1932

Abstract

is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti- targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-024605
2024-11-20
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-024605.html?itemId=/content/journals/10.1146/annurev-micro-041222-024605&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    (CDC) CfDCaP. 2019.. Deadly Staph infections still threaten the U.S. Press Release, March 5. https://www.cdc.gov/media/releases/2019/p0305-deadly-staph-infections.html
    [Google Scholar]
  2. 2.
    Abboud N, Chow SK, Saylor C, Janda A, Ravetch JV, et al. 2010.. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. . J. Exp. Med. 207::2395405
    [Crossref] [Google Scholar]
  3. 3.
    Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, et al. 2012.. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. . J. Infect. Dis. 206::91523
    [Crossref] [Google Scholar]
  4. 4.
    Antimicrob. Resist. Collab. 2023.. The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. . Lancet Reg. Health Am. 25::100561
    [Google Scholar]
  5. 5.
    Bagnoli F, Fontana MR, Soldaini E, Mishra RP, Fiaschi L, et al. 2015.. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. . PNAS 112::368085
    [Crossref] [Google Scholar]
  6. 6.
    Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M, Fletcher DA. 2018.. Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. . Cell 174::13142.e13
    [Crossref] [Google Scholar]
  7. 7.
    Behring EA, Kitasato S. 1890.. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. . Dtsch. Medizin. Wochenschr. 16::111314
    [Crossref] [Google Scholar]
  8. 8.
    Berends ET, Dekkers JF, Nijland R, Kuipers A, Soppe JA, et al. 2013.. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. . Cell. Microbiol. 15::195568
    [Crossref] [Google Scholar]
  9. 9.
    Bohach GA, Fast DJ, Nelson RD, Schlievert PM. 1990.. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. . Crit. Rev. Microbiol. 17::25172
    [Crossref] [Google Scholar]
  10. 10.
    Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. 2017.. Signaling by antibodies: recent progress. . Annu. Rev. Immunol. 35::285311
    [Crossref] [Google Scholar]
  11. 11.
    Boyle-Vavra S, Li X, Alam MT, Read TD, Sieth J, et al. 2015.. USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. . mBio 6:(2):e02585-14
    [Crossref] [Google Scholar]
  12. 12.
    Bruhns P. 2012.. Properties of mouse and human IgG receptors and their contribution to disease models. . Blood 119::564049
    [Crossref] [Google Scholar]
  13. 13.
    Buckley PT, Chan R, Fernandez J, Luo J, Lacey KA, et al. 2023.. Multivalent human antibody-centyrin fusion protein to prevent and treat Staphylococcus aureus infections. . Cell Host Microbe 31::75165.e11
    [Crossref] [Google Scholar]
  14. 14.
    Calander AM, Dubin G, Potempa J, Tarkowski A. 2008.. Staphylococcus aureus infection triggers production of neutralizing, V8 protease-specific antibodies. . FEMS Immunol. Med. Microbiol. 52::26772
    [Crossref] [Google Scholar]
  15. 15.
    Chan R, Buckley PT, O'Malley A, Sause WE, Alonzo F 3rd, et al. 2019.. Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus. . Sci. Transl. Med. 11:(475):eaat0882
    [Crossref] [Google Scholar]
  16. 16.
    Chen X, Gula H, Pius T, Ou C, Gomozkova M, et al. 2023.. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. . PNAS 120::e2220765120
    [Crossref] [Google Scholar]
  17. 17.
    Chen X, Schneewind O, Missiakas D. 2022.. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. . PNAS 119:(4):e2114478119
    [Crossref] [Google Scholar]
  18. 18.
    Chen X, Shi M, Tong X, Kim HK, Wang LX, et al. 2020.. Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. . PNAS 117::229923000
    [Crossref] [Google Scholar]
  19. 19.
    Chen X, Sun Y, Missiakas D, Schneewind O. 2019.. Staphylococcus aureus decolonization of mice with monoclonal antibody neutralizing protein A. . J. Infect. Dis. 219::88488
    [Crossref] [Google Scholar]
  20. 20.
