1932

Abstract

The genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified -associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-012242
2024-11-20
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-012242.html?itemId=/content/journals/10.1146/annurev-micro-041222-012242&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alfano JR, Collmer A. 2001.. Mechanisms of bacterial pathogenesis in plants: familiar foes in foreign kingdom. . In Principles of Bacterial Pathogenesis, ed. EA Groisman , pp. 179226. San Diego, CA:: Academic
    [Google Scholar]
  2. 2.
    Alič S, Gijsegem V, Pédron J, Ravnikar M, Dreo T. 2018.. Diversity within the novel Dickeya fangzhongdai sp., isolated from infected orchids, water and pears. . Plant Pathol. 67:(7):161220
    [Crossref] [Google Scholar]
  3. 3.
    Alič S, Naglic T, Tusek-Znidaric M, Peterka M, Ravnikar M, et al. 2017.. Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. . Plant Pathol. 66::135768
    [Crossref] [Google Scholar]
  4. 4.
    Antúnez-Lamas M, Cabrera E, Lopez-Solanilla E, Solano R, González-Melendi P, et al. 2009.. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. . Mol. Microbiol. 74:(3):66271
    [Crossref] [Google Scholar]
  5. 5.
    Babujee L, Apodaca J, Balakrishnan V, Liss P, Kiley PJ, et al. 2012.. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. . BMC Genom. 13::110
    [Crossref] [Google Scholar]
  6. 6.
    Banerjee B, Zeng Q, Yu MD, Hsueh BY, Waters CM, et al. 2022.. Quorum-sensing master regulator VfmE is a c-di-GMP effector that controls pectate lyase production in the phytopathogen Dickeya dadantii. . Microbiol. Spectr. 10::e0180521
    [Crossref] [Google Scholar]
  7. 7.
    Bell KS, Sebaihia M, Pritchard L, Holden MTG, Hyman LJ, et al. 2004.. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. . PNAS 101:(30):1110510
    [Crossref] [Google Scholar]
  8. 8.
    Bi H, Zhang C. 2014.. Integration host factor is required for the induction of acid resistance in Escherichia coli. . Curr. Microbiol. 69:(2):21824
    [Crossref] [Google Scholar]
  9. 9.
    Bontemps-Gallo S, Madec E, Lacroix JM. 2015.. The two-component system CpxAR is essential for virulence in the phytopathogen bacteria Dickeya dadantiiEC3937. . Environ. Microbiol. 17:(11):441528
    [Crossref] [Google Scholar]
  10. 10.
    Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P, et al. 2012.. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. . Int. J. Syst. Evol. Microbiol. 62:(7):1592602
    [Crossref] [Google Scholar]
  11. 11.
    Burkholder WR, McFadden LA, Dimock EW. 1953.. A bacterial blight of chrysanthemums. . Phytopathology 43::52226
    [Google Scholar]
  12. 12.
    Charkowski AO. 2018.. The changing face of bacterial soft-rot diseases. . Annu. Rev. Phytopathol. 16::26988
    [Crossref] [Google Scholar]
  13. 13.
    Chen S, Hu M, Hu A, Xue Y, Wang S, et al. 2022.. The integration host factor regulates multiple virulence pathways in bacterial pathogen Dickeya zeae MS2. . Mol. Plant Pathol. 23:(10):1487507
    [Crossref] [Google Scholar]
  14. 14.
    Chen Y, Lv M, Liang Z, Liu Z, Zhou J, et al. 2022.. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors. . Mol. Plant Pathol. 23::87084
    [Crossref] [Google Scholar]
  15. 15.
    Chen Y, Lv M, Liao L, Gu Y, Liang Z, et al. 2016.. Genetic modulation of c-di-GMP turnover affects multiple virulence traits and bacterial virulence in rice pathogen Dickeya zeae. . PLOS ONE 11:(11):e0165979
    [Crossref] [Google Scholar]
  16. 16.
    Chen Y, Zhou J, Lv M, Liang Z, Parsek MR, et al. 2020.. Systematic analysis of c-di-GMP signaling mechanisms and biological functions in Dickeya zeae EC1. . mBio 11:(6):e02993-20
    [Google Scholar]
  17. 17.
