1932

Abstract

The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology have been revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-023252
2024-11-20
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-023252.html?itemId=/content/journals/10.1146/annurev-micro-041222-023252&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, et al. 2008.. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. . PNAS 105::1043843
    [Crossref] [Google Scholar]
  2. 2.
    Anbar AD, Knoll AH. 2002.. Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science 297::113742
    [Crossref] [Google Scholar]
  3. 3.
    Anderson RF. 2020.. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. . Annu. Rev. Mar. Sci. 12::4985
    [Crossref] [Google Scholar]
  4. 4.
    Andrew SM, Moreno CM, Plumb K, Hassanzadeh B, Gomez-Consarnau L, et al. 2023.. Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton. . PNAS 120::e2307638120
    [Crossref] [Google Scholar]
  5. 5.
    Ardyna M, Lacour L, Sergi S, d'Ovidio F, Sallée J-B, et al. 2019.. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. . Nat. Commun. 10::2451
    [Crossref] [Google Scholar]
  6. 6.
    Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, et al. 2004.. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. . Science 306::7986
    [Crossref] [Google Scholar]
  7. 7.
    Baker HM, Anderson BF, Baker EN. 2003.. Dealing with iron: common structural principles in proteins that transport iron and heme. . PNAS 100::357983
    [Crossref] [Google Scholar]
  8. 8.
    Balk J, Schaedler TA. 2014.. Iron cofactor assembly in plants. . Annu. Rev. Plant Biol. 65::12553
    [Crossref] [Google Scholar]
  9. 9.
    Behnke J, Cai Y, Gu H, LaRoche J. 2023.. Short-term response to iron resupply in an iron-limited open ocean diatom reveals rapid decay of iron-responsive transcripts. . PLOS ONE 18::e0280827
    [Crossref] [Google Scholar]
  10. 10.
    Behnke J, LaRoche J. 2020.. Iron uptake proteins in algae and the role of iron starvation-induced proteins (ISIPs). . Eur. J. Phycol. 55:(3):33960
    [Crossref] [Google Scholar]
  11. 11.
    Behrenfeld MJ, Milligan AJ. 2013.. Photophysiological expressions of iron stress in phytoplankton. . Annu. Rev. Mar. Sci. 5::21746
    [Crossref] [Google Scholar]
  12. 12.
    Bender SJ, Moran DM, McIlvin MR, Zheng H, McCrow JP, et al. 2018.. Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry. . Biogeosciences 15::492342
    [Crossref] [Google Scholar]
  13. 13.
    Berthold DA, Stenmark P. 2003.. Membrane-bound diiron carboxylate proteins. . Annu. Rev. Plant Biol. 54::497517
    [Crossref] [Google Scholar]
  14. 14.
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, et al. 2015.. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. . PNAS 112::993843
    [Crossref] [Google Scholar]
  15. 15.
    Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, et al. 2007.. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. . Limnol. Oceanogr. 52::107993
    [Crossref] [Google Scholar]
  16. 16.
    Bidle KD, Bender SJ. 2008.. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. . Eukaryot. Cell 7::22336
    [Crossref] [Google Scholar]
  17. 17.
    Blaby-Haas CE, Merchant SS. 2012.. The ins and outs of algal metal transport. . Biochim. Biophys. Acta Mol. Cell Res. 1823::153152
    [Crossref] [Google Scholar]
  18. 18.
    Blaby-Haas CE, Merchant SS. 2023.. Trace metal nutrition and response to deficiency. . In The Chlamydomonas Sourcebook, ed. EH Harris, DB Stern, GB Witman , pp. 167203. Amsterdam:: Elsevier
    [Google Scholar]
  19. 19.
    Botebol H, Lesuisse E, Šuták R, Six C, Lozano J-C, et al. 2015.. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. . PNAS 112::1465257
    [Crossref] [Google Scholar]
  20. 20.
    Bowler C, Vardi A, Allen AE. 2010.. Oceanographic and biogeochemical insights from diatom genomes. . Annu. Rev. Mar. Sci. 2::33365
    [Crossref] [Google Scholar]
  21. 21.
    Boyd PW. 2002.. Environmental factors controlling phytoplankton processes in the Southern Ocean. . J. Phycol. 38::84461
    [Crossref] [Google Scholar]
  22. 22.
    Boyd PW, Ellwood MJ, Tagliabue A, Twining BS. 2017.. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. . Nat. Geosci. 10::167
    [Crossref] [Google Scholar]
  23. 23.
    Brembu T, Jorstad M, Winge P, Valle KC, Bones AM. 2011.. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. . Environ. Sci. Technol. 45::764047
    [Crossref] [Google Scholar]
  24. 24.