    Cheng AG, DeDent AC, Schneewind O, Missiakas D. 2011.. A play in four acts: Staphylococcus aureus abscess formation. . Trends Microbiol. 19::22532
    [Crossref] [Google Scholar]
  21. 21.
    Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. 2009.. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. . FASEB J. 23::3393404
    [Crossref] [Google Scholar]
  22. 22.
    Chung PY. 2023.. Immunotherapies for the prevention and treatment of Staphylococcus aureus infections: updates and challenges. . Pathog. Dis. 81::ftad016
    [Crossref] [Google Scholar]
  23. 23.
    Colque-Navarro P, Jacobsson G, Andersson R, Flock JI, Mollby R. 2010.. Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. . Clin. Vaccine Immunol. 17::111723
    [Crossref] [Google Scholar]
  24. 24.
    Cruz AR, Bentlage AEH, Blonk R, de Haas CJC, Aerts PC, et al. 2022.. Toward understanding how staphylococcal protein A inhibits IgG-mediated phagocytosis. . J. Immunol. 209::114655
    [Crossref] [Google Scholar]
  25. 25.
    Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, et al. 2021.. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. . PNAS 118:(7):e2016772118
    [Crossref] [Google Scholar]
  26. 26.
    Dasari P, Nordengrun M, Vilhena C, Steil L, Abdurrahman G, et al. 2022.. The protease SplB of Staphylococcus aureus targets host complement components and inhibits complement-mediated bacterial opsonophagocytosis. . J. Bacteriol. 204:(1):e00184-21
    [Crossref] [Google Scholar]
  27. 27.
    David MZ, Daum RS. 2010.. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. . Clin. Microbiol. Rev. 23::61687
    [Crossref] [Google Scholar]
  28. 28.
    de Vor L, Beudeker CR, Flier A, Scheepmaker LM, Aerts PC, et al. 2022.. Monoclonal antibodies effectively potentiate complement activation and phagocytosis of Staphylococcus epidermidis in neonatal human plasma. . Front. Immunol. 13::933251
    [Crossref] [Google Scholar]
  29. 29.
    de Vor L, van Dijk B, van Kessel K, Kavanaugh JS, de Haas C, et al. 2022.. Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. . eLife 11::e67301
    [Crossref] [Google Scholar]
  30. 30.
    Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, et al. 2017.. Affinity of human IgG subclasses to mouse Fc gamma receptors. . MAbs 9::76773
    [Crossref] [Google Scholar]
  31. 31.
    Delidakis G, Kim JE, George K, Georgiou G. 2022.. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. . Annu. Rev. Biomed. Eng. 24::24974
    [Crossref] [Google Scholar]
  32. 32.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, et al. 2014.. Complement is activated by IgG hexamers assembled at the cell surface. . Science 343::126063
    [Crossref] [Google Scholar]
  33. 33.
    Diem MD, Hyun L, Yi F, Hippensteel R, Kuhar E, et al. 2014.. Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions. . Protein Eng. Des. Sel. 27::41929
    [Crossref] [Google Scholar]
  34. 34.
    Domanski PJ, Patel PR, Bayer AS, Zhang L, Hall AE, et al. 2005.. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus. . Infect. Immun. 73::522932
    [Crossref] [Google Scholar]
  35. 35.
    Dunkelberger JR, Song WC. 2010.. Complement and its role in innate and adaptive immune responses. . Cell Res. 20::3450
    [Crossref] [Google Scholar]
  36. 36.
    Ehrlich P. 1900.. Croonian lecture: On immunity with special reference to cell life. . Proc. R. Soc. Lond. 66::42448
    [Crossref] [Google Scholar]
  37. 37.
    Falugi F, Kim HK, Missiakas DM, Schneewind O. 2013.. The role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. . mBio 4::e00575-13
    [Crossref] [Google Scholar]
  38. 38.
    Fattom A, Schneerson R, Szu SC, Vann WF, Shiloach J, et al. 1990.. Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A. . Infect. Immun. 58::236774
    [Crossref] [Google Scholar]
  39. 39.
    Fitzgerald JR. 2012.. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. . Trends Microbiol. 20::19298
    [Crossref] [Google Scholar]
  40. 40.
