1932

Abstract

Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in , with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041222-125931
2024-11-20
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041222-125931.html?itemId=/content/journals/10.1146/annurev-micro-041222-125931&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amako K, Umeda A, Murata K. 1982.. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp. . J. Bacteriol. 150::84450
    [Crossref] [Google Scholar]
  2. 2.
    Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, et al. 2010.. Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. . PNAS 107::1899196
    [Crossref] [Google Scholar]
  3. 3.
    Barbuti MD, Myrbraten IS, Morales Angeles D, Kjos M. 2023.. The cell cycle of Staphylococcus aureus: an updated review. . MicrobiologyOpen 12::e1338
    [Crossref] [Google Scholar]
  4. 4.
    Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. 2008.. Cytoplasmic steps of peptidoglycan biosynthesis. . FEMS Microbiol. Rev. 32::168207
    [Crossref] [Google Scholar]
  5. 5.
    Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, et al. 2024.. FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. . Nat. Microbiol. 9::80113
    [Crossref] [Google Scholar]
  6. 6.
    Berger-Bachi B, Rohrer S. 2002.. Factors influencing methicillin resistance in staphylococci. . Arch. Microbiol. 178::16571
    [Crossref] [Google Scholar]
  7. 7.
    Bilyk BL, Panchal VV, Tinajero-Trejo M, Hobbs JK, Foster SJ. 2022.. An interplay of multiple positive and negative factors governs methicillin resistance in Staphylococcus aureus. . Microbiol. Mol. Biol. Rev. 86::e0015921
    [Crossref] [Google Scholar]
  8. 8.
    Bisson-Filho AW, Hsu YP, Squyres GR, Kuru E, Wu F, et al. 2017.. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. . Science 355::73943
    [Crossref] [Google Scholar]
  9. 9.
    Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Gotz F. 2006.. Activity of the major staphylococcal autolysin Atl. . FEMS Microbiol. Lett. 259::26068
    [Crossref] [Google Scholar]
  10. 10.
    Boneca IG, Huang ZH, Gage DA, Tomasz A. 2000.. Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new β-N-acetylglucosaminidase activity. . J. Biol. Chem. 275::991018
    [Crossref] [Google Scholar]
  11. 11.
    Bottomley AL, Kabli AF, Hurd AF, Turner RD, Garcia-Lara J, Foster SJ. 2014.. Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division. . Mol. Microbiol. 94::104164
    [Crossref] [Google Scholar]
  12. 12.
    Bottomley AL, Liew ATF, Kusuma KD, Peterson E, Seidel L, et al. 2017.. Coordination of chromosome segregation and cell division in Staphylococcus aureus. . Front. Microbiol. 8::1575
    [Crossref] [Google Scholar]
  13. 13.
    Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. 2008.. The biosynthesis of peptidoglycan lipid-linked intermediates. . FEMS Microbiol. Rev. 32::20833
    [Crossref] [Google Scholar]
  14. 14.
    Bratton BP, Shaevitz JW, Gitai Z, Morgenstein RM. 2018.. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. . Nat. Commun. 9::2797
    [Crossref] [Google Scholar]
  15. 15.
    Buddelmeijer N, Beckwith J. 2004.. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. . Mol. Microbiol. 52::131527
    [Crossref] [Google Scholar]
  16. 16.
    Chan H, Soderstrom B, Skoglund U. 2020.. Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus. . MicrobiologyOpen 9::e999
    [Crossref] [Google Scholar]
  17. 17.
    Chan YG, Frankel MB, Missiakas D, Schneewind O. 2016.. SagB glucosaminidase is a determinant of Staphylococcus aureus glycan chain length, antibiotic susceptibility, and protein secretion. . J. Bacteriol. 198::112336
    [Crossref] [Google Scholar]
  18. 18.
    Cho H, Uehara T, Bernhardt TG. 2014.. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. . Cell 159::130011
    [Crossref] [Google Scholar]
  19. 19.
    Colavin A, Shi H, Huang KC. 2018.. RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. . Nat. Commun. 9::1280
    [Crossref] [Google Scholar]
  20. 20.
    Costa SF, Saraiva BM, Veiga H, Marques LB, Schäper S, et al. 2024.. The role of GpsB in cell morphogenesis of Staphylococcus aureus. . mBio 15::e0323523
    [Google Scholar]
  21. 21.
