1932

Abstract

Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host–virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-024843
2024-11-20
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-024843.html?itemId=/content/journals/10.1146/annurev-micro-041222-024843&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aframian N, Eldar A. 2023.. Abortive infection antiphage defense systems: separating mechanism and phenotype. . Trends Microbiol. 31::100312
    [Crossref] [Google Scholar]
  2. 2.
    Athukoralage JS, Graham S, Rouillon C, Gruschow S, Czekster CM, White MF. 2020.. The dynamic interplay of host and viral enzymes in type III CRISPR–mediated cyclic nucleotide signalling. . eLife 9::e55852
    [Crossref] [Google Scholar]
  3. 3.
    Athukoralage JS, McMahon SA, Zhang C, Gruschow S, Graham S, et al. 2020.. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. . Nature 577::57275
    [Crossref] [Google Scholar]
  4. 4.
    Athukoralage JS, McQuarrie S, Gruschow S, Graham S, Gloster TM, White MF. 2020.. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. . eLife 9::e57627
    [Crossref] [Google Scholar]
  5. 5.
    Athukoralage JS, Rouillon C, Graham S, Gruschow S, White MF. 2018.. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. . Nature 562::27780
    [Crossref] [Google Scholar]
  6. 6.
    Athukoralage JS, White MF. 2022.. Cyclic nucleotide signaling in phage defense and counter-defense. . Annu. Rev. Virol. 9::45168
    [Crossref] [Google Scholar]
  7. 7.
    Bahre H, Hartwig C, Munder A, Wolter S, Stelzer T, et al. 2015.. cCMP and cUMP occur in vivo. . Biochem. Biophys. Res. Commun. 460::90914
    [Crossref] [Google Scholar]
  8. 8.
    Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, et al. 2023.. Bacterial cGAS senses a viral RNA to initiate immunity. . Nature 623::10018
    [Crossref] [Google Scholar]
  9. 9.
    Bernheim A, Sorek R. 2020.. The pan-immune system of bacteria: antiviral defence as a community resource. . Nat. Rev. Microbiol. 18::11319
    [Crossref] [Google Scholar]
  10. 10.
    Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X. 2019.. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. . Cell 179::44858.e11
    [Crossref] [Google Scholar]
  11. 11.
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2013.. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. . Nature 493::42932
    [Crossref] [Google Scholar]
  12. 12.
    Brenzinger S, Airoldi M, Ogunleye AJ, Jugovic J, Krähenbühl Amstalden M, Brochado AR. 2024.. The antiphage defense system CBASS controls resistance and enables killing by antifolate antibiotics in Vibrio cholerae. . Nat. Microbiol. 9::25162
    [Crossref] [Google Scholar]
  13. 13.
    Burroughs AM, Zhang D, Schaffer DE, Iyer LM, Aravind L. 2015.. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. . Nucleic Acids Res. 43::1063354
    [Crossref] [Google Scholar]
  14. 14.
    Cai H, Li L, Slavik KM, Huang J, Yin T, et al. 2023.. The virus-induced cyclic dinucleotide 2′3′-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. . Immunity 56::19912005.e9
    [Crossref] [Google Scholar]
  15. 15.
    Cao X, Xiao Y, Huiting E, Cao X, Li D, et al. 2024.. Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides. . Mol. Cell 84::37585.e7
    [Crossref] [Google Scholar]
  16. 16.
    Chakrabarti A, Jha BK, Silverman RH. 2011.. New insights into the role of RNase L in innate immunity. . J. Interferon Cytokine Res. 31::4957
    [Crossref] [Google Scholar]
  17. 17.
    Chevallereau A, Pons BJ, van Houte S, Westra ER. 2022.. Interactions between bacterial and phage communities in natural environments. . Nat. Rev. Microbiol. 20::4962
    [Crossref] [Google Scholar]
  18. 18.
    Chi H, Hoikkala V, Gruschow S, Graham S, Shirran S, White MF. 2023.. Antiviral type III CRISPR signalling via conjugation of ATP and SAM. . Nature 622::82633
    [Crossref] [Google Scholar]
  19. 19.
    Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, et al. 2013.. Structural mechanism of cytosolic DNA sensing by cGAS. . Nature 498::33237
    [Crossref] [Google Scholar]
  20. 20.