    Forsgren A, Quie PG. 1974.. Effects of staphylococcal protein A on heat labile opsonins. . J. Immunol. 112::117780
    [Crossref] [Google Scholar]
  41. 41.
    Forsgren A, Svedjelund A, Wigzell H. 1976.. Lymphocyte stimulation by protein A of Staphylococcus aureus. . Eur. J. Immunol. 6::20713
    [Crossref] [Google Scholar]
  42. 42.
    Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, et al. 2013.. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. . JAMA 309::136878
    [Crossref] [Google Scholar]
  43. 43.
    Francois B, Mercier E, Gonzalez C, Asehnoune K, Nseir S, et al. 2018.. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. . Intensive Care Med. 44::178796
    [Crossref] [Google Scholar]
  44. 44.
    Fritz SA, Tiemann KM, Hogan PG, Epplin EK, Rodriguez M, et al. 2013.. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. . Clin. Infect. Dis. 56::155461
    [Crossref] [Google Scholar]
  45. 45.
    Gaboriaud C, Juanhuix J, Gruez A, Lacroix M, Darnault C, et al. 2003.. The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. . J. Biol. Chem. 278::4697482
    [Crossref] [Google Scholar]
  46. 46.
    Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, et al. 2000.. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. . PNAS 97::5399404
    [Crossref] [Google Scholar]
  47. 47.
    Gudelj I, Lauc G, Pezer M. 2018.. Immunoglobulin G glycosylation in aging and diseases. . Cell. Immunol. 333::6579
    [Crossref] [Google Scholar]
  48. 48.
    Hawkins J, Kodali S, Matsuka YV, McNeil LK, Mininni T, et al. 2012.. A recombinant clumping factor A-containing vaccine induces functional antibodies to Staphylococcus aureus that are not observed after natural exposure. . Clin. Vaccine Immunol. 19::164150
    [Crossref] [Google Scholar]
  49. 49.
    Hey A. 2015.. History and practice: antibodies in infectious diseases. . Microbiol. Spectr. 3::AID0026-2014
    [Crossref] [Google Scholar]
  50. 50.
    Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, et al. 2023.. Staphylococcus aureus host interactions and adaptation. . Nat. Rev. Microbiol. 21::38095
    [Crossref] [Google Scholar]
  51. 51.
    Hua L, Hilliard JJ, Shi Y, Tkaczyk C, Cheng LI, et al. 2014.. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. . Antimicrob. Agents Chemother. 58::110817
    [Crossref] [Google Scholar]
  52. 52.
    Jefferis R. 2012.. Isotype and glycoform selection for antibody therapeutics. . Arch. Biochem. Biophys. 526::15966
    [Crossref] [Google Scholar]
  53. 53.
    Jenul C, Horswill AR. 2019.. Regulation of Staphylococcus aureus virulence. . Microbiol. Spectr. 6:(1). doi:
    [Crossref] [Google Scholar]
  54. 54.
    Kanangat S, Postlethwaite A, Hasty K, Kang A, Smeltzer M, et al. 2006.. Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections. . Arthritis Res. Ther. 8::R176
    [Crossref] [Google Scholar]
  55. 55.
    Kang M, Ko YP, Liang X, Ross CL, Liu Q, et al. 2013.. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. . J. Biol. Chem. 288::2052031
    [Crossref] [Google Scholar]
  56. 56.
    Karauzum H, Venkatasubramaniam A, Adhikari RP, Kort T, Holtsberg FW, et al. 2021.. IBT-Vo2: a multicomponent toxoid vaccine protects against primary and secondary skin infections caused by Staphylococcus aureus. . Front. Immunol. 12::624310
    [Crossref] [Google Scholar]
  57. 57.
    Kemna MJ, Plomp R, van Paassen P, Koeleman CAM, Jansen BC, et al. 2017.. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. . EBioMedicine 17::10818
    [Crossref] [Google Scholar]
  58. 58.
    Kim HK, Cheng AG, Kim H-Y, Missiakas DM, Schneewind O. 2010.. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. . J. Exp. Med. 207::186370
    [Crossref] [Google Scholar]
  59. 59.
