role in host cell invasion by malaria parasites. . Curr. Opin. Microbiol. 58::6974
    [Crossref] [Google Scholar]
  128. 128.
    Pino P, Sebastian S, Kim EA, Bush E, Brochet M, et al. 2012.. A tetracycline-repressible transactivator system to study essential genes in malaria parasites. . Cell Host Microbe 12::82434
    [Crossref] [Google Scholar]
  129. 129.
    Poulin B, Patzewitz EM, Brady D, Silvie O, Wright MH, et al. 2013.. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. . Biol. Open 2::116070
    [Crossref] [Google Scholar]
  130. 130.
    Prensier G, Vivier E, Goldstein S, Schrevel J. 1980.. Motile flagellum with a “3 + 0” ultrastructure. . Science 207::149394
    [Crossref] [Google Scholar]
  131. 131.
    Qian P, Wang X, Guan C, Fang X, Cai M, et al. 2022.. Apical anchorage and stabilization of subpellicular microtubules by apical polar ring ensures Plasmodium ookinete infection in mosquito. . Nat. Commun. 13::7465
    [Crossref] [Google Scholar]
  132. 132.
    Quadt KA, Streichfuss M, Moreau CA, Spatz JP, Frischknecht F. 2016.. Coupling of retrograde flow to force production during malaria parasite migration. . ACS Nano 10::2091102
    [Crossref] [Google Scholar]
  133. 133.
    Ramakrishnan C, Fort C, Marques SR, Ferguson DJP, Gransagne M, et al. 2023.. Radial spoke protein 9 is necessary for axoneme assembly in Plasmodium but not in trypanosomatid parasites. . J. Cell Sci. 136::jcs260655
    [Crossref] [Google Scholar]
  134. 134.
    Ramkumar N, Baum B. 2016.. Coupling changes in cell shape to chromosome segregation. . Nat. Rev. Mol. Cell Biol. 17::51121
    [Crossref] [Google Scholar]
  135. 135.
    Rashpa R, Brochet M. 2022.. Expansion microscopy of Plasmodium gametocytes reveals the molecular architecture of a bipartite microtubule organisation centre coordinating mitosis with axoneme assembly. . PLOS Pathog. 18::e1010223
    [Crossref] [Google Scholar]
  136. 136.
    Ripp J, Smyrnakou X, Neuhoff MT, Hentzschel F, Frischknecht F. 2022.. Phosphorylation of myosin A regulates gliding motility and is essential for Plasmodium transmission. . EMBO Rep. 23::e54857
    [Crossref] [Google Scholar]
  137. 137.
    Robert-Paganin J, Robblee JP, Auguin D, Blake TCA, Bookwalter CS, et al. 2019.. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. . Nat. Commun. 10::3286
    [Crossref] [Google Scholar]
  138. 138.
    Roques M, Bindschedler A, Beyeler R, Heussler VT. 2023.. Same, same but different: exploring Plasmodium cell division during liver stage development. . PLOS Pathog. 19::e1011210
    [Crossref] [Google Scholar]
  139. 139.
    Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. 2014.. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. . FASEB J 28::472947
    [Crossref] [Google Scholar]
  140. 140.
    Sattler JM, Ganter M, Hliscs M, Matuschewski K, Schuler H. 2011.. Actin regulation in the malaria parasite. . Eur. J. Cell Biol. 90::96671
    [Crossref] [Google Scholar]
  141. 141.
    Schewiakoff W. 1897.. Über die Ursache der fortschreitenden Bewegung der Gregarinen. . Z. Wiss. Zool. 58::34054
    [Google Scholar]
  142. 142.
    Schrevel J, Asfaux-Foucher G, Hopkins JM, Robert V, Bourgouin C, et al. 2008.. Vesicle trafficking during sporozoite development in Plasmodium berghei: ultrastructural evidence for a novel trafficking mechanism. . Parasitology 135::112
    [Crossref] [Google Scholar]
  143. 143.