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, et al. 2019.. Cyclic GMP-AMP signalling protects bacteria against viral infection. . Nature 574::69195
    [Crossref] [Google Scholar]
  21. 21.
    DiAntonio A, Milbrandt J, Figley MD. 2021.. The SARM1 TIR NADase: mechanistic similarities to bacterial phage defense and toxin–antitoxin systems. . Front. Immunol. 12::752898
    [Crossref] [Google Scholar]
  22. 22.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, et al. 2018.. Systematic discovery of antiphage defense systems in the microbial pangenome. . Science 359::eaar4120
    [Crossref] [Google Scholar]
  23. 23.
    Duncan-Lowey B, McNamara-Bordewick NK, Tal N, Sorek R, Kranzusch PJ. 2021.. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. . Mol. Cell 81::503951.e5
    [Crossref] [Google Scholar]
  24. 24.
    Eaglesham JB, Pan Y, Kupper TS, Kranzusch PJ. 2019.. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. . Nature 566::25963
    [Crossref] [Google Scholar]
  25. 25.
    Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, et al. 2016.. Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR-Cas system. . Genes Dev. 30::44759
    [Crossref] [Google Scholar]
  26. 26.
    Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J. 2017.. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. . Neuron 93::133443.e5
    [Crossref] [Google Scholar]
  27. 27.
    Estrella MA, Kuo FT, Bailey S. 2016.. RNA-activated DNA cleavage by the type III-B CRISPR-Cas effector complex. . Genes Dev. 30::46070
    [Crossref] [Google Scholar]
  28. 28.
    Fatma S, Chakravarti A, Zeng X, Huang RH. 2021.. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger. . Nat. Commun. 12::6381
    [Crossref] [Google Scholar]
  29. 29.
    Fernandez-Garcia L, Wood TK. 2023.. Phage-defense systems are unlikely to cause cell suicide. . Viruses 15::1795
    [Crossref] [Google Scholar]
  30. 30.
    Ferrao R, Li J, Bergamin E, Wu H. 2012.. Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor–interleukin-1 receptor superfamily. . Sci. Signal. 5::re3
    [Crossref] [Google Scholar]
  31. 31.
    Gao LA, Altae-Tran H, Bohning F, Makarova KS, Segel M, et al. 2020.. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. . Science 369::107784
    [Crossref] [Google Scholar]
  32. 32.
    Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, et al. 2022.. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. . Science 377::eabm4096
    [Crossref] [Google Scholar]
  33. 33.
    Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, et al. 2013.. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase. . Cell 153::1094107
    [Crossref] [Google Scholar]
  34. 34.
    Garb J, Amitai G, Lu A, Ofir G, Brandis A, et al. 2024.. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. . PLOS ONE 19::e0302251
    [Crossref] [Google Scholar]
  35. 35.
    Garb J, Lopatina A, Bernheim A, Zaremba M, Siksnys V, et al. 2022.. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. . Nat. Microbiol. 7::184956
    [Crossref] [Google Scholar]
  36. 36.
    Garcia-Doval C, Schwede F, Berk C, Rostol JT, Niewoehner O, et al. 2020.. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. . Nat. Commun. 11::1596
    [Crossref] [Google Scholar]
  37. 37.
    Georjon H, Bernheim A. 2023.. The highly diverse antiphage defence systems of bacteria. . Nat. Rev. Microbiol. 21::686700
    [Crossref] [Google Scholar]
  38. 38.
    Gomelsky M, Galperin MY. 2013.. Bacterial second messengers, cGMP and c-di-GMP, in a quest for regulatory dominance. . EMBO J. 32::242123
    [Crossref] [Google Scholar]
  39. 39.
    Govande AA, Duncan-Lowey B, Eaglesham JB, Whiteley AT, Kranzusch PJ. 2021.. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. . Cell Rep. 35::109206
    [Crossref] [Google Scholar]
  40. 40.
    Gu Y, Desai A, Corbett KD. 2022.. Evolutionary dynamics and molecular mechanisms of HORMA domain protein signaling. . Annu. Rev. Biochem. 91::54169
    [Crossref] [Google Scholar]
  41. 41.
    Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. 2014.. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. . Genes Dev. 28::243243
    [Crossref] [Google Scholar]
  42. 42.
    Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009.. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. . Cell 139::94556
    [Crossref] [Google Scholar]
  43. 43.
    Han W, Li Y, Deng L, Feng M, Peng W, et al. 2017.. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. . Nucleic Acids Res. 45::198393
    [Google Scholar]
  44. 44.
    Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. 2014.. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. . J. Bacteriol. 196::31017
    [Crossref] [Google Scholar]
  45. 45.
    Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, et al. 2022.. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. . Nature 605::52226
    [Crossref] [Google Scholar]
  46. 46.
    Hochhauser D, Millman A, Sorek R. 2023.. The defense island repertoire of the Escherichia coli pan-genome. . PLOS Genet. 19::e1010694
    [Crossref] [Google Scholar]
  47. 47.
    Hogrel G, Guild A, Graham S, Rickman H, Gruschow S, et al. 2022.. Cyclic nucleotide–induced helical structure activates a TIR immune effector. . Nature 608::80812
    [Crossref] [Google Scholar]
  48. 48.
    Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, et al. 2019.. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. . Science 365::79399
    [Crossref] [Google Scholar]
  49. 49.
    Huang S, Jia A, Song W, Hessler G, Meng Y, et al. 2022.. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. . Science 377::eabq3297
    [Crossref] [Google Scholar]
  50. 50.
    Huiting E, Cao X, Ren J, Athukoralage JS, Luo Z, et al. 2023.. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. . Cell 186::86476.e21
    [Crossref] [Google Scholar]
  51. 51.
    Jenson JM, Li T, Du F, Ea CK, Chen ZJ. 2023.. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. . Nature 616::32631
    [Crossref] [Google Scholar]
  52. 52.
    Jia N, Jones R, Sukenick G, Patel DJ. 2019.. Second messenger cA4 formation within the composite Csm1 palm pocket of type III-A CRISPR-Cas Csm complex and its release path. . Mol. Cell 75::93343.e6
    [Crossref] [Google Scholar]
  53. 53.
    Jia N, Jones R, Yang G, Ouerfelli O, Patel DJ. 2019.. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA>p formation terminating RNase activity. . Mol. Cell 75::94456.e6
    [Crossref] [Google Scholar]
  54. 54.
    Ka D, Oh H, Park E, Kim JH, Bae E. 2020.. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. . Nat. Commun. 11::2816
    [Crossref] [Google Scholar]
  55. 55.
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V. 2017.. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. . Science 357::6059
    [Crossref] [Google Scholar]
  56. 56.
    Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas C, Siksnys V. 2016.. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. . Mol. Cell 62::295306
    [Crossref] [Google Scholar]
  57. 57.
    Kolesnik MV, Fedorova I, Karneyeva KA, Artamonova DN, Severinov KV. 2021.. Type III CRISPR-Cas systems: deciphering the most complex prokaryotic immune system. . Biochemistry 86::130114
    [Google Scholar]
  58. 58.
    Kranzusch PJ. 2019.. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. . Curr. Opin. Struct. Biol. 59::17887
    [Crossref] [Google Scholar]
  59. 59.
    Kranzusch PJ, Lee ASY, Wilson SC, Solovykh MS, Vance RE, et al. 2014.. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. . Cell 158::101121
    [Crossref] [Google Scholar]
  60. 60.
    Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel H, White MF. 2024.. Reversible conjugation of a CBASS nucleotide cyclase regulates immune response to phage infection. . Nat. Microbiol. 9::157992
    [Crossref] [Google Scholar]
  61. 61.
    Lau RK, Ye Q, Birkholz EA, Berg KR, Patel L, et al. 2020.. Structure and mechanism of a cyclic trinucleotide–activated bacterial endonuclease mediating bacteriophage immunity. . Mol. Cell 77::72333.e6
    [Crossref] [Google Scholar]
  62. 62.
    Leão P, Little ME, Appler KE, Sahaya D, Aguilar-Pine E, et al. 2023.. Asgard archaea defense systems and their roles in the origin of immunity in eukaryotes. . bioRxiv 2023.09.13.557551. https://www.biorxiv.org/content/10.1101/2023.09.13.557551v1
  63. 63.
    Leavitt A, Yirmiya E, Amitai G, Lu A, Garb J, et al. 2022.. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. . Nature 611::32631
    [Crossref] [Google Scholar]
  64. 64.
    Ledvina HE, Ye Q, Gu Y, Sullivan AE, Quan Y, et al. 2023.. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. . Nature 616::31925
    [Crossref] [Google Scholar]
  65. 65.