    Brown KL, Twing KI, Robertson DL. 2009.. Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae): diurnal variations in transcript levels for five genes involved in nitrogen assimilation. . J. Phycol. 45::41326
    [Crossref] [Google Scholar]
  25. 25.
    Browning TJ, Achterberg EP, Engel A, Mawji E. 2021.. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. . Nat. Commun. 12::884
    [Crossref] [Google Scholar]
  26. 26.
    Browning TJ, Achterberg EP, Rapp I, Engel A, Bertrand EM, et al. 2017.. Nutrient co-limitation at the boundary of an oceanic gyre. . Nature 551::24246
    [Crossref] [Google Scholar]
  27. 27.
    Brzezinski MA, Baines SB, Balch WM, Beucher CP, Chai F, et al. 2011.. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. . Deep-Sea Res. Pt. II 58::493511
    [Crossref] [Google Scholar]
  28. 28.
    Byrne RH, Kester DR. 1976.. Solubility of hydrous ferric oxide and iron speciation in seawater. . Mar. Chem. 4::25574
    [Crossref] [Google Scholar]
  29. 29.
    Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, et al. 2018.. A global ocean atlas of eukaryotic genes. . Nat. Commun. 9::373
    [Crossref] [Google Scholar]
  30. 30.
    Chappell PD, Whitney LP, Wallace JR, Darer AI, Jean-Charles S, Jenkins BD. 2015.. Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific Ocean. . ISME J. 9::592602
    [Crossref] [Google Scholar]
  31. 31.
    Coale KH. 1991.. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. . Limnol. Oceanogr. 36::185164
    [Crossref] [Google Scholar]
  32. 32.
    Coale TH, Bertrand EM, Lampe RH, Allen AE. 2022.. Molecular mechanisms underlying micronutrient utilization in marine diatoms. . In The Molecular Life of Diatoms, ed. A Falciatore, T Mock , pp. 567604. Cham, Switz:.: Springer
    [Google Scholar]
  33. 33.
    Coale TH, Moosburner M, Horák A, Oborník M, Barbeau KA, Allen AE. 2019.. Reduction-dependent siderophore assimilation in a model pennate diatom. . PNAS 116::2360917
    [Crossref] [Google Scholar]
  34. 34.
    Cohen NR, Ellis KA, Burns WG, Lampe RH, Schuback N, et al. 2017.. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. . Limnol. Oceanogr. 62::207696
    [Crossref] [Google Scholar]
  35. 35.
    Cohen NR, Ellis KA, Lampe RH, McNair HM, Twining BS, et al. 2017.. Variations in diatom transcriptional responses to changes in iron availability across ocean provinces. . Front. Mar. Sci. 4::360
    [Crossref] [Google Scholar]
  36. 36.
    Cohen NR, Gong W, Moran DM, McIlvin MR, Saito MA, Marchetti A. 2018.. Transcriptomic and proteomic responses of the oceanic diatom Pseudo-nitzschia granii to iron limitation. . Environ. Microbiol. 20::310926
    [Crossref] [Google Scholar]
  37. 37.
    Cohen NR, Mann E, Stemple B, Raushenberg S, Jacquot J, et al. 2018.. Iron storage capacities and associated ferritin gene expression among marine diatoms. . Limnol. Oceanogr. 63::167791
    [Crossref] [Google Scholar]
  38. 38.
    Crawford DW, Lipsen MS, Purdie DA, Lohan MC, Statham PJ, et al. 2003.. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. . Limnol. Oceanogr. 48::1583600
    [Crossref] [Google Scholar]
  39. 39.
    Croft MT, Warren MJ, Smith AG. 2006.. Algae need their vitamins. . Eukaryot. Cell 5::117583
    [Crossref] [Google Scholar]
  40. 40.
    Cui H, Ma H, Cui Y, Zhu X, Qin S, Li R. 2019.. Cloning, identification and functional characterization of two cytochrome P450 carotenoids hydroxylases from the diatom Phaeodactylum tricornutum. . J. Biosci. Bioeng. 128::75565
    [Crossref] [Google Scholar]
  41. 41.
    Davey M, Geider RJ. 2001.. Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros muelleri (Bacillariophyceae). . J. Phycol. 37::9871000
    [Crossref] [Google Scholar]
  42. 42.
    Deng X, Eriksson M. 2007.. Two iron-responsive promoter elements control expression of FOX1 in Chlamydomonas reinhardtii. . Eukaryot. Cell 6::216367
    [Crossref] [Google Scholar]
  43. 43.
    Diaz JM, Plummer S. 2018.. Production of extracellular reactive oxygen species by phytoplankton: past and future directions. . J. Plankton. Res. 40::65566
    [Crossref] [Google Scholar]
  44. 44.