    Kim HK, Emolo C, DeDent AC, Falugi F, Missiakas DM, Schneewind O. 2012.. Protein A-specific monoclonal antibodies and prevention of Staphylococcus aureus disease in mice. . Infect. Immun. 80::346070
    [Crossref] [Google Scholar]
  60. 60.
    Kim HK, Falugi F, Missiakas D, Schneewind O. 2016.. Peptidoglycan-linked protein A promotes T cell-dependent antibody expansion during Staphylococcus aureus infection. . PNAS 113::571823
    [Crossref] [Google Scholar]
  61. 61.
    Kim HK, Falugi F, Thomer L, Missiakas DM, Schneewind O. 2015.. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs. . mBio 6:(1):e02369-14
    [Crossref] [Google Scholar]
  62. 62.
    Kim HK, Kim HY, Schneewind O, Missiakas DM. 2011.. Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. . FASEB J. 25::360512
    [Crossref] [Google Scholar]
  63. 63.
    Kim HK, Missiakas D, Schneewind O. 2014.. Mouse models for infectious diseases caused by Staphylococcus aureus. . J. Immunol. Methods 410::8899
    [Crossref] [Google Scholar]
  64. 64.
    Kinder M, Greenplate AR, Grugan KD, Soring KL, Heeringa KA, et al. 2013.. Engineered protease-resistant antibodies with selectable cell-killing functions. . J. Biol. Chem. 288::3084354
    [Crossref] [Google Scholar]
  65. 65.
    Klimka A, Mertins S, Nicolai AK, Rummler LM, Higgins PG, et al. 2021.. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. . NPJ Vaccines 6::11
    [Crossref] [Google Scholar]
  66. 66.
    Koch R. 1876.. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. . Beiträge Biol. Pflanzen 2::277310
    [Google Scholar]
  67. 67.
    Kohler G, Milstein C. 1975.. Continuous cultures of fused cells secreting antibody of predefined specificity. . Nature 256::49597
    [Crossref] [Google Scholar]
  68. 68.
    Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, et al. 2019.. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. . MMWR Morb. Mortal. Wkly. Rep. 68::21419
    [Crossref] [Google Scholar]
  69. 69.
    Lee B, Olaniyi R, Kwiecinski JM, Wardenburg JB. 2020.. Staphylococcus aureus toxin suppresses antigen-specific T cell responses. . J. Clin. Invest. 130::112227
    [Crossref] [Google Scholar]
  70. 70.
    Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, et al. 2015.. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. . Nature 527::32328
    [Crossref] [Google Scholar]
  71. 71.
    Lerner RA. 2016.. Combinatorial antibody libraries: new advances, new immunological insights. . Nat. Rev. Immunol. 16::498508
    [Crossref] [Google Scholar]
  72. 72.
    Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. 2004.. The generation of antibody diversity through somatic hypermutation and class switch recombination. . Genes Dev. 18::111
    [Crossref] [Google Scholar]
  73. 73.
    Lowy FD. 1998.. Staphylococcus aureus infections. . New Engl. J. Med. 339::52032
    [Crossref] [Google Scholar]
  74. 74.
    Lu DR, Tan YC, Kongpachith S, Cai X, Stein EA, et al. 2014.. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. . Clin. Immunol. 152::7789
    [Crossref] [Google Scholar]
  75. 75.
    Lu LL, Suscovich TJ, Fortune SM, Alter G. 2018.. Beyond binding: antibody effector functions in infectious diseases. . Nat. Rev. Immunol. 18::4661
    [Crossref] [Google Scholar]
  76. 76.
    Marston HD, Paules CI, Fauci AS. 2018.. Monoclonal antibodies for emerging infectious diseases—borrowing from history. . N. Engl. J. Med. 378::146972
    [Crossref] [Google Scholar]
  77. 77.
    Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O. 2000.. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. . PNAS 97::551015
    [Crossref] [Google Scholar]
  78. 78.
    McAdow M, Kim HK, DeDenta AC, Hendrickx APA, Schneewind O, Missiakas DM. 2011.. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. . PLOS Pathog. 7::e1002307
    [Crossref] [Google Scholar]
  79. 79.