    Schuler H, Mueller AK, Matuschewski K. 2005.. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. . Mol. Biol. Cell 16::401323
    [Crossref] [Google Scholar]
  144. 144.
    Sharma AI, Shin SH, Bopp S, Volkman SK, Hartl DL, Wirth DF. 2020.. Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. . PLOS Genet. 16::e1009266
    [Crossref] [Google Scholar]
  145. 145.
    Siden-Kiamos I, Ganter M, Kunze A, Hliscs M, Steinbuchel M, et al. 2011.. Stage-specific depletion of myosin A supports an essential role in motility of malarial ookinetes. . Cell. Microbiol. 13::19962006
    [Crossref] [Google Scholar]
  146. 146.
    Simon CS, Funaya C, Bauer J, Vobeta Y, Machado M, et al. 2021.. An extended DNA-free intranuclear compartment organizes centrosome microtubules in malaria parasites. . Life Sci. Alliance 4::e202101199
    [Crossref] [Google Scholar]
  147. 147.
    Skillman KM, Daher W, Ma CI, Soldati-Favre D, Sibley LD. 2012.. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro. . Biochemistry 51::248695
    [Crossref] [Google Scholar]
  148. 148.
    Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD. 2011.. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. . PLOS Pathog. 7::e1002280
    [Crossref] [Google Scholar]
  149. 149.
    Spreng B, Fleckenstein H, Kubler P, Di Biagio C, Benz M, et al. 2019.. Microtubule number and length determine cellular shape and function in Plasmodium. . EMBO J. 38::e100984
    [Crossref] [Google Scholar]
  150. 150.
    Stortz JF, Del Rosario M, Singer M, Wilkes JM, Meissner M, Das S. 2019.. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. . eLife 8::e49030
    [Crossref] [Google Scholar]
  151. 151.
    Straschil U, Talman AM, Ferguson DJ, Bunting KA, Xu Z, et al. 2010.. The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. . PLOS ONE 5::e12901
    [Crossref] [Google Scholar]
  152. 152.
    Sun SY, Segev-Zarko L-a, Chen M, Pintilie GD, Schmid MF, et al. 2022.. Cryo-ET of Toxoplasma parasites gives subnanometer insight into tubulin-based structures. . PNAS 119::e2111661119
    [Crossref] [Google Scholar]
  153. 153.
    Tengganu IF, Arias Padilla LF, Munera Lopez J, Liu J, Brown PT, et al. 2023.. The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement. . J. Cell Sci. 136::261270
    [Crossref] [Google Scholar]
  154. 154.
    Tomasina R, Gonzalez FC, Martins-Duarte ES, Bastin P, Gissot M, Francia ME. 2022.. Separate to operate: The centriole-free inner core of the centrosome regulates the assembly of the intranuclear spindle in Toxoplasma gondii. . mBio 13::e0185922
    [Crossref] [Google Scholar]
  155. 155.
    Torres JA, Pasquarelli RR, Back PS, Moon AS, Bradley PJ. 2021.. Identification and molecular dissection of IMC32, a conserved Toxoplasma inner membrane complex protein that is essential for parasite replication. . mBio 12::e03622-20
    [Google Scholar]
  156. 156.
    Tosetti N, Dos Santos Pacheco N, Bertiaux E, Maco B, Bournonville L, et al. 2020.. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. . eLife 9::e56635
    [Crossref] [Google Scholar]
  157. 157.
    Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, Jacot D. 2019.. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. . eLife 8::e42669
    [Crossref] [Google Scholar]
  158. 158.
    Tran JQ, Li C, Chyan A, Chung L, Morrissette NS. 2012.. SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. . Eukaryot. Cell 11::20616
    [Crossref] [Google Scholar]
  159. 159.
    Tremp AZ, Carter V, Saeed S, Dessens JT. 2013.. Morphogenesis of Plasmodium zoites is uncoupled from tensile strength. . Mol. Microbiol. 89::55264
    [Crossref] [Google Scholar]
  160. 160.
    Tremp AZ, Khater EI, Dessens JT. 2008.. IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. . J. Biol. Chem. 283::2760411
    [Crossref] [Google Scholar]
  161. 161.