    D'Ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, et al. 2009.. 15S-Lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. . New Phytol. 183::106471
    [Crossref] [Google Scholar]
  45. 45.
    Ellwood MJ, Hunter KA. 2000.. The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. . Limnol. Oceanogr. 45::151724
    [Crossref] [Google Scholar]
  46. 46.
    Fan X, Qiu H, Han W, Wang Y, Xu D, et al. 2020.. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. . Sci. Adv. 6::eaba0111
    [Crossref] [Google Scholar]
  47. 47.
    Ferreira GC, Franco R, Lloyd SG, Moura I, Moura JJ, Huynh BH. 1995.. Structure and function of ferrochelatase. . J. Bioenerg. Biomembr. 27::22129
    [Crossref] [Google Scholar]
  48. 48.
    Fitzsimmons JN, Conway TM. 2023.. Novel insights into marine iron biogeochemistry from iron isotopes. . Annu. Rev. Mar. Sci. 15::383406
    [Crossref] [Google Scholar]
  49. 49.
    Fridovich I. 1998.. Oxygen toxicity: a radical explanation. . J. Exp. Biol. 201::12039
    [Crossref] [Google Scholar]
  50. 50.
    Geider RJ, La Roche J. 1994.. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. . Photosynth Res. 39::275301
    [Crossref] [Google Scholar]
  51. 51.
    Geider RJ, La Roche J, Greene RM, Olaizola M. 1993.. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. . J. Phycol. 29::75566
    [Crossref] [Google Scholar]
  52. 52.
    GEOTRACES Intermediate Data Product Group. 2023.. The GEOTRACES Intermediate Data Product 2021v2 (IDP2021v2). Natural Environment Research Council Environmental Data Service , British Oceanographic Data Centre, National Oceanography Centre, Liverpool, UK:, updated July 7. https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e/
    [Google Scholar]
  53. 53.
    Gerringa LJA, Alderkamp A-C, Laan P, Thuróczy C-E, De Baar HJW, et al. 2012.. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. . Deep-Sea Res. Part II 71–76::1631
    [Crossref] [Google Scholar]
  54. 54.
    Gilardi G, Di Nardo G. 2017.. Heme iron centers in cytochrome P450: structure and catalytic activity. . Rend. Lincei 28::15967
    [Crossref] [Google Scholar]
  55. 55.
    Gledhill M, Buck KN. 2012.. The organic complexation of iron in the marine environment: a review. . Front. Microbiol. 3::69
    [Google Scholar]
  56. 56.
    Goldman JAL, Schatz MJ, Berthiaume CT, Coesel SN, Orellana MV, Armbrust EV. 2019.. Fe limitation decreases transcriptional regulation over the diel cycle in the model diatom Thalassiosira pseudonana. . PLOS ONE 14::e0222325
    [Crossref] [Google Scholar]
  57. 57.
    Gordon RM, Martin JH, Knauer GA. 1982.. Iron in north-east Pacific waters. . Nature 299::61112
    [Crossref] [Google Scholar]
  58. 58.
    Graff van Creveld S, Coesel SN, Blaskowski S, Groussman RD, Schatz MJ, Armbrust EV. 2023.. Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation. . eLife 12::e84392
    [Crossref] [Google Scholar]
  59. 59.
    Groussman RD, Parker MS, Armbrust EV. 2015.. Diversity and evolutionary history of iron metabolism genes in diatoms. . PLOS ONE 10::e0129081
    [Crossref] [Google Scholar]
  60. 60.
    Gruber N, Clement D, Carter BR, Feely RA, van Heuven S, et al. 2019.. The oceanic sink for anthropogenic CO2 from 1994 to 2007. . Science 363::119399
    [Crossref] [Google Scholar]
  61. 61.
    Guérin N, Ciccarella M, Flamant E, Frémont P, Mangenot S, et al. 2022.. Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. . Commun. Biol. 5::983
    [Crossref] [Google Scholar]
  62. 62.
    Halliwell B, Gutteridge JMC. 1992.. Biologically relevant metal ion-dependent hydroxyl radical generation. . An update . FEBS Lett. 307::10812
    [Crossref] [Google Scholar]
  63. 63.
    Han Y, Cui J, Tao J, Guo L, Guo P, et al. 2009.. CREG inhibits migration of human vascular smooth muscle cells by mediating IGF-II endocytosis. . Exp. Cell Res. 315::330111
    [Crossref] [Google Scholar]
  64. 64.
    Hanikenne M, Merchant SS, Hamel P. 2009.. Transition metal nutrition: a balance between deficiency and toxicity. . In The Chlamydomonas Sourcebook, ed. EH Harris, DB Stern, GB Witman , pp. 33399. Amsterdam:: Elsevier
    [Google Scholar]
  65. 65.