    Cheng Y, Liu X, An S, Chang C, Zou Y, et al. 2013.. A nonribosomal peptide synthase containing a stand-alone condensation domain is essential for phytotoxin zeamine biosynthesis. . Mol. Plant-Microbe Interact. 26:(11):1294301
    [Crossref] [Google Scholar]
  18. 18.
    Chi NM, Anh DTK, Hung TX, Nhung NP, Bao HQ. 2022.. Soft rot disease caused by Dickeya fangzhongdai in epiphytic orchids in Vietnam. . Can. J. Plant Pathol. 44:(3):38699
    [Crossref] [Google Scholar]
  19. 19.
    Cochard C, Caby M, Gruau P, Madec E, Marceau M, et al. 2023.. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. . Microbiol. Spectr. 29::e0083323
    [Crossref] [Google Scholar]
  20. 20.
    Crépin A, Beury-Cirou A, Barbey C, Farmer C, Helias V, et al. 2012.. N-Acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence. . Sensors 12::348497
    [Crossref] [Google Scholar]
  21. 21.
    Cui H, Tsuda K, Parker JE. 2015.. Effector-triggered immunity: from pathogen perception to robust defense. . Annu. Rev. Plant Biol. 66::487511
    [Crossref] [Google Scholar]
  22. 22.
    Dodds PN, Rathjen JP. 2010.. Plant immunity: towards an integrated view of plant-pathogen interactions. . Nat. Rev. Genet. 11:(8):53948
    [Crossref] [Google Scholar]
  23. 23.
    Feng L, Schaefer AL, Hu M, Chen R, Greenberg EP, et al. 2019.. Virulence factor identification in the banana pathogen Dickeya zeae MS2. . Appl. Environ. Microbiol. 85:(23):e01611-19
    [Google Scholar]
  24. 24.
    Franza T, Mahe B, Expert D. 2005.. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. . Mol. Microbiol. 55:(1):26175
    [Crossref] [Google Scholar]
  25. 25.
    Goto M. 1979.. Bacterial foot rot of rice caused by a strain of Erwinia chrysanthemi. . Phytopathology 69::21316
    [Crossref] [Google Scholar]
  26. 26.
    Grignon C, Sentenac H. 1991.. pH and ionic conditions in the apoplast. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 42::10325
    [Crossref] [Google Scholar]
  27. 27.
    Haque MM, Hirata H, Tsuyumu S. 2015.. SlyA regulates motA and motB, virulence and stress-related genes under conditions induced by the PhoP-PhoQ system in Dickeya dadantii 3937. . Res. Microbiol. 166:(6):46775
    [Crossref] [Google Scholar]
  28. 28.
    Haque MM, Yamazaki A, Tsuyumu S. 2005.. Virulence, accumulation of acetyl-coenzyme A, and pectate lyase synthesis are controlled by PhoP-PhoQ two-component regulatory system responding to organic acids of Erwinia chrysanthemi 3937. . J. Gen. Plant Pathol. 71::13338
    [Crossref] [Google Scholar]
  29. 29.
    Hauben L, Van Gijsegem F, Swings J. 1998.. Genus XXIV. Pectobacterium. . In Bergey's Manual of Systematic Bacteriology, Vol. 2, ed. DJ Brenner, NR Krieg, JT Staley , pp. 72130. New York:: Springer
    [Google Scholar]
  30. 30.
    Hérault E, Reverchon S, Nasser W. 2014.. Role of the LysR-type transcriptional regulator PecT and DNA supercoiling in the thermoregulation of pel genes, the major virulence factors in Dickeya dadantii. . Environ. Microbiol. 16:(3):73445
    [Crossref] [Google Scholar]
  31. 31.
    Hommais F, Oger-Desfeux C, Van Gijsegem F, Castang S, Ligori S, et al. 2008.. PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. . J. Bacteriol. 190:(22):750822
    [Crossref] [Google Scholar]
  32. 32.
    Hu A, Hu M, Chen S, Xue Y, Tan X, et al. 2022.. Five plant natural products are potential type III secretion system inhibitors to effectively control soft-rot disease caused by Dickeya. . Front. Microbiol. 13::839025
    [Crossref] [Google Scholar]
  33. 33.