    Valigurova A, Vaskovicova N, Musilova N, Schrevel J. 2013.. The enigma of eugregarine epicytic folds: where gliding motility originates?. Front. Zool. 10::57
    [Crossref] [Google Scholar]
  162. 162.
    von Schubert C, Xue G, Schmuckli-Maurer J, Woods KL, Nigg EA, Dobbelaere DA. 2010.. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. . PLOS Biol. 8::e1000499
    [Crossref] [Google Scholar]
  163. 163.
    Voß Y, Klaus S, Guizetti J, Ganter M. 2023.. Plasmodium schizogony, a chronology of the parasite's cell cycle in the blood stage. . PLOS Pathog. 19::e1011157
    [Crossref] [Google Scholar]
  164. 164.
    Voß Y, Klaus S, Lichti NP, Ganter M, Guizetti J. 2023.. Malaria parasite centrins can assemble by Ca2+-inducible condensation. . PLOS Pathog. 19::e1011899
    [Crossref] [Google Scholar]
  165. 165.
    Wall RJ, Roques M, Katris NJ, Koreny L, Stanway RR, et al. 2016.. SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector. . Sci. Rep. 6::28604
    [Crossref] [Google Scholar]
  166. 166.
    Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E, et al. 2019.. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. . Cell. Microbiol. 21::e13082
    [Crossref] [Google Scholar]
  167. 167.
    Wan W, Dong H, Lai DH, Yang J, He K, et al. 2023.. The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. . Nat. Commun. 14::977
    [Crossref] [Google Scholar]
  168. 168.
    Wang X, Fu Y, Beatty WL, Ma M, Brown A, et al. 2021.. Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. . Nat. Commun. 12::3065
    [Crossref] [Google Scholar]
  169. 169.
    Wang X, Qian P, Cui H, Yao L, Yuan J. 2020.. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium. . EMBO J. 39::e104168
    [Crossref] [Google Scholar]
  170. 170.
    Wenz C, Simon CS, Romao TP, Sturmer VS, Machado M, et al. 2023.. An Sfi1-like centrin-interacting centriolar plaque protein affects nuclear microtubule homeostasis. . PLOS Pathog. 19::e1011325
    [Crossref] [Google Scholar]
  171. 171.
    Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, et al. 2021.. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. . Cell. Microbiol. 23::e13341
    [Crossref] [Google Scholar]
  172. 172.
    Wichers-Misterek JS, Binder AM, Mesen-Ramirez P, Dorner LP, Safavi S, et al. 2023.. A microtubule-associated protein is essential for malaria parasite transmission. . mBio 14::e0331822
    [Crossref] [Google Scholar]
  173. 173.
    Wilson LG, Carter LM, Reece SE. 2013.. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. . PNAS 110::1876974
    [Crossref] [Google Scholar]
  174. 174.
    Yahiya S, Jordan S, Smith HX, Gaboriau DCA, Famodimu MT, et al. 2022.. Live-cell fluorescence imaging of microgametogenesis in the human malaria parasite Plasmodium falciparum. . PLOS Pathog. 18::e1010276
    [Crossref] [Google Scholar]
  175. 175.
    Yang S, Cai M, Huang J, Zhang S, Mo X, et al. 2023.. EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis. . Nat. Commun. 14::2864
    [Crossref] [Google Scholar]
  176. 176.
    Yee M, Walther T, Frischknecht F, Douglas RG. 2022.. Divergent Plasmodium actin residues are essential for filament localization, mosquito salivary gland invasion and malaria transmission. . PLOS Pathog. 18::e1010779
    [Crossref] [Google Scholar]
  177. 177.
    Zeeshan M, Rea E, Abel S, Vukusic K, Markus R, et al. 2023.. Plasmodium ARK2 and EB1 drive unconventional spindle dynamics, during chromosome segregation in sexual transmission stages. . Nat. Commun. 14::5652
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-011539
Loading
/content/journals/10.1146/annurev-micro-041222-011539
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error