    Harrison GI, Morel FM. 1986.. Response of the marine diatom Thalassiosira weissflogii to iron stress. . Limnol. Oceanogr. 31::98997
    [Crossref] [Google Scholar]
  66. 66.
    Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, et al. 2018.. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. . PNAS 115::133005
    [Crossref] [Google Scholar]
  67. 67.
    Hopwood MJ, Santana-González C, Gallego-Urrea J, Sanchez N, Achterberg EP, et al. 2020.. Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria. . Biogeosciences 17::132742
    [Crossref] [Google Scholar]
  68. 68.
    Hutchins DA, Bruland KW. 1998.. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. . Nature 393::56164
    [Crossref] [Google Scholar]
  69. 69.
    Hutchins DA, Sedwick PN, DiTullio GR, Boyd PW, Quéguiner B, et al. 2001.. Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ Project. . J. Geophys. Res. Oceans 106::3155972
    [Crossref] [Google Scholar]
  70. 70.
    Hutchins DA, Witter AE, Butler A, Luther GW. 1999.. Competition among marine phytoplankton for different chelated iron species. . Nature 400::85861
    [Crossref] [Google Scholar]
  71. 71.
    Ingall ED, Diaz JM, Longo AF, Oakes M, Finney L, et al. 2013.. Role of biogenic silica in the removal of iron from the Antarctic seas. . Nat. Commun. 4::1981
    [Crossref] [Google Scholar]
  72. 72.
    Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, et al. 2021.. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. . PNAS 118::e2107238118
    [Crossref] [Google Scholar]
  73. 73.
    Kazamia E, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRJ, et al. 2018.. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. . Sci. Adv. 4::eaar4536
    [Crossref] [Google Scholar]
  74. 74.
    Keeling PJ. 2010.. The endosymbiotic origin, diversification and fate of plastids. . Philos. Trans. R. Soc. Lond. B 365::72948
    [Crossref] [Google Scholar]
  75. 75.
    Kolody BC, Smith SR, Allen LZ, McCrow JP, Moustafa A, et al. 2022.. Nitrogen and iron availability drive metabolic remodeling and natural selection of diverse phytoplankton during experimental upwelling. . mSystems 7::e00729-22
    [Crossref] [Google Scholar]
  76. 76.
    Kotabova E, Malych R, Karlusich JJP, Kazamia E, Eichner M, et al. 2021.. Complex response of the chlorarachniophyte Bigelowiella natans to iron availability. . mSystems 6::e00738-20
    [Crossref] [Google Scholar]
  77. 77.
    Kuma K, Nakabayashi S, Suzuki Y, Kudo I, Matsunaga K. 1992.. Photo-reduction of Fe(III) by dissolved organic substances and existence of Fe(II) in seawater during spring blooms. . Mar. Chem. 37::1527
    [Crossref] [Google Scholar]
  78. 78.
    La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K. 1993.. Induction of specific proteins in eukaryotic algae grow under iron-, phosphorus-, or nitrogen-deficient conditions. . J. Phycol. 29::76777
    [Crossref] [Google Scholar]
  79. 79.
    Lampe RH, Coale TH, Forsch KO, Jabre LJ, Kekuewa S, et al. 2023.. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. . Nat. Commun. 14::7215
    [Crossref] [Google Scholar]
  80. 80.
    Lampe RH, Hernandez G, Lin YY, Marchetti A. 2021.. Representative diatom and coccolithophore species exhibit divergent responses throughout simulated upwelling cycles. . mSystems 6::0018821
    [Crossref] [Google Scholar]
  81. 81.
    Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, et al. 2018.. Different iron storage strategies among bloom-forming diatoms. . PNAS 115::E1227584
    [Crossref] [Google Scholar]
  82. 82.
    Landing WM, Bruland KW. 1981.. The vertical distribution of iron in the northeast Pacific. . Eos Trans. Am. Geophys. Union 62::906 (Abstr.)
    [Google Scholar]
  83. 83.
    Landing WM, Bruland KW. 1987.. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. . Geochim. Cosmochim. Acta 51::2943
    [Crossref] [Google Scholar]
  84. 84.
    Layer G, Verfu K, Mahlitz E, Jahn D. 2002.. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. . J. Biol. Chem. 277::3413642
    [Crossref] [Google Scholar]
  85. 85.
    Lee S, Seok BG, Lee S-J, Chung SW. 2022.. Inhibition of mitoNEET attenuates LPS-induced inflammation and oxidative stress. . Cell Death Dis. 13::127
    [Crossref] [Google Scholar]
  86. 86.