    Li D, Xiao Y, Xiong W, Fedorova I, Wang Y, et al. 2023.. Single phage proteins sequester TIR- and cGAS-generated signaling molecules. . bioRxiv 2023.11.15.567273. https://doi.org/10.1101/2023.11.15.567273
  66. 66.
    Li Y, Slavik KM, Toyoda HC, Morehouse BR, de Oliveira Mann CC, et al. 2023.. cGLRs are a diverse family of pattern recognition receptors in innate immunity. . Cell 186::326176.e20
    [Crossref] [Google Scholar]
  67. 67.
    Linder J, Hupfeld E, Weyand M, Steegborn C, Moniot S. 2020.. Crystal structure of a class III adenylyl cyclase–like ATP-binding protein from Pseudomonas aeruginosa. . J. Struct. Biol. 211::107534
    [Crossref] [Google Scholar]
  68. 68.
    Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, et al. 2020.. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. . Cell 182::3849.e17
    [Crossref] [Google Scholar]
  69. 69.
    Makarova KS, Timinskas A, Wolf YI, Gussow AB, Siksnys V, et al. 2020.. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. . Nucleic Acids Res. 48::882847
    [Crossref] [Google Scholar]
  70. 70.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al. 2015.. An updated evolutionary classification of CRISPR-Cas systems. . Nat. Rev. Microbiol. 13::72236
    [Crossref] [Google Scholar]
  71. 71.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, et al. 2020.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. . Nat. Rev. Microbiol. 18::6783
    [Crossref] [Google Scholar]
  72. 72.
    Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, et al. 2022.. Cyclic ADP ribose isomers: production, chemical structures, and immune signaling. . Science 377::eadc8969
    [Crossref] [Google Scholar]
  73. 73.
    Mariano G, Blower TR. 2023.. Conserved domains can be found across distinct phage defence systems. . Mol. Microbiol. 120::4553
    [Crossref] [Google Scholar]
  74. 74.
    Marraffini LA. 2015.. CRISPR-Cas immunity in prokaryotes. . Nature 526::5561
    [Crossref] [Google Scholar]
  75. 75.
    Mayo-Munoz D, Smith LM, Garcia-Doval C, Malone LM, Harding KR, et al. 2022.. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. . Mol. Cell 82::447186.e9
    [Crossref] [Google Scholar]
  76. 76.
    McMahon SA, Zhu W, Graham S, Rambo R, White MF, Gloster TM. 2020.. Structure and mechanism of a type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. . Nat. Commun. 11::500
    [Crossref] [Google Scholar]
  77. 77.
    Millman A, Melamed S, Amitai G, Sorek R. 2020.. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. . Nat. Microbiol. 5::160815
    [Crossref] [Google Scholar]
  78. 78.
    Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, et al. 2022.. An expanded arsenal of immune systems that protect bacteria from phages. . Cell Host Microbe 30::155669.e5
    [Crossref] [Google Scholar]
  79. 79.
    Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, et al. 2020.. STING cyclic dinucleotide sensing originated in bacteria. . Nature 586::42933
    [Crossref] [Google Scholar]
  80. 80.
    Morehouse BR, Yip MCJ, Keszei AFA, McNamara-Bordewick NK, Shao S, Kranzusch PJ. 2022.. Cryo-EM structure of an active bacterial TIR-STING filament complex. . Nature 608::8037
    [Crossref] [Google Scholar]
  81. 81.
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F, et al. 2017.. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. . Nature 548::54348
    [Crossref] [Google Scholar]
  82. 82.
    Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA. 2015.. Foreign DNA capture during CRISPR-Cas adaptive immunity. . Nature 527::53538
    [Crossref] [Google Scholar]
  83. 83.
    Nussenzweig PM, Marraffini LA. 2020.. Molecular mechanisms of CRISPR-Cas immunity in bacteria. . Annu. Rev. Genet. 54::93120
    [Crossref] [Google Scholar]
  84. 84.
    Ofir G, Herbst E, Baroz M, Cohen D, Millman A, et al. 2021.. Antiviral activity of bacterial TIR domains via immune signalling molecules. . Nature 600::11620
    [Crossref] [Google Scholar]
  85. 85.
    Pawluk A, Davidson AR, Maxwell KL. 2018.. Anti-CRISPR: discovery, mechanism and function. . Nat. Rev. Microbiol. 16::1217
    [Crossref] [Google Scholar]
  86. 86.