    Couto I, de Lencastre H, Severina E, Kloos W, Webster JA, et al. 1996.. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. . Microb. Drug Resist. 2::37791
    [Crossref] [Google Scholar]
  22. 22.
    Daniel RA, Noirot-Gros MF, Noirot P, Errington J. 2006.. Multiple interactions between the transmembrane division proteins of Bacillus subtilis and the role of FtsL instability in divisome assembly. . J. Bacteriol. 188::7396404
    [Crossref] [Google Scholar]
  23. 23.
    de Boer PA, Crossley RE, Rothfield LI. 1989.. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. . Cell 56::64149
    [Crossref] [Google Scholar]
  24. 24.
    de Jonge BL, Chang YS, Gage D, Tomasz A. 1992.. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. . J. Biol. Chem. 267::1124854
    [Crossref] [Google Scholar]
  25. 25.
    Delaune A, Poupel O, Mallet A, Coic YM, Msadek T, Dubrac S. 2011.. Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability. . PLOS ONE 6::e17054
    [Crossref] [Google Scholar]
  26. 26.
    Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, et al. 2006.. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. . Lancet 367::73139
    [Crossref] [Google Scholar]
  27. 27.
    Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, et al. 2020.. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. . Nat. Microbiol. 5::291303
    [Crossref] [Google Scholar]
  28. 28.
    Dubrac S, Bisicchia P, Devine KM, Msadek T. 2008.. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. . Mol. Microbiol. 70::130722
    [Crossref] [Google Scholar]
  29. 29.
    Erickson HP. 2021.. How teichoic acids could support a periplasm in gram-positive bacteria, and let cell division cheat turgor pressure. . Front. Microbiol. 12::664704
    [Crossref] [Google Scholar]
  30. 30.
    Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, et al. 2018.. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. . eLife 7::e38856
    [Crossref] [Google Scholar]
  31. 31.
    Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, et al. 2014.. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. . Nature 516::25962
    [Crossref] [Google Scholar]
  32. 32.
    Foster SJ. 1995.. Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. . J. Bacteriol. 177::572325
    [Crossref] [Google Scholar]
  33. 33.
    Foster TJ. 2019.. Can β-lactam antibiotics be resurrected to combat MRSA?. Trends Microbiol. 27::2638
    [Crossref] [Google Scholar]
  34. 34.
    Foster TJ. 2019.. Surface proteins of Staphylococcus aureus. . Microbiol. Spectr. 7:: 10.1128/microbiolspec.gpp3-0046-2018
    [Crossref] [Google Scholar]
  35. 35.
    Frankel MB, Hendrickx AP, Missiakas DM, Schneewind O. 2011.. LytN, a murein hydrolase in the cross-wall compartment of Staphylococcus aureus, is involved in proper bacterial growth and envelope assembly. . J. Biol. Chem. 286::32593605
    [Crossref] [Google Scholar]
  36. 36.
    Frankel MB, Schneewind O. 2012.. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. . J. Biol. Chem. 287::1046071
    [Crossref] [Google Scholar]
  37. 37.
    Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, et al. 2018.. AureoWiki—the repository of the Staphylococcus aureus research and annotation community. . Int. J. Med. Microbiol. 308::55868
    [Crossref] [Google Scholar]
  38. 38.
    Gally D, Archibald AR. 1993.. Cell wall assembly in Staphylococcus aureus: proposed absence of secondary crosslinking reactions. . J. Gen. Microbiol. 139::190713
    [Crossref] [Google Scholar]
  39. 39.
    Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, et al. 2005.. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. . J. Bacteriol. 187::242638
    [Crossref] [Google Scholar]
  40. 40.
    Gogou C, Japaridze A, Dekker C. 2021.. Mechanisms for chromosome segregation in bacteria. . Front. Microbiol. 12::685687
    [Crossref] [Google Scholar]
  41. 41.
    Hartman BJ, Tomasz A. 1984.. Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. . J. Bacteriol. 158::51316
    [Crossref] [Google Scholar]
  42. 42.
    Henriques AO, Glaser P, Piggot PJ, Moran CP Jr. 1998.. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. . Mol. Microbiol. 28::23547
    [Crossref] [Google Scholar]
  43. 43.
    Ishidate K, Ursinus A, Holtje JV, Rothfield L. 1998.. Analysis of the length distribution of murein glycan strands in ftsZ and ftsI mutants of E. coli. . FEMS Microbiol. Lett. 168::715
    [Crossref] [Google Scholar]
  44. 44.