    Lelandais G, Scheiber I, Paz-Yepes J, Lozano J-C, Botebol H, et al. 2016.. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton. . BMC Genom. 17::319
    [Crossref] [Google Scholar]
  87. 87.
    Lesuisse E, Blaiseau P-L, Dancis A, Camadro J-M. 2001.. Siderophore uptake and use by the yeast Saccharomyces cerevisiae. . Microbiology 147::28998
    [Crossref] [Google Scholar]
  88. 88.
    Lesuisse E, Labbe P. 1989.. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. . Microbiology 135::25763
    [Crossref] [Google Scholar]
  89. 89.
    Lewin JC, Guillard RRL. 1963.. Diatoms. . Annu. Rev. Microbiol. 17::373414
    [Crossref] [Google Scholar]
  90. 90.
    Li T, Lin X, Yu L, Lin S, Rodriguez IB, Ho T-Y. 2020.. RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. . Sci. Total Environ. 705::135767
    [Crossref] [Google Scholar]
  91. 91.
    Lindqvist A, Andersson S. 2002.. Biochemical properties of purified recombinant human β-carotene 15, 15′-monooxygenase. . J. Biol. Chem. 277::2394248
    [Crossref] [Google Scholar]
  92. 92.
    Lis H, Shaked Y, Kranzler C, Keren N, Morel FMM. 2015.. Iron bioavailability to phytoplankton: an empirical approach. . ISME J. 9::100313
    [Crossref] [Google Scholar]
  93. 93.
    Liu F, Gledhill M, Tan Q-G, Zhu K, Zhang Q, et al. 2022.. Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation. . ISME J. 16::232936
    [Crossref] [Google Scholar]
  94. 94.
    Liu X, Millero FJ. 2002.. The solubility of iron in seawater. . Mar. Chem. 77::4354
    [Crossref] [Google Scholar]
  95. 95.
    Lommer M, Specht M, Roy A-S, Kraemer L, Andreson R, et al. 2012.. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. . Genome Biol. 13::R66
    [Crossref] [Google Scholar]
  96. 96.
    Lorenzo MR, Segovia M, Cullen JT, Maldonado MT. 2020.. Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment. . Biogeosciences 17::75770
    [Crossref] [Google Scholar]
  97. 97.
    Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, et al. 2006.. Copper-dependent iron transport in coastal and oceanic diatoms. . Limnol. Oceanogr. 51::172943
    [Crossref] [Google Scholar]
  98. 98.
    Maldonado MT, Price NM. 2001.. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). . J. Phycol. 37::298310
    [Crossref] [Google Scholar]
  99. 99.
    Maldonado MT, Strzepek RF, Sander S, Boyd PW. 2005.. Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. . Glob. Biogeochem. Cycles 19:(4):GB4S23
    [Crossref] [Google Scholar]
  100. 100.
    Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. 2022.. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. . Comput. Struct. Biotechnol. J. 20::28795
    [Crossref] [Google Scholar]
  101. 101.
    Manck LE, Park J, Tully BJ, Poire AM, Bundy RM, et al. 2022.. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. . ISME J. 16::35869
    [Crossref] [Google Scholar]
  102. 102.
    Maniscalco MA, Brzezinski MA, Lampe RH, Cohen NR, McNair HM, et al. 2022.. Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. . ISME Commun. 2::57
    [Crossref] [Google Scholar]
  103. 103.
    Marchetti A, Maldonado MT. 2016.. Iron. . In The Physiology of Microalgae, ed. MA Borowitzka, J Beardall, JA Raven , pp. 23379. Cham, Switz:.: Springer
    [Google Scholar]
  104. 104.
    Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, et al. 2009.. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. . Nature 457::46770
    [Crossref] [Google Scholar]
  105. 105.
    Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, et al. 2012.. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. . PNAS 109::E31725
    [Crossref] [Google Scholar]
  106. 106.
    Marchetti A, Varela DE, Lance VP, Johnson Z, Palmucci M, et al. 2010.. Iron and silicic acid effects on phytoplankton productivity, diversity, and chemical composition in the central equatorial Pacific Ocean. . Limnol. Oceanogr. 55::1129
    [Crossref] [Google Scholar]
  107. 107.
    Martin JH, Fitzwater SE. 1988.. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. . Nature 331::34143
    [Crossref] [Google Scholar]
  108. 108.
    Martin JH, Gordon RM, Fitzwater S, Broenkow WW. 1989.. Vertex: phytoplankton/iron studies in the Gulf of Alaska. . Deep-Sea Res. Oceanogr. A 36::64980
    [Crossref] [Google Scholar]
  109. 109.
    Martinez-Gomez NC, Downs DM. 2008.. ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. . Biochemistry 47::905456
    [Crossref] [Google Scholar]
  110. 110.