    Hu M. 2023.. Identification of important virulence factors and dissection of the regulatory networks of the putrescine signal system in Dickeya zeae. PhD Thesis , South China Agric. Univ., Guangzhou:
    [Google Scholar]
  34. 34.
    Hu M, Li J, Chen R, Li W, Feng L, et al. 2018.. Dickeya zeae strains isolated from rice, banana and clivia rot plants show great virulence differentials. . BMC Microbiol. 18:(1):136
    [Crossref] [Google Scholar]
  35. 35.
    Hu M, Xue Y, Li C, Lv M, Zhang LH, et al. 2022.. Genomic and functional dissections of Dickeya zeae shed light on the role of type III secretion system and cell-wall degrading enzymes to host range and virulence. . Microbiol. Spectr. 10:(1):e01590-21
    [Google Scholar]
  36. 36.
    Huang S, Chen Z, Hu M, Xue Y, Liao L, et al. 2021.. First report of bacterial soft rot disease on taro caused by Dickeya fangzhongdai in China. . Plant Dis. 105:(11):3737
    [Crossref] [Google Scholar]
  37. 37.
    Hugouvieux-Cotte-Pattat N, Brochier-Armanet C, Flandrois J, Reverchon S. 2020.. Dickeya poaceiphila sp. nov., a plant-pathogenic bacterium isolated from sugar cane (Saccharum officinarum). . Int. J. Syst. Evol. Microbiol. 70:(8):450814
    [Crossref] [Google Scholar]
  38. 38.
    Hugouvieux-Cotte-Pattat N, Jacot-Des-Combes C, Briolay J. 2019.. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. . Int. J. Syst. Evol. Microbiol. 69:(3):72126
    [Crossref] [Google Scholar]
  39. 39.
    Hugouvieux-Cotte-Pattat N, Jacot-Des-Combes C, Briolay J, Pritchard L. 2021.. Proposal for the creation of a new genus Musicola gen. nov., reclassification of Dickeya paradisiaca (Samson et al. 2005) as Musicola paradisiaca comb. nov. and description of a new species Musicola keenii sp. nov. . Int. J. Syst. Evol. Microbiol. 71:(10). https://doi.org/10.1099/ijsem.0.005037
    [Crossref] [Google Scholar]
  40. 40.
    Hugouvieux-Cotte-Pattat N, Van Gijsegem F. 2021.. Diversity within the Dickeya zeae complex, identification of Dickeya zeae and Dickeya oryzae members, proposal of the novel species Dickeya parazeae sp. nov. . Int. J. Syst. Evol. Microbiol. 71:(11). https://doi.org/10.1099/ijsem.0.005059
    [Crossref] [Google Scholar]
  41. 41.
    Hussain MB, Zhang H, Xu J, Liu Q, Jiang ZD, et al. 2008.. The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. . J. Bacteriol. 190::104553
    [Crossref] [Google Scholar]
  42. 42.
    Jafra S, Przysowa J, Gwizdek-Wiśniewska A, van der Wolf JM. 2008.. Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. . J. Appl. Microbiol. 106::26877
    [Crossref] [Google Scholar]
  43. 43.
    Janse JD, Ruissen MA. 1988.. Characterization and classification of Erwinia chrysanthemi strains from several hosts in The Netherlands. . Phytopathology 78::8008
    [Crossref] [Google Scholar]
  44. 44.
    Jiang HH, Hao JJ, Johnson SB, Brueggeman RS, Secor G. 2016.. First report of Dickeya dianthicola causing blackleg and bacterial soft rot on potato in Maine. . Plant Dis. 100::2320
    [Crossref] [Google Scholar]
  45. 45.
    Jiang X, Zghidi-Abouzid O, Oger-Desfeux C, Hommais F, Greliche N, et al. 2016.. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. . Environ. Microbiol. 18:(11):365172
    [Crossref] [Google Scholar]
  46. 46.
    Jock S, Kim WS, Barny MA, Geider K. 2003.. Molecular characterization of natural Erwinia pyrifoliae strains deficient in hypersensitive response. . Appl. Environ. Microbiol. 69::67982
    [Crossref] [Google Scholar]
  47. 47.
    Jones JDG, Dangl JL. 2006.. The plant immune system. . Nature 444:(7117):32329
    [Crossref] [Google Scholar]
  48. 48.
    Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N. 2004.. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. . Proteomics 4::317786
    [Crossref] [Google Scholar]
  49. 49.
    Kim HS, Ma B, Perna NT, Charkowski AO. 2009.. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. . Appl. Environ. Microbiol. 75::453949
    [Crossref] [Google Scholar]
  50. 50.
    Lamprokostopoulou A, Monteiro C, Rhen M, Römling U. 2010.. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. . Environ. Microbiol. 12::4053
    [Crossref] [Google Scholar]
  51. 51.
    Lebeau A, Reverchon S, Gaubert S, Kraepiel Y, Simond-Côte E, et al. 2008.. The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection. . Environ. Microbiol. 10:(3):54559
    [Crossref] [Google Scholar]
  52. 52.
    Li S, Sun H, Li J, Zhao Y, Wang R, et al. 2022.. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. . Nat. Commun. 13:(1):6684
    [Crossref] [Google Scholar]
  53. 53.
    Liao L, Cheng Y, Liu S, Zhou J, An S, et al. 2014.. Production of novel antibiotics zeamines through optimizing Dickeya zeae fermentation conditions. . PLOS ONE 9:(12):e116047
    [Crossref] [Google Scholar]
  54. 54.
    Liu F, Hu M, Tan X, Xue Y, Li C, et al. 2023.. Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 biocontrol Dickeya soft rot diseases by quenching virulence factor modulating quorum sensing signal. . Microbe Biotechnol. 16:(11):214560
    [Crossref] [Google Scholar]
  55. 55.
    Liu F, Hu M, Zhang Z, Xue Y, Chen S, et al. 2022.. Dickeya manipulates multiple quorum sensing systems to control virulence and collective behaviors. . Front. Plant Sci. 13::838125
    [Crossref] [Google Scholar]
  56. 56.
    Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, et al. 2008.. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. . PLOS Pathog. 4:(6):e1000093
    [Crossref] [Google Scholar]
  57. 57.
    Llama-Palacios A, Lopez-Solanilla E, Poza-Carrion C, Garcia-Olmedo F, Rodriguez-Palenzuela P. 2003.. The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue. . Mol. Microbiol. 49:(2):34757
    [Crossref] [Google Scholar]
  58. 58.
    Lv M. 2018.. Identification and characterization of the virulence regulatory mechanisms in Dickeya zeae EC1. PhD Thesis , South China Agric. Univ., Guangzhou:
    [Google Scholar]
  59. 59.
    Lv M, Chen Y, Hu M, Yu Q, Duan C, et al. 2022.. OhrR is a central transcriptional regulator of virulence in Dickeya zeae. . Mol. Plant Pathol. 23:(1):4559
    [Crossref] [Google Scholar]
  60. 60.
    Lv M, Chen Y, Liao L, Liang Z, Shi Z, et al. 2018.. Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. . Sci. Rep. 8::341
    [Crossref] [Google Scholar]
  61. 61.
    Lv M, Hu M, Li P, Jiang Z, Zhang L, et al. 2019.. A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae. . Mol. Microbiol. 111:(6):1493509
    [Crossref] [Google Scholar]
  62. 62.
    Lv M, Ye S, Hu M, Xue Y, Liang Z, et al. 2022.. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. . Front. Plant Sci. 13::1033192
    [Crossref] [Google Scholar]
  63. 63.
    Matilla MA, Stöckmann H, Leeper FJ, Salmond GPC. 2012.. Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules. . J. Biol. Chem. 287::3912538
    [Crossref] [Google Scholar]
  64. 64.
    Mhedbi-Hajri N, Malfatti P, Pedron J, Gaubert S, Reverchon S, et al. 2011.. PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants. . Environ. Microbiol. 13:(11):290114
    [Crossref] [Google Scholar]
  65. 65.
    Miguel E, Poza-Carrión C, López-Solanilla E, Aguilar I, Llama-Palacios A, et al. 2000.. Evidence against a direct antimicrobial role of H2O2 in the infection of plants by Erwinia chrysanthemi. . Mol. Plant-Microbe Interact. 13:(4):42129
    [Crossref] [Google Scholar]
  66. 66.