    Payne LJ, Meaden S, Mestre MR, Palmer C, Toro N, et al. 2022.. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. . Nucleic Acids Res. 50::W54150
    [Crossref] [Google Scholar]
  87. 87.
    Richmond-Buccola D, Hobbs SJ, Garcia JM, Toyoda H, Gao J, et al. 2024.. A large-scale type I CBASS antiphage screen identifies the phage prohead protease as a key determinant of immune activation and evasion. . Cell Host Microbe 32::107488.E5
    [Crossref] [Google Scholar]
  88. 88.
    Rostol JT, Marraffini LA. 2019.. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. . Nat. Microbiol. 4::65662
    [Crossref] [Google Scholar]
  89. 89.
    Rostol JT, Xie W, Kuryavyi V, Maguin P, Kao K, et al. 2021.. The Card1 nuclease provides defence during type III CRISPR immunity. . Nature 590::62429
    [Crossref] [Google Scholar]
  90. 90.
    Rouillon C, Schneberger N, Chi H, Blumenstock K, Da Vela S, et al. 2023.. Antiviral signalling by a cyclic nucleotide activated CRISPR protease. . Nature 614::16874
    [Crossref] [Google Scholar]
  91. 91.
    Sabonis D, Avraham C, Lu A, Herbst E, Silanskas A, et al. 2024.. TIR domains produce histidine-ADPR conjugates as immune signaling molecules in bacteria. . bioRxiv 2024.01.03.573942. https://doi.org/10.1101/2024.01.03.573942
  92. 92.
    Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. 2015.. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. . Cell 161::116474
    [Crossref] [Google Scholar]
  93. 93.
    Samolygo A, Athukoralage JS, Graham S, White MF. 2020.. Fuse to defuse: a self-limiting ribonuclease–ring nuclease fusion for type III CRISPR defence. . Nucleic Acids Res. 48::614956
    [Crossref] [Google Scholar]
  94. 94.
    Seifert R. 2017.. cCMP and cUMP across the tree of life: from cCMP and cUMP generators to cCMP- and cUMP-regulated cell functions. . Handb. Exp. Pharmacol. 238::323
    [Crossref] [Google Scholar]
  95. 95.
    Seifert R, Schirmer B. 2022.. cCMP and cUMP come into the spotlight, finally. . Trends Biochem. Sci. 47::46163
    [Crossref] [Google Scholar]
  96. 96.
    Severin GB, Ramliden MS, Ford KC, Van Alst AJ, Sanath-Kumar R, et al. 2023.. Activation of a Vibrio cholerae CBASS anti-phage system by quorum sensing and folate depletion. . mBio 14::e0087523
    [Crossref] [Google Scholar]
  97. 97.
    Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME, et al. 2018.. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. . PNAS 115::E604855
    [Crossref] [Google Scholar]
  98. 98.
    Slavik KM, Kranzusch PJ. 2023.. CBASS to cGAS-STING: the origins and mechanisms of nucleotide second messenger immune signaling. . Annu. Rev. Virol. 10::42353
    [Crossref] [Google Scholar]
  99. 99.
    Slavik KM, Morehouse BR, Ragucci AE, Zhou W, Ai X, et al. 2021.. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. . Nature 597::10913
    [Crossref] [Google Scholar]
  100. 100.
    Smalakyte D, Kazlauskiene M, Havelund JF, Ruksenaite A, Rimaite A, et al. 2020.. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. . Nucleic Acids Res. 48::920417
    [Crossref] [Google Scholar]
  101. 101.
    Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, et al. 2014.. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. . Mol. Cell 56::51830
    [Crossref] [Google Scholar]
  102. 102.
    Steegborn C. 2014.. Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. . Biochim. Biophys. Acta Mol. Basis Dis. 1842::253547
    [Crossref] [Google Scholar]
  103. 103.
    Steens JA, Salazar CRP, Staals RHJ. 2022.. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors. . Biochem. Soc. Trans. 50::135364
    [Crossref] [Google Scholar]
  104. 104.
    Stokar-Avihail A, Fedorenko T, Hor J, Garb J, Leavitt A, et al. 2023.. Discovery of phage determinants that confer sensitivity to bacterial immune systems. . Cell 186::186376.e16
    [Crossref] [Google Scholar]
  105. 105.