    Mausz MA, Segovia M, Larsen A, Berger SA, Egge JK, Pohnert G. 2020.. High CO2 concentration and iron availability determine the metabolic inventory in an Emiliania huxleyi-dominated phytoplankton community. . Environ. Microbiol. 22::386382
    [Crossref] [Google Scholar]
  111. 111.
    McCain JSP, Tagliabue A, Susko E, Achterberg EP, Allen AE, Bertrand EM. 2021.. Cellular costs underpin micronutrient limitation in phytoplankton. . Sci. Adv. 7::eabg6501
    [Crossref] [Google Scholar]
  112. 112.
    McQuaid JB, Kustka AB, Oborník M, Horák A, McCrow JP, et al. 2018.. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. . Nature 555::53437
    [Crossref] [Google Scholar]
  113. 113.
    Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B. 2014.. Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. . Am. J. Physiol. Cell Physiol. 306::C45059
    [Crossref] [Google Scholar]
  114. 114.
    Moffett JW, Boiteau RM. 2024.. Metal organic complexation in seawater: historical background and future directions. . Annu. Rev. Mar. Sci. 16::57799
    [Crossref] [Google Scholar]
  115. 115.
    Moore JK, Doney SC, Glover DM, Fung IY. 2001.. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. . Deep-Sea Res. Part II 49::463507
    [Crossref] [Google Scholar]
  116. 116.
    Morel FMM, Kustka AB, Shaked Y. 2008.. The role of unchelated Fe in the iron nutrition of phytoplankton. . Limnol. Oceanogr. 53::4004
    [Crossref] [Google Scholar]
  117. 117.
    Morrissey J, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, et al. 2015.. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. . Curr. Biol. 25::36471
    [Crossref] [Google Scholar]
  118. 118.
    Murik O, Tirichine L, Prihoda J, Thomas Y, Araújo WL, et al. 2019.. Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom. . New Phytol. 221::130316
    [Crossref] [Google Scholar]
  119. 119.
    Nishino T, Okamoto K. 2000.. The role of the [2Fe–2S] cluster centers in xanthine oxidoreductase. . J. Inorg. Biochem. 82::4349
    [Crossref] [Google Scholar]
  120. 120.
    Nuester J, Vogt S, Twining BS. 2012.. Localization of iron within centric diatoms of the genus Thalassiosira. . J. Phycol. 48::62634
    [Crossref] [Google Scholar]
  121. 121.
    Nunn BL, Faux JF, Hippmann AA, Maldonado MT, Harvey HR, et al. 2013.. Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. . PLOS ONE 8::e75653
    [Crossref] [Google Scholar]
  122. 122.
    Oborník M, Green BR. 2005.. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. . Mol. Biol. Evol. 22::234353
    [Crossref] [Google Scholar]
  123. 123.
    Paz Y, Shimoni E, Weiss M, Pick U. 2007.. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina. . Plant Physiol. 144::140715
    [Crossref] [Google Scholar]
  124. 124.
    Peers G, Price NM. 2006.. Copper-containing plastocyanin used for electron transport by an oceanic diatom. . Nature 441::34144
    [Crossref] [Google Scholar]
  125. 125.
    Peers G, Quesnel S-A, Price NM. 2005.. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. . Limnol. Oceanogr. 50::114958
    [Crossref] [Google Scholar]
  126. 126.
    Pierella Karlusich JJ, Lodeyro AF, Carrillo N. 2014.. The long goodbye: the rise and fall of flavodoxin during plant evolution. . J. Exp. Bot. 65::516178
    [Crossref] [Google Scholar]
  127. 127.
    Provasoli L. 1958.. Nutrition and ecology of protozoa and algae. . Annu. Rev. Microbiol. 12::279308
    [Crossref] [Google Scholar]
  128. 128.
    Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. 2017.. The elemental role of iron in DNA synthesis and repair. . Metallomics 9::1483500
    [Crossref] [Google Scholar]
  129. 129.
    Raiswell R, Benning LG, Tranter M, Tulaczyk S. 2008.. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. . Geochem. Trans. 9::7
    [Crossref] [Google Scholar]
  130. 130.
    Raven JA. 1988.. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. . New Phytol. 109::27987
    [Crossref] [Google Scholar]
  131. 131.
    Raven JA. 1990.. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. . New Phytol. 116::118
    [Crossref] [Google Scholar]
  132. 132.
    Raven JA, Beardall J. 2017.. Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms. . J. Exp. Bot. 68::268392
    [Crossref] [Google Scholar]
  133. 133.
    Raven JA, Evans MCW, Korb RE. 1999.. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. . Photosynth. Res. 60::11150
    [Crossref] [Google Scholar]
  134. 134.