    Jalal ASB, Le TBK. 2020.. Bacterial chromosome segregation by the ParABS system. . Open Biol. 10::200097
    [Crossref] [Google Scholar]
  45. 45.
    Jensen C, Baek KT, Gallay C, Thalso-Madsen I, Xu L, et al. 2019.. The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. . PLOS Pathog. 15::e1008044
    [Crossref] [Google Scholar]
  46. 46.
    Jones LJF, Carballido-López R, Errington J. 2001.. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. . Cell 104::91322
    [Crossref] [Google Scholar]
  47. 47.
    Jorge AM, Hoiczyk E, Gomes JP, Pinho MG. 2011.. EzrA contributes to the regulation of cell size in Staphylococcus aureus. . PLOS ONE 6::e27542
    [Crossref] [Google Scholar]
  48. 48.
    Jun S, Wright A. 2010.. Entropy as the driver of chromosome segregation. . Nat. Rev. Microbiol. 8::6007
    [Crossref] [Google Scholar]
  49. 49.
    Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, et al. 2005.. Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. . Mol. Microbiol. 58::1087101
    [Crossref] [Google Scholar]
  50. 50.
    Karaboja X, Ren Z, Brandao HB, Paul P, Rudner DZ, Wang X. 2021.. XerD unloads bacterial SMC complexes at the replication terminus. . Mol. Cell 81::75666 e8
    [Crossref] [Google Scholar]
  51. 51.
    Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. 2013.. Killing by bactericidal antibiotics does not depend on reactive oxygen species. . Science 339::121316
    [Crossref] [Google Scholar]
  52. 52.
    Kim SJ, Singh M, Preobrazhenskaya M, Schaefer J. 2013.. Staphylococcus aureus peptidoglycan stem packing by rotational-echo double resonance NMR spectroscopy. . Biochemistry 52::365159
    [Crossref] [Google Scholar]
  53. 53.
    Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007.. A common mechanism of cellular death induced by bactericidal antibiotics. . Cell 130::797810
    [Crossref] [Google Scholar]
  54. 54.
    Koyama T, Yamada M, Matsuhashi M. 1977.. Formation of regular packets of Staphylococcus aureus cells. . J. Bacteriol. 129::151823
    [Crossref] [Google Scholar]
  55. 55.
    Krishna A, Liu B, Peacock SJ, Wigneshweraraj S. 2020.. The prevalence and implications of single nucleotide polymorphisms in genes encoding the RNA polymerase of clinical isolates of Staphylococcus aureus. . MicrobiologyOpen 9::e1058
    [Crossref] [Google Scholar]
  56. 56.
    Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, et al. 2001.. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. . Lancet 357::122540
    [Crossref] [Google Scholar]
  57. 57.
    Lakhundi S, Zhang K. 2018.. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. . Clin. Microbiol. Rev. 31::e0002018
    [Crossref] [Google Scholar]
  58. 58.
    Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ, et al. 2009.. Localisation of DivIVA by targeting to negatively curved membranes. . EMBO J. 28::227282
    [Crossref] [Google Scholar]
  59. 59.
    de Lencastre H, Wu SW, Pinho MG, Ludovice AM, Filipe S, et al. 1999.. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. . Microb. Drug Resist. 5::16375
    [Crossref] [Google Scholar]
  60. 60.
    Lim D, Strynadka NC. 2002.. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. . Nat. Struct. Biol. 9::87076
    [Google Scholar]
  61. 61.
    Liu Y, Imlay JA. 2013.. Cell death from antibiotics without the involvement of reactive oxygen species. . Science 339::121013
    [Crossref] [Google Scholar]
  62. 62.
    Lund VA, Gangotra H, Zhao Z, Sutton JAF, Wacnik K, et al. 2022.. Coupling novel probes with molecular localization microscopy reveals cell wall homeostatic mechanisms in Staphylococcus aureus. . ACS Chem. Biol. 17::3298305
    [Crossref] [Google Scholar]
  63. 63.
    Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, et al. 2018.. Molecular coordination of Staphylococcus aureus cell division. . eLife 7::e32057
    [Crossref] [Google Scholar]
  64. 64.
    Mahasenan KV, Molina R, Bouley R, Batuecas MT, Fisher JF, et al. 2017.. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. . J. Am. Chem. Soc. 139::210210
    [Crossref] [Google Scholar]
  65. 65.