    Mergenhagen KA, Starr KE, Wattengel BA, Lesse AJ, Sumon Z, Sellick JA. 2020.. Determining the utility of methicillin-resistant Staphylococcus aureus nares screening in antimicrobial stewardship. . Clin. Infect. Dis. 71::114248
    [Crossref] [Google Scholar]
  80. 80.
    Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. 2020.. Development of a vaccine against Staphylococcus aureus invasive infections: evidence based on human immunity, genetics and bacterial evasion mechanisms. . FEMS Microbiol. Rev. 44::12353
    [Crossref] [Google Scholar]
  81. 81.
    Missiakas D, Schneewind O. 2016.. Staphylococcus aureus vaccines: deviating from the carol. . J. Exp. Med. 231::164553
    [Crossref] [Google Scholar]
  82. 82.
    Motley MP, Banerjee K, Fries BC. 2019.. Monoclonal antibody-based therapies for bacterial infections. . Curr. Opin. Infect. Dis. 32::21016
    [Crossref] [Google Scholar]
  83. 83.
    Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. 2005.. FcγRIV: a novel FcR with distinct IgG subclass specificity. . Immunity 23::4151
    [Crossref] [Google Scholar]
  84. 84.
    Nishitani K, Ishikawa M, Morita Y, Yokogawa N, Xie C, et al. 2020.. IsdB antibody–mediated sepsis following S. aureus surgical site infection. . JCI Insight 5:(19):e141164
    [Crossref] [Google Scholar]
  85. 85.
    Nouwen JL, Fieren MW, Snijders S, Verbrugh HA, van Belkum A. 2005.. Persistent (not intermittent) nasal carriage of Staphylococcus aureus is the determinant of CPD-related infections. . Kidney Int. 67::108492
    [Crossref] [Google Scholar]
  86. 86.
    O'Brien EC, McLoughlin RM. 2019.. Considering the ‘alternatives’ for next-generation anti-Staphylococcus aureus vaccine development. . Trends Mol. Med. 25::17184
    [Crossref] [Google Scholar]
  87. 87.
    Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, et al. 2020.. The architecture of the Gram-positive bacterial cell wall. . Nature 582::29497
    [Crossref] [Google Scholar]
  88. 88.
    Patel D, Wines BD, Langley RJ, Fraser JD. 2010.. Specificity of staphylococcal superantigen-like protein 10 toward the human IgG1 Fc domain. . J. Immunol. 184::628392
    [Crossref] [Google Scholar]
  89. 89.
    Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, et al. 2014.. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans. . J. Exp. Med. 211::233139
    [Crossref] [Google Scholar]
  90. 90.
    Peschel A, Otto M. 2013.. Phenol-soluble modulins and staphylococcal infection. . Nat. Rev. Microbiol. 11::66773
    [Crossref] [Google Scholar]
  91. 91.
    Pietrocola G, Nobile G, Rindi S, Speziale P. 2017.. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. . Front. Cell. Infect. Microbiol. 7::166
    [Crossref] [Google Scholar]
  92. 92.
    Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, et al. 2000.. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. . Science 287::181620
    [Crossref] [Google Scholar]
  93. 93.
    Plotkin SA. 2008.. Vaccines: correlates of vaccine-induced immunity. . Clin. Infect. Dis. 47::4019
    [Crossref] [Google Scholar]
  94. 94.
    Poindexter NJ, Schlievert PM. 1986.. Suppression of immunoglobulin-secreting cells from human peripheral blood by toxic-shock-syndrome toxin-1. . J. Infect. Dis. 153::77279
    [Crossref] [Google Scholar]
  95. 95.
    Pollard AJ, Perrett KP, Beverley PC. 2009.. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. . Nat. Rev. Immunol. 9::21320
    [Crossref] [Google Scholar]
  96. 96.
    CDC. 2024.. Invasive Staphylococcus aureus infection surveillance. . Centers for Disease Control and Prevention. https://www.cdc.gov/healthcare-associated-infections/php/haic-eip/invasive-staphylococcus.html
    [Google Scholar]
  97. 97.