    Mohr TJ, Liu H, Yan S, Morris CE, Castillo JA, et al. 2008.. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. . J. Bacteriol. 190::285870
    [Crossref] [Google Scholar]
  67. 67.
    Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. 2011.. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. . Environ. Microbiol. 13::312838
    [Crossref] [Google Scholar]
  68. 68.
    Nasser W, Bouillant ML, Salmond G, Reverchon S. 1998.. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. . Mol. Microbiol. 29:(6):139105
    [Crossref] [Google Scholar]
  69. 69.
    Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau MC, et al. 2013.. Vfm a new quorum sensing system controls the virulence of Dickeya dadantii. . Environ. Microbiol. 15::86580
    [Crossref] [Google Scholar]
  70. 70.
    Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y. 1998.. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. . Plant Cell Physiol. 39::5007
    [Crossref] [Google Scholar]
  71. 71.
    Norman C, Vidal S, Palva ET. 1999.. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora. . Mol. Plant-Microbe Interact. 12::64044
    [Crossref] [Google Scholar]
  72. 72.
    Norman C, Vidal S, Palva ET. 2000.. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. . Mol. Plant-Microbe Interact. 13::43038
    [Crossref] [Google Scholar]
  73. 73.
    Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, et al. 2012.. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. . PLOS Pathog. 8::e1003013
    [Crossref] [Google Scholar]
  74. 74.
    Oulghazi S, Pédron J, Cigna J, Lau YY, Moumni M, et al. 2019.. Dickeya undicola sp. nov., a novel species for pectinolytic isolates from surface waters in Europe and Asia. . Int. J. Syst. Evol. Microbiol. 69:(8):244044
    [Crossref] [Google Scholar]
  75. 75.
    Parkinson N, Devos P, Pirhonen M, Elphinstone J. 2014.. Dickeya aquatica sp. nov., isolated from waterways. . Int. J. Syst. Evol. Microbiol. 64:(7):226466
    [Crossref] [Google Scholar]
  76. 76.
    Pédron J, Chapelle E, Alunni B, Van Gijsegem F. 2018.. Transcriptome analysis of the Dickeya dadantii PecS regulon during the early stages of interaction with Arabidopsis thaliana. . Mol. Plant Pathol. 19::64763
    [Crossref] [Google Scholar]
  77. 77.
    Persmark M, Expert D, Neilands JB. 1989.. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. . J. Biol. Chem. 264:(6):318793
    [Crossref] [Google Scholar]
  78. 78.
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, et al. 2000.. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. . Cell 103::111120
    [Crossref] [Google Scholar]
  79. 79.
    Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E. 2014.. Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. . Mol. Plant-Microbe Interact. 27::70011
    [Crossref] [Google Scholar]
  80. 80.
    Potrykus M, Hugouvieux-Cotte-Pattat N, Lojkowska E. 2018.. Interplay of classic Exp and specific Vfm quorum sensing systems on the phenotypic features of Dickeya solani strains exhibiting different virulence levels. . Mol. Plant Pathol. 19::123851
    [Crossref] [Google Scholar]
  81. 81.
    Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, et al. 2019.. Common and distinctive adaptive traits expressed in Dickeya dianthicola and Dickeya solani pathogens when exploiting potato plant host. . Environ. Microbiol. 21::100418
    [Crossref] [Google Scholar]
  82. 82.
    Reverchon S, Muskhelisvili G, Nasser W. 2016.. Virulence program of a bacterial plant pathogen: the Dickeya model. . Prog. Mol. Biol. Transl. Sci. 142::5192
    [Crossref] [Google Scholar]
  83. 83.
    Reverchon S, Rouanet C, Expert D, Nasser W. 2002.. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. . J. Bacteriol. 184::65465
    [Crossref] [Google Scholar]
  84. 84.
    Reverchon S, Van Gijsegem F, Effantin G, Zghidi-Abouzid O, Nasser W. 2010.. Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH. . Mol. Microbiol. 78:(4):101837
    [Crossref] [Google Scholar]
  85. 85.
    Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, et al. 2015.. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. . Mol. Plant Pathol. 16::68598
    [Crossref] [Google Scholar]
  86. 86.
    Rodriguez-Muñiz GM, Miranda MA, Marin ML. 2019.. A time-resolved study on the reactivity of alcoholic drinks with the hydroxyl radical. . Molecules 24::234
    [Crossref] [Google Scholar]
  87. 87.
    Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. 2023.. Suppression of NLR-mediated plant immune detection by bacterial pathogens. . J. Exp. Bot. 74:(19):606988
    [Crossref] [Google Scholar]
  88. 88.
    Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, et al. 2005.. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. . Int. J. Syst. Evol. Microbiol. 55::141527
    [Crossref] [Google Scholar]
  89. 89.
    Sarkar SF, Gordon JS, Martin GB, Guttman DS. 2006.. Comparative genomics of host-specific virulence in Pseudomonas syringae. . Genetics 174::104156
    [Crossref] [Google Scholar]
  90. 90.
    Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, et al. 2015.. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. . Front. Microbiol. 6::535
    [Crossref] [Google Scholar]
  91. 91.
    Shi Z, Wang Q, Li Y, Liang Z, Xu L, et al. 2019.. Putrescine is an intraspecies and interkingdom cell-cell communication signal modulating the virulence of Dickeya zeae. . Front. Microbiol. 10::1950
    [Crossref] [Google Scholar]
  92. 92.
    Sławiak M, Beckhoven J, Speksnijder A, Czajkowski R, Grabe G, et al. 2009.. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. . Eur. J. Plant Pathol. 125::24561
    [Crossref] [Google Scholar]
  93. 93.
    Suharjo R, Sawada H, Takikawa Y. 2014.. Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR-RFLP. . J. Gen. Plant Pathol. 80::23754
    [Crossref] [Google Scholar]
  94. 94.
    Sun WX, Liu LJ, Bent AF. 2011.. Type III secretion-dependent host defence elicitation and type III secretion-independent growth within leaves by Xanthomonas campestris pv. campestris. . Mol. Plant Pathol. 12::73145
    [Crossref] [Google Scholar]
  95. 95.
    Tan C, Li C, Hu M, Hu A, Xue Y, et al. 2022.. Comparative pathogenomic analysis of two banana pathogenic Dickeya strains isolated from China and the Philippines. . Int. J. Mol. Sci. 23::12758
    [Crossref] [Google Scholar]
  96. 96.
    Tian Y, Zhao Y, Yuan X, Yi J, Fan J, et al. 2016.. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). . Int. J. Syst. Evol. Microbiol. 66:(8):283135
    [Crossref] [Google Scholar]
  97. 97.
    Toth IK, Birch PRJ. 2005.. Rotting softly and stealthily. . Curr. Opin. Plant Biol. 8::42429
    [Crossref] [Google Scholar]
  98. 98.
    Toth IK, van der Wolf JM, Saddler G, Łojkowska E, Hélias V, et al. 2011.. Dickeya species: an emerging problem for potato production in Europe. . Plant Pathol. 60::38599
    [Crossref] [Google Scholar]
  99. 99.
    Tsror L, Erlich O, Lebiush S, Hazanovsky M, Zig U, et al. 2009.. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. . Eur. J. Plant Pathol. 123::31120
    [Crossref] [Google Scholar]
  100. 100.
    van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, et al. 2014.. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). . Int. J. Syst. Evol. Microbiol. 64:(3):76874
    [Crossref] [Google Scholar]
  101. 101.
    Van Gijsegem F, Hugouvieux-Cotte-Pattat N, Kraepiel Y, Lojkowska E, Moleleki LN, et al. 2021.. Molecular interactions of Pectobacterium and Dickeya with plants. . In Plant Diseases Caused by Dickeya and Pectobacterium Species, ed. F Van Gijsegem, JM van der Wolf, IK Toth , pp. 85147. Cham, Switz:.: Springer
    [Google Scholar]
  102. 102.
    Vidal S, deLeon IP, Denecke J, Palva ET. 1997.. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. . Plant J. 11::11523
    [Crossref] [Google Scholar]
  103. 103.
    Wang X, He S, Guo H, Han J, Thin KK, et al. 2020.. Dickeya oryzae sp. nov., isolated from the roots of rice. . Int. J. Syst. Evol. Microbiol. 70:(7):417178
    [Crossref] [Google Scholar]
  104. 104.
    Winslow CEA, Broadhurst J, Buchannan RE, Krumwiede C, Rogers LA, et al. 1920.. The families and genera of the bacteria: final report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types. . J. Bacteriol. 5::191229
    [Crossref] [Google Scholar]
  105. 105.