    Matias VR, Beveridge TJ. 2006.. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. . J. Bacteriol. 188::101121
    [Crossref] [Google Scholar]
  66. 66.
    Matias VR, Beveridge TJ. 2007.. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. . Mol. Microbiol. 64::195206
    [Crossref] [Google Scholar]
  67. 67.
    Matsuzawa H, Asoh S, Kunai K, Muraiso K, Takasuga A, Ohta T. 1989.. Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. . J. Bacteriol. 171::55860
    [Crossref] [Google Scholar]
  68. 68.
    Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, et al. 2015.. Cell shape dynamics during the staphylococcal cell cycle. . Nat. Commun. 6::8055
    [Crossref] [Google Scholar]
  69. 69.
    Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, et al. 2018.. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. . Nature 554::52832
    [Crossref] [Google Scholar]
  70. 70.
    Morgenstein RM, Bratton BP, Nguyen JP, Ouzounov N, Shaevitz JW, Gitai Z. 2015.. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. . PNAS 112::1251015
    [Crossref] [Google Scholar]
  71. 71.
    Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, et al. 2022.. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. . Lancet 399::62955
    [Crossref] [Google Scholar]
  72. 72.
    Myrbraten IS, Stamsas GA, Chan H, Morales Angeles D, Knutsen TM, et al. 2022.. SmdA is a novel cell morphology determinant in Staphylococcus aureus. . mBio 13::e0340421
    [Crossref] [Google Scholar]
  73. 73.
    Nega M, Tribelli PM, Hipp K, Stahl M, Gotz F. 2020.. New insights in the coordinated amidase and glucosaminidase activity of the major autolysin (Atl) in Staphylococcus aureus. . Commun. Biol. 3::695
    [Crossref] [Google Scholar]
  74. 74.
    Noirclerc-Savoye M, Gouellec AL, Morlot C, Dideberg O, Vernet T, Zapun A. 2005.. In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. . Mol. Microbiol. 55::41324
    [Crossref] [Google Scholar]
  75. 75.
    Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A. 1995.. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. . PNAS 92::28589
    [Crossref] [Google Scholar]
  76. 76.
    Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-Lopez C, Kumarasiri M, et al. 2013.. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. . PNAS 110::1680813
    [Crossref] [Google Scholar]
  77. 77.
    Page JE, Skiba MA, Do T, Kruse AC, Walker S. 2022.. Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase activation. . PNAS 119::e2201141119
    [Crossref] [Google Scholar]
  78. 78.
    Panchal VV, Griffiths C, Mosaei H, Bilyk B, Sutton JAF, et al. 2020.. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. . PLOS Pathog. 16::e1008672
    [Crossref] [Google Scholar]
  79. 79.
    Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, et al. 2020.. The architecture of the Gram-positive bacterial cell wall. . Nature 582::29497
    [Crossref] [Google Scholar]
  80. 80.
    Pereira SFF, Henriques AO, Pinho MG, de Lencastre H, Tomasz A. 2009.. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. . Mol. Microbiol. 72::895904
    [Crossref] [Google Scholar]
  81. 81.
    Pinho MG, de Lencastre H, Tomasz A. 1998.. Transcriptional analysis of the Staphylococcus aureus penicillin binding protein 2 gene. . J. Bacteriol. 180::607781
    [Crossref] [Google Scholar]
  82. 82.
    Pinho MG, de Lencastre H, Tomasz A. 2001.. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. . PNAS 98::1088691
    [Crossref] [Google Scholar]
  83. 83.
    Pinho MG, Errington J. 2004.. A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. . FEMS Microbiol. Lett. 240::14549
    [Crossref] [Google Scholar]
  84. 84.
    Pinho MG, Errington J. 2005.. Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. . Mol. Microbiol. 55::799807
    [Crossref] [Google Scholar]
  85. 85.
    Pinho MG, Kjos M, Veening J-W. 2013.. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. . Nat. Rev. Microbiol. 11::60114
    [Crossref] [Google Scholar]
  86. 86.
    Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. 2023.. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. . Sci. Adv. 9::eade9023
    [Crossref] [Google Scholar]
  87. 87.
    Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, et al. 2023.. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. . bioRxiv 2023.09.03.556088
    [Google Scholar]
  88. 88.
    Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, et al. 2015.. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. . PLOS Pathog. 11::e1004891
    [Crossref] [Google Scholar]
  89. 89.
    Reed P, Veiga H, Jorge AM, Terrak M, Pinho MG. 2011.. Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis. . J. Bacteriol. 193::254956
    [Crossref] [Google Scholar]
  90. 90.