    Prokesova L, Potuznikova B, Potempa J, Zikan J, Radl J, et al. 1992.. Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. . Immunol. Lett. 31::25965
    [Crossref] [Google Scholar]
  98. 98.
    Pucic M, Knezevic A, Vidic J, Adamczyk B, Novokmet M, et al. 2011.. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. . Mol. Cell Proteom. 10::M111.010090
    [Crossref] [Google Scholar]
  99. 99.
    Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. 2019.. The neonatal Fc receptor (FcRn): a misnomer?. Front. Immunol. 10::1540
    [Crossref] [Google Scholar]
  100. 100.
    Radke EE, Li Z, Hernandez DN, El Bannoudi H, Kosakovsky Pond SL, et al. 2021.. Diversity of functionally distinct clonal sets of human conventional memory B cells that bind staphylococcal protein A. . Front. Immunol. 12::662782
    [Crossref] [Google Scholar]
  101. 101.
    Rappuoli R. 2000.. Reverse vaccinology. . Curr. Opin. Microbiol. 3::44550
    [Crossref] [Google Scholar]
  102. 102.
    Rappuoli R, Bottomley MJ, D'Oro U, Finco O, De Gregorio E. 2016.. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. . J. Exp. Med. 213::46981
    [Crossref] [Google Scholar]
  103. 103.
    Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. 2016.. Complement component C3—the “swiss army knife” of innate immunity and host defense. . Immunol. Rev. 274::3358
    [Crossref] [Google Scholar]
  104. 104.
    Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. 2005.. Anti-opsonic properties of staphylokinase. . Microbes Infect. 7::47684
    [Crossref] [Google Scholar]
  105. 105.
    Roopenian DC, Akilesh S. 2007.. FcRn: the neonatal Fc receptor comes of age. . Nat. Rev. Immunol. 7::71525
    [Crossref] [Google Scholar]
  106. 106.
    Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B, et al. 2015.. Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. . MAbs 7::24354
    [Crossref] [Google Scholar]
  107. 107.
    Rudra P, Boyd JM. 2020.. Metabolic control of virulence factor production in Staphylococcus aureus. . Curr. Opin. Microbiol. 55::8187
    [Crossref] [Google Scholar]
  108. 108.
    Sasso EH, Silverman GJ, Mannik M. 1989.. Human IgM molecules that bind staphylococcal protein A contain VHIII H chains. . J. Immunol. 142::277883
    [Crossref] [Google Scholar]
  109. 109.
    Selle M, Hertlein T, Oesterreich B, Klemm T, Kloppot P, et al. 2016.. Global antibody response to Staphylococcus aureus live-cell vaccination. . Sci. Rep. 6::24754
    [Crossref] [Google Scholar]
  110. 110.
    Sharma-Kuinkel BK, Tkaczyk C, Bonnell J, Yu L, Tovchigrechko A, et al. 2019.. Associations of pathogen-specific and host-specific characteristics with disease outcome in patients with Staphylococcus aureus bacteremic pneumonia. . Clin. Transl. Immunol. 8::e01070
    [Crossref] [Google Scholar]
  111. 111.
    Shi M, Chen X, Sun Y, Kim HK, Schneewind O, Missiakas D. 2021.. A protein A based Staphylococcus aureus vaccine with improved safety. . Vaccine 39::390715
    [Crossref] [Google Scholar]
  112. 112.
    Shi M, Willing SE, Kim HK, Schneewind O, Missiakas D. 2021.. Peptidoglycan contribution to the B cell superantigen activity of staphylococcal protein A. . mBio 12:(2):00039-21
    [Crossref] [Google Scholar]
  113. 113.
    Shinefield H, Black S, Fattom A, Horwith G, Rasgon S, et al. 2002.. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. . N. Engl. J. Med. 346::49196
    [Crossref] [Google Scholar]
  114. 114.
    Silverman GJ, Cary SP, Dwyer DC, Luo L, Wagenknecht R, Curtiss VE. 2000.. A B cell superantigen-induced persistent “hole” in the B-1 repertoire. . J. Exp. Med. 192::8798
    [Crossref] [Google Scholar]
  115. 115.