    Tak U, Walth P, Whiteley AT. 2023.. Bacterial cGAS-like enzymes produce 2′,3′-cGAMP to activate an ion channel that restricts phage replication. . bioRxiv 2023.07.24.550367. https://doi.org/10.1101/2023.07.24.550367
  106. 106.
    Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C, et al. 2021.. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. . Cell 184::572839.e16
    [Crossref] [Google Scholar]
  107. 107.
    Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO, et al. 2014.. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. . Mol. Cell 56::50617
    [Crossref] [Google Scholar]
  108. 108.
    Tesson F, Herve A, Mordret E, Touchon M, d'Humieres C, et al. 2022.. Systematic and quantitative view of the antiviral arsenal of prokaryotes. . Nat. Commun. 13::2561
    [Crossref] [Google Scholar]
  109. 109.
    Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022.. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. . Nat. Microbiol. 7::156879
    [Crossref] [Google Scholar]
  110. 110.
    Ve T, Williams SJ, Kobe B. 2015.. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. . Apoptosis 20::25061
    [Crossref] [Google Scholar]
  111. 111.
    Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, et al. 2019.. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. . Science 365::799803
    [Crossref] [Google Scholar]
  112. 112.
    Wang JY, Pausch P, Doudna JA. 2022.. Structural biology of CRISPR-Cas immunity and genome editing enzymes. . Nat. Rev. Microbiol. 20::64156
    [Crossref] [Google Scholar]
  113. 113.
    Wein T, Sorek R. 2022.. Bacterial origins of human cell-autonomous innate immune mechanisms. . Nat. Rev. Immunol. 22::62938
    [Crossref] [Google Scholar]
  114. 114.
    Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, et al. 2019.. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. . Nature 567::19499
    [Crossref] [Google Scholar]
  115. 115.
    Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. 2020.. Structures and strategies of anti-CRISPR-mediated immune suppression. . Annu. Rev. Microbiol. 74::2137
    [Crossref] [Google Scholar]
  116. 116.
    Wiegand T, Wilkinson R, Santiago-Frangos A, Lynes M, Hatzenpichler R, Wiedenheft B. 2023.. Functional and phylogenetic diversity of Cas10 proteins. . CRISPR J. 6::15262
    [Crossref] [Google Scholar]
  117. 117.
    Wolter S, Dittmar F, Seifert R. 2017.. cCMP and cUMP in apoptosis: concepts and methods. . Handb. Exp. Pharmacol. 238::2547
    [Crossref] [Google Scholar]
  118. 118.
    Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, et al. 2024.. Synergistic anti-phage activity of bacterial defence systems. . Cell Host Microbe 32::55772.e6
    [Crossref] [Google Scholar]
  119. 119.
    Yan Y, Xiao J, Huang F, Wei X, Yu B, et al. 2024.. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway. . Nat. Microbiol. 9::156678
    [Crossref] [Google Scholar]
  120. 120.
    Yang CS, Ko TP, Chen CJ, Hou MH, Wang YC, Chen Y. 2023.. Crystal structure and functional implications of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases. . Nat. Commun. 14::5078
    [Crossref] [Google Scholar]
  121. 121.
    Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, et al. 2020.. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. . Mol. Cell 77::70922.e7
    [Crossref] [Google Scholar]
  122. 122.
    Yirmiya E, Leavitt A, Lu A, Ragucci AE, Avraham C, et al. 2024.. Phages overcome bacterial immunity via diverse anti-defence proteins. . Nature 625::35259
    [Crossref] [Google Scholar]
  123. 123.
    You L, Ma J, Wang J, Artamonova D, Wang M, et al. 2019.. Structure studies of the CRISPR-Csm complex reveal mechanism of co-transcriptional interference. . Cell 176::23953.e16
    [Crossref] [Google Scholar]
  124. 124.
    Zhang T, Tamman H, Coppieters 't Wallant K, Kurata T, LeRoux M, et al. 2022.. Direct activation of a bacterial innate immune system by a viral capsid protein. . Nature 612::13240
    [Crossref] [Google Scholar]
  125. 125.
    Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, et al. 2018.. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. . Cell 174::30011.e11
    [Crossref] [Google Scholar]
  126. 126.
    Zhu D, Wang L, Shang G, Liu X, Zhu J, et al. 2014.. Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. . Mol. Cell 55::93137
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-024843
Loading
/content/journals/10.1146/annurev-micro-041222-024843
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error