    Reichmann NT, Tavares AC, Saraiva BM, Jousselin A, Reed P, et al. 2019.. SEDS-bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. . Nat. Microbiol. 4::136877
    [Crossref] [Google Scholar]
  91. 91.
    Roemer T, Schneider T, Pinho MG. 2013.. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. . Curr. Opin Microbiol. 16::53848
    [Crossref] [Google Scholar]
  92. 92.
    Rohrer S, Berger-Bachi B. 2003.. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and β-lactam resistance in gram-positive cocci. . Antimicrob. Agents Chemother. 47::83746
    [Crossref] [Google Scholar]
  93. 93.
    Rohs PDA, Qiu JM, Torres G, Smith MD, Fivenson EM, Bernhardt TG. 2021.. Identification of potential regulatory domains within the MreC and MreD components of the cell elongation machinery. . J. Bacteriol. 203::e0049320
    [Crossref] [Google Scholar]
  94. 94.
    Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, et al. 2017.. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. . PLOS Genet. 13::e1006674
    [Crossref] [Google Scholar]
  95. 95.
    Ruiz N. 2008.. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. . PNAS 105::1555357
    [Crossref] [Google Scholar]
  96. 96.
    Salamaga B, Kong L, Pasquina-Lemonche L, Lafage L, von Und Zur Muhlen M, et al. 2021.. Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. . PNAS 118::e2106022118
    [Crossref] [Google Scholar]
  97. 97.
    Saraiva BM, Sorg M, Pereira AR, Ferreira MJ, Caulat LC, et al. 2020.. Reassessment of the distinctive geometry of Staphylococcus aureus cell division. . Nat. Commun. 11::4097
    [Crossref] [Google Scholar]
  98. 98.
    Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. 2021.. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. . Nat. Microbiol. 6::3443
    [Crossref] [Google Scholar]
  99. 99.
    Schäper S, Brito AD, Saraiva BM, Squyres GR, Holmes MJ, et al. 2024.. Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus. . Nat. Microbiol. 9::104963
    [Crossref] [Google Scholar]
  100. 100.
    Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, et al. 2010.. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. . Mol. Microbiol. 75::86473
    [Crossref] [Google Scholar]
  101. 101.
    Schneider T, Sahl HG. 2010.. An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. . Int. J. Med. Microbiol. 300::16169
    [Crossref] [Google Scholar]
  102. 102.
    Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, et al. 2017.. The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. . Dev. Cell 41::299314.e13
    [Crossref] [Google Scholar]
  103. 103.
    Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 2014.. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. . Science 345::22022
    [Crossref] [Google Scholar]
  104. 104.
    Silhavy TJ, Kahne D, Walker S. 2010.. The bacterial cell envelope. . Cold Spring Harb. Perspect. Biol. 2::a000414
    [Crossref] [Google Scholar]
  105. 105.
    Snowden MA, Perkins HR. 1990.. Peptidoglycan cross-linking in Staphylococcus aureus. An apparent random polymerisation process. . Eur. J. Biochem. 191::37377
    [Crossref] [Google Scholar]
  106. 106.
    Stamsas GA, Myrbraten IS, Straume D, Salehian Z, Veening JW, et al. 2018.. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. . Mol. Microbiol. 109::61532
    [Crossref] [Google Scholar]
  107. 107.
    Su HN, Li K, Zhao LS, Yuan XX, Zhang MY, et al. 2020.. Structural visualization of septum formation in Staphylococcus warneri using atomic force microscopy. . J. Bacteriol. 202::e00294-20
    [Crossref] [Google Scholar]
  108. 108.
    Sutton JAF, Cooke M, Tinajero-Trejo M, Wacnik K, Salamaga B, et al. 2023.. The roles of GpsB and DivIVA in Staphylococcus aureus growth and division. . Front. Microbiol. 14::1241249
    [Crossref] [Google Scholar]
  109. 109.
    Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M, et al. 2019.. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. . Nat. Microbiol. 4::58794
    [Crossref] [Google Scholar]
  110. 110.
    Tavares AC, Fernandes PB, Carballido-Lopez R, Pinho MG. 2015.. MreC and MreD proteins are not required for growth of Staphylococcus aureus. . PLOS ONE 10::e0140523
    [Crossref] [Google Scholar]
  111. 111.