    Slavetinsky CJ, Hauser JN, Gekeler C, Slavetinsky J, Geyer A, et al. 2022.. Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. . eLife 11::e66376
    [Crossref] [Google Scholar]
  116. 116.
    Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. 2013.. General mechanism for modulating immunoglobulin effector function. . PNAS 110::986872
    [Crossref] [Google Scholar]
  117. 117.
    Spaan AN, van Strijp JAG, Torres VJ. 2017.. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. . Nat. Rev. Microbiol. 15::43547
    [Crossref] [Google Scholar]
  118. 118.
    Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. 2013.. Staphylococcal and streptococcal superantigen exotoxins. . Clin. Microbiol. Rev. 26::42247
    [Crossref] [Google Scholar]
  119. 119.
    Speziale P, Pietrocola G. 2021.. Monoclonal antibodies targeting surface-exposed and secreted proteins from staphylococci. . Vaccines (Basel) 9:(5):459
    [Crossref] [Google Scholar]
  120. 120.
    Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. 1994.. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. . Ann. Intern. Med. 120::1217
    [Crossref] [Google Scholar]
  121. 121.
    Stentzel S, Teufelberger A, Nordengrun M, Kolata J, Schmidt F, et al. 2017.. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcusaureus. . J. Allergy Clin. Immunol. 139::492500.e8
    [Crossref] [Google Scholar]
  122. 122.
    Stranger-Jones YK, Bae T, Schneewind O. 2006.. Vaccine assembly from surface proteins of Staphylococcus aureus. . PNAS 103::1694247
    [Crossref] [Google Scholar]
  123. 123.
    Subedi GP, Barb AW. 2016.. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. . MAbs 8::151224
    [Crossref] [Google Scholar]
  124. 124.
    Swierstra J, Debets S, de Vogel C, Lemmens-den Toom N, Verkaik N, et al. 2015.. IgG4 subclass-specific responses to Staphylococcus aureus antigens shed new light on host-pathogen interaction. . Infect. Immunity 83::492501
    [Crossref] [Google Scholar]
  125. 125.
    Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, et al. 2020.. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. . J. Exp. Med. 217:(9):e20190541
    [Crossref] [Google Scholar]
  126. 126.
    Teymournejad O, Li Z, Beesetty P, Yang C, Montgomery CP. 2023.. Toxin expression during Staphylococcus aureus infection imprints host immunity to inhibit vaccine efficacy. . NPJ Vaccines 8::3
    [Crossref] [Google Scholar]
  127. 127.
    Thammavongsa V, Kim HK, Missiakas DM, Schneewind O. 2015.. Staphylococcal manipulation of host immune responses. . Nat. Rev. Microbiol. 13::52943
    [Crossref] [Google Scholar]
  128. 128.
    Thammavongsa V, Rauch S, Kim HK, Missiakas DM, Schneewind O. 2015.. Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. . Vaccine 33::52326
    [Crossref] [Google Scholar]
  129. 129.
    Thomer L, Emolo C, Thammavongsa V, Kim HK, McAdow ME, et al. 2016.. Antibodies against a secreted product of Staphylococcus aureus trigger phagocytic killing. . J. Exp. Med. 213::293301
    [Crossref] [Google Scholar]
  130. 130.
    Thomer L, Schneewind O, Missiakas D. 2016.. Pathogenesis of Staphylococcus aureus bloodstream infections. . Annu. Rev. Pathol. 11::34364
    [Crossref] [Google Scholar]
  131. 131.
    Tkaczyk C, Hua L, Varkey R, Shi Y, Dettinger L, et al. 2012.. Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. . Clin. Vaccine Immunol. 19::37785
    [Crossref] [Google Scholar]
  132. 132.
    Tkaczyk C, Kasturirangan S, Minola A, Jones-Nelson O, Gunter V, et al. 2017.. Multimechanistic monoclonal antibodies (MAbs) targeting Staphylococcus aureus alpha-toxin and clumping factor A: activity and efficacy comparisons of a MAb combination and an engineered bispecific antibody approach. . Antimicrob. Agents Chemother. 61:(8):e00629-17
    [Crossref] [Google Scholar]
  133. 133.