    Read AD, Bentley RET, Archer SL, Dunham-Snary KJ. 2021.. Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology. . Redox Biol. 47::102164
    [Crossref] [Google Scholar]
  135. 135.
    Rijkenberg MJA, Middag R, Laan P, Gerringa LJA, van Aken HM, et al. 2014.. The distribution of dissolved iron in the West Atlantic Ocean. . PLOS ONE 9::e101323
    [Crossref] [Google Scholar]
  136. 136.
    Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM. 2012.. Photosynthetic cytochrome c550. . Biochim. Biophys. Acta Bioenerg. 1817::115263
    [Crossref] [Google Scholar]
  137. 137.
    Ryan-Keogh TJ, Thomalla SJ. 2020.. Deriving a proxy for iron limitation from chlorophyll fluorescence on buoyancy gliders. . Front. Mar. Sci. 7::275
    [Crossref] [Google Scholar]
  138. 138.
    Santana-Casiano JM, González-Dávila M, Millero FJ. 2005.. Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters. . Environ. Sci. Technol. 39::207379
    [Crossref] [Google Scholar]
  139. 139.
    Scheiber IF, Pilátová J, Malych R, Kotabova E, Krijt M, et al. 2019.. Copper and iron metabolism in Ostreococcus tauri – the role of phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. . Metallomics 11::165766
    [Crossref] [Google Scholar]
  140. 140.
    Segovia M, Lorenzo MR, Maldonado MT, Larsen A, Berger SA, et al. 2017.. Iron availability modulates the effects of future CO2 levels within the marine planktonic food web. . Mar. Ecol. Prog. Ser. 565::1733
    [Crossref] [Google Scholar]
  141. 141.
    Shaked Y, Buck KN, Mellett T, Maldonado MT. 2020.. Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. . ISME J. 14::118293
    [Crossref] [Google Scholar]
  142. 142.
    Shaked Y, Kustka AB, Morel FMM. 2005.. A general kinetic model for iron acquisition by eukaryotic phytoplankton. . Limnol. Oceanogr. 50::87282
    [Crossref] [Google Scholar]
  143. 143.
    Shi D, Xu Y, Hopkinson BM, Morel FMM. 2010.. Effect of ocean acidification on iron availability to marine phytoplankton. . Science 327::67679
    [Crossref] [Google Scholar]
  144. 144.
    Shire DM. 2022.. Investigating mechanisms of trace metal metabolism and subcellular protein localization in marine phytoplankton. PhD Thesis , Rutgers Univ., New Brunswick, NJ:
    [Google Scholar]
  145. 145.
    Shire DM, Kustka AB. 2015.. Luxury uptake, iron storage and ferritin abundance in Prochlorococcus marinus (Synechococcales) strain MED4. . Phycologia 54::398406
    [Crossref] [Google Scholar]
  146. 146.
    Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, et al. 2019.. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. . Nat. Commun. 10::4552
    [Crossref] [Google Scholar]
  147. 147.
    Smith SR, Gillard JTF, Kustka AB, McCrow JP, Badger JH, et al. 2016.. Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. . PLOS Genet. 12::e1006490
    [Crossref] [Google Scholar]
  148. 148.
    Soria-Dengg S, Horstmann U. 1995.. Ferrioxamines B and E as iron sources for the marine diatom Phaeodactylum tricornutum. . Mar. Ecol. Prog. Ser. 127::26977
    [Crossref] [Google Scholar]
  149. 149.
    Strauss J, Deng L, Gao S, Toseland A, Bachy C, et al. 2023.. Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans. . Nat. Microbiol. 8::205066
    [Crossref] [Google Scholar]
  150. 150.
    Strickland JD. 1965.. Phytoplankton and marine primary production. . Annu. Rev. Microbiol. 19::12762
    [Crossref] [Google Scholar]
  151. 151.
    Strzepek RF, Boyd PW, Sunda WG. 2019.. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. . PNAS 116::438893
    [Crossref] [Google Scholar]
  152. 152.
    Strzepek RF, Harrison PJ. 2004.. Photosynthetic architecture differs in coastal and oceanic diatoms. . Nature 431::68992
    [Crossref] [Google Scholar]
  153. 153.
    Strzepek RF, Maldonado MT, Hunter KA, Frew RD, Boyd PW. 2011.. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. . Limnol. Oceanogr. 56::19832002
    [Crossref] [Google Scholar]
  154. 154.
    Sugie K, Endo H, Suzuki K, Nishioka J, Kiyosawa H, Yoshimura T. 2013.. Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community. . Biogeosciences 10::630921
    [Crossref] [Google Scholar]
  155. 155.