    Wu J, Zhang H, Xu J, Cox RJ, Simpson TJ, et al. 2010.. 13C labeling reveals multiple amination reactions in the biosynthesis of a novel polyketide polyamine antibiotic zeamine from Dickeya zeae. . Chem. Commun. 46:(2):33335
    [Crossref] [Google Scholar]
  106. 106.
    Wu X, Zeng Q, Koestler BJ, Waters CM, Sundin GW, et al. 2014.. Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen Dickeya dadantii. . Mol. Plant-Microbe Interact. 27:(10):111931
    [Crossref] [Google Scholar]
  107. 107.
    Yang S, Peng Q, San Francisco M, Wang Y, Zeng Q, et al. 2008.. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. . PLOS ONE 3::e2973
    [Crossref] [Google Scholar]
  108. 108.
    Yang S, Peng Q, Zhang Q, Yi X, Choi CJ, et al. 2008.. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). . Mol. Plant-Microbe Interact. 21:(1):13342
    [Crossref] [Google Scholar]
  109. 109.
    Yi X, Yamazaki A, Biddle E, Zeng Q, Yang CH. 2010.. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. . Microbiology 77:(3):787800
    [Google Scholar]
  110. 110.
    Yuan X, Khokhani D, Wu X, Yang F, Biener G, et al. 2015.. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours. . Environ. Microbiol. 17:(11):474563
    [Crossref] [Google Scholar]
  111. 111.
    Zaczek-Moczydlowska MA, Fleming CC, Young GK, Campbell K, O'Hanlon R. 2019.. Pectobacterium and Dickeya species detected in vegetables in Northern Ireland. . Eur. J. Plant Pathol. 154::63547
    [Crossref] [Google Scholar]
  112. 112.
    Zhang J, Arif M, Shen H, Hu J, Sun D, et al. 2020.. Genomic divergence between Dickeya zeae strain EC2 isolated from rice and previously identified strains, suggests a different rice foot rot strain. . PLOS ONE 15:(10):e0240908
    [Crossref] [Google Scholar]
  113. 113.
    Zhang J, Hu J, Shen H, Zhang Y, Sun D, et al. 2018.. Genomic analysis of the Phalaenopsis pathogen Dickeya sp. PA1, representing the emerging species Dickeya fangzhongdai. . BMC Genom. 19:(1):782
    [Crossref] [Google Scholar]
  114. 114.
    Zhang J, Shen H, Pu X, Sun D, Yang Q, et al. 2020.. Comparative genomics analyses of Dickeya zeae CE1 causing bacterial soft rot of Canna edulis. . Microbiol. China 47:(11):360013
    [Google Scholar]
  115. 115.
    Zheng Y, Sambou T, Bogomolnaya LM, Cirillo JD, McClelland M, et al. 2013.. The EAL domain containing protein STM2215 (rtn) is needed during Salmonella infection and has cyclic di-GMP phosphodiesterase activity. . Mol. Microbiol. 89::40319
    [Crossref] [Google Scholar]
  116. 116.
    Zhou A, Nie J, Tian Y, Chuan J, Hu B, et al. 2021.. First report of Dickeya fangzhongdai causing soft rot in orchids in Canada. . Plant Dis. 105:(12):4149
    [Crossref] [Google Scholar]
  117. 117.
    Zhou J, Cheng Y, Lv M, Liao L, Chen Y, et al. 2015.. The complete genome sequence of Dickeya zeae EC1 reveals substantial divergence from other Dickeya strains and species. . BMC Genom. 16:(1):571
    [Crossref] [Google Scholar]
  118. 118.
    Zhou J, Zhang H, Lv M, Chen Y, Liao L, et al. 2016.. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. . Mol. Plant Pathol. 17:(9):1398408
    [Crossref] [Google Scholar]
  119. 119.
    Zhou J, Zhang H, Wu J, Liu Q, Xi P, et al. 2011.. A novel multi-domain polyketide synthase is essential for zeamine antibiotics production and the virulence of Dickeya zeae. . Mol. Plant-Microbe Interact. 24:(10):115664
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-012242
Loading
/content/journals/10.1146/annurev-micro-041222-012242
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error