    Tomaszewski KL, Blanchard M, Olaniyi R, Brenton H, Hayes S, et al. 2024.. Enhanced Staphylococcus aureus protection by uncoupling of the a-toxin-ADAM10 interaction during murine neonatal vaccination. . Nat. Comm. In press
    [Google Scholar]
  134. 134.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. 2015.. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. . Clin. Microbiol. Rev. 28::60361
    [Crossref] [Google Scholar]
  135. 135.
    Tsai CM, Caldera JR, Hajam IA, Chiang AWT, Tsai CH, et al. 2022.. Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine. . Cell Host Microbe 30::116372.e6
    [Crossref] [Google Scholar]
  136. 136.
    Uhlemann AC, Otto M, Lowy FD, DeLeo FR. 2014.. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. . Infect. Genet. Evol. 21::56374
    [Crossref] [Google Scholar]
  137. 137.
    Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. 2022.. Current vaccine platforms in enhancing T-cell response. . Vaccines (Basel) 10:(8):1367
    [Crossref] [Google Scholar]
  138. 138.
    van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, et al. 2009.. Reclassification of Staphylococcus aureus nasal carriage types. . J. Infect. Dis. 199::182026
    [Crossref] [Google Scholar]
  139. 139.
    Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA Jr., et al. 2018.. A natural human monoclonal antibody targeting Staphylococcus protein A protects against Staphylococcus aureus bacteremia. . PLOS ONE 13::e0190537
    [Crossref] [Google Scholar]
  140. 140.
    Vidarsson G, Dekkers G, Rispens T. 2014.. IgG subclasses and allotypes: from structure to effector functions. . Front. Immunol. 5::520
    [Crossref] [Google Scholar]
  141. 141.
    Vidarsson G, Stemerding AM, Stapleton NM, Spliethoff SE, Janssen H, et al. 2006.. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. . Blood 108::357379
    [Crossref] [Google Scholar]
  142. 142.
    von Eiff C, Becker K, Machka K, Stammer H, Peters G. 2001.. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. . N. Engl. J. Med. 344::1116
    [Crossref] [Google Scholar]
  143. 143.
    Weber J, Peng H, Rader C. 2017.. From rabbit antibody repertoires to rabbit monoclonal antibodies. . Exp. Mol. Med. 49::e305
    [Crossref] [Google Scholar]
  144. 144.
    Weflen AW, Baier N, Tang QJ, Van den Hof M, Blumberg RS, et al. 2013.. Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules. . Mol. Biol. Cell 24::2398405
    [Crossref] [Google Scholar]
  145. 145.
    Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, et al. 2004.. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. . Lancet 364::7035
    [Crossref] [Google Scholar]
  146. 146.
    Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, et al. 2004.. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. . Immunity 20::76983
    [Crossref] [Google Scholar]
  147. 147.
    Zhang L, Jacobsson K, Strom K, Lindberg M, Frykberg L. 1999.. Staphylococcus aureus expresses a cell surface protein that binds both IgG and beta2-glycoprotein I. . Microbiology 145::17783
    [Crossref] [Google Scholar]
  148. 148.
    Zhang Y, Yang F, Sun D, Xu L, Shi Y, et al. 2023.. rFSAV promotes Staphylococcus aureus-infected bone defect healing via IL-13-mediated M2 macrophage polarization. . Clin. Immunol. 255::109747
    [Crossref] [Google Scholar]
  149. 149.
    Zhu FC, Zeng H, Li JX, Wang B, Meng FY, et al. 2022.. Evaluation of a recombinant five-antigen Staphylococcus aureus vaccine: the randomized, single-centre phase 1a/1b clinical trials. . Vaccine 40::321627
    [Crossref] [Google Scholar]
  150. 150.
    Zwarthoff SA, Widmer K, Kuipers A, Strasser J, Ruyken M, et al. 2021.. C1q binding to surface-bound IgG is stabilized by C1r(2)s(2) proteases. . PNAS 118:(26):e2102787118
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-024605
Loading
/content/journals/10.1146/annurev-micro-041222-024605
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error