    Sunda WG, Huntsman SA. 1995.. Iron uptake and growth limitation in oceanic and coastal phytoplankton. . Mar. Chem. 50::189206
    [Crossref] [Google Scholar]
  156. 156.
    Sunda WG, Marchetti A. 2024.. Proton-pumping rhodopsins promote the growth and survival of phytoplankton in a highly variable ocean. . ISME J. 18::wrae079
    [Crossref] [Google Scholar]
  157. 157.
    Sutak R, Botebol H, Blaiseau P-L, Léger T, Bouget F-Y, et al. 2012.. A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step. . Plant Physiol. 160::227184
    [Crossref] [Google Scholar]
  158. 158.
    Sutak R, Camadro J-M, Lesuisse E. 2020.. Iron uptake mechanisms in marine phytoplankton. . Front. Microbiol. 11::566691
    [Crossref] [Google Scholar]
  159. 159.
    Sutak R, Šlapeta J, San Roman M, Camadro J-M, Lesuisse E. 2010.. Nonreductive iron uptake mechanism in the marine alveolate Chromera velia. . Plant Physiol. 154::9911000
    [Crossref] [Google Scholar]
  160. 160.
    Tagliabue A, Bopp L, Aumont O, Arrigo KR. 2009.. Influence of light and temperature on the marine iron cycle: from theoretical to global modeling. . Glob. Biogeochem. Cycles 23:(2):GB2017
    [Crossref] [Google Scholar]
  161. 161.
    Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017.. The integral role of iron in ocean biogeochemistry. . Nature 543::5159
    [Crossref] [Google Scholar]
  162. 162.
    Tagliabue A, Buck KN, Sofen LE, Twining BS, Aumont O, et al. 2023.. Authigenic mineral phases as a driver of the upper-ocean iron cycle. . Nature 620::1049
    [Crossref] [Google Scholar]
  163. 163.
    Tagliabue A, Mtshali T, Aumont O, Bowie AR, Klunder MB, et al. 2012.. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. . Biogeosciences 9::233349
    [Crossref] [Google Scholar]
  164. 164.
    Tan MH, Smith SR, Hixson KK, Tan J, McCarthy JK, et al. 2020.. The importance of protein phosphorylation for signaling and metabolism in response to diel light cycling and nutrient availability in a marine diatom. . Biology 9::155
    [Crossref] [Google Scholar]
  165. 165.
    Teng L, Fan X, Nelson DR, Han W, Zhang X, et al. 2019.. Diversity and evolution of cytochromes P450 in stramenopiles. . Planta 249::64761
    [Crossref] [Google Scholar]
  166. 166.
    Trimborn S, Thoms S, Brenneis T, Heiden JP, Beszteri S, Bischof K. 2017.. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. . Physiol. Plant 160::15570
    [Crossref] [Google Scholar]
  167. 167.
    Turnšek J, Brunson JK, Viedma MPM, Deerinck TJ, Horák A, et al. 2021.. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. . eLife 10::e52770
    [Crossref] [Google Scholar]
  168. 168.
    Twining BS, Baines SB. 2022.. Luxury iron uptake and storage in pennate diatoms from the equatorial Pacific Ocean. . Metallomics 14:(7):mfac035
    [Crossref] [Google Scholar]
  169. 169.
    Vanoni MA, Curti B. 1999.. Glutamate synthase: a complex iron-sulfur flavoprotein. . Cell Mol. Life Sci. 55::61738
    [Crossref] [Google Scholar]
  170. 170.
    Völker C, Wolf-Gladrow DA. 1999.. Physical limits on iron uptake mediated by siderophores or surface reductases. . Mar. Chem. 65::22744
    [Crossref] [Google Scholar]
  171. 171.
    Wade J, Byrne DJ, Ballentine CJ, Drakesmith H. 2021.. Temporal variation of planetary iron as a driver of evolution. . PNAS 118::e2109865118
    [Crossref] [Google Scholar]
  172. 172.
    Ward DM, Kaplan J. 2012.. Ferroportin-mediated iron transport: expression and regulation. . Biochim. Biophys. Acta Mol. Cell Res. 1823::142633
    [Crossref] [Google Scholar]
  173. 173.
    Wu M, McCain JSP, Rowland E, Middag R, Sandgren M, et al. 2019.. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. . Nat. Commun. 10::3582
    [Crossref] [Google Scholar]
  174. 174.
    Yoshinaga R, Niwa-Kubota M, Matsui H, Matsuda Y. 2014.. Characterization of iron-responsive promoters in the marine diatom Phaeodactylum tricornutum. . Mar. Genom. 16::5562
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-023252
Loading
/content/journals/10.1146/annurev-micro-041222-023252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error