    Tinajero-Trejo M, Carnell O, Kabli AF, Pasquina-Lemonche L, Lafage L, et al. 2022.. The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis. . Commun. Biol. 5::1228
    [Crossref] [Google Scholar]
  112. 112.
    Tomasz A, Albino A, Zanati E. 1970.. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. . Nature 227::13840
    [Crossref] [Google Scholar]
  113. 113.
    Touhami A, Jericho MH, Beveridge TJ. 2004.. Atomic force microscopy of cell growth and division in Staphylococcus aureus. . J. Bacteriol. 186::328695
    [Crossref] [Google Scholar]
  114. 114.
    Treuner-Lange A, Aguiluz K, van der Does C, Gomez-Santos N, Harms A, et al. 2013.. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. . Mol. Microbiol. 87::23553
    [Crossref] [Google Scholar]
  115. 115.
    Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ. 2010.. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. . Nat. Commun. 1::26
    [Crossref] [Google Scholar]
  116. 116.
    Turner RD, Vollmer W, Foster SJ. 2014.. Different walls for rods and balls: the diversity of peptidoglycan. . Mol. Microbiol. 91::86274
    [Crossref] [Google Scholar]
  117. 117.
    Tzagoloff H, Novick R. 1977.. Geometry of cell division in Staphylococcus aureus. . J. Bacteriol. 129::34350
    [Crossref] [Google Scholar]
  118. 118.
    Veiga H, Jorge AM, Pinho MG. 2011.. Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division. . Mol. Microbiol. 80::136680
    [Crossref] [Google Scholar]
  119. 119.
    Veiga H, Jousselin A, Schaper S, Saraiva BM, Marques LB, et al. 2023.. Cell division protein FtsK coordinates bacterial chromosome segregation and daughter cell separation in Staphylococcus aureus. . EMBO J. 42::e112140
    [Crossref] [Google Scholar]
  120. 120.
    Veiga H, Pinho MG. 2017.. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. . Mol. Microbiol. 103::50417
    [Crossref] [Google Scholar]
  121. 121.
    Vollmer W, Blanot D, de Pedro MA. 2008.. Peptidoglycan structure and architecture. . FEMS Microbiol. Rev. 32::14967
    [Crossref] [Google Scholar]
  122. 122.
    Wacnik K, Rao VA, Chen X, Lafage L, Pazos M, et al. 2022.. Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus has multiple essential functions in cell division. . mBio 13::e0066922
    [Crossref] [Google Scholar]
  123. 123.
    Ward JB. 1973.. The chain length of the glycans in bacterial cell walls. . Biochem. J. 133::39598
    [Crossref] [Google Scholar]
  124. 124.
    Wheeler R, Turner RD, Bailey RG, Salamaga B, Mesnage S, et al. 2015.. Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. . mBio 6::e00660
    [Crossref] [Google Scholar]
  125. 125.
    Willing S, Schneewind O, Missiakas D. 2021.. Regulated cleavage of glycan strands by the murein hydrolase SagB in S. aureus involves a direct interaction with LyrA (SpdC). . J. Bacteriol. 203::e0001421
    [Crossref] [Google Scholar]
  126. 126.
    Woldringh CL, Mulder E, Huls PG, Vischer N. 1991.. Toporegulation of bacterial division according to the nucleoid occlusion model. . Res. Microbiol. 142::30920
    [Crossref] [Google Scholar]
  127. 127.
    Wu LJ, Errington J. 2004.. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. . Cell 117::91525
    [Crossref] [Google Scholar]
  128. 128.
    Wu LJ, Errington J. 2012.. Nucleoid occlusion and bacterial cell division. . Nat. Rev. Microbiol. 10::812
    [Crossref] [Google Scholar]
  129. 129.
    Wyke AW, Ward JB, Hayes MV, Curtis NA. 1981.. A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. . Eur. J. Biochem. 119::38993
    [Crossref] [Google Scholar]
  130. 130.
    Xia G, Kohler T, Peschel A. 2010.. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. . Int. J. Med. Microbiol. 300::14854
    [Crossref] [Google Scholar]
  131. 131.
    Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J. 2017.. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. . Science 355::74447
    [Crossref] [Google Scholar]
  132. 132.
    Yu W, Herbert S, Graumann PL, Gotz F. 2010.. Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in staphylococci. . J. Bacteriol. 192::406773
    [Crossref] [Google Scholar]
  133. 133.
    Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK, et al. 2015.. Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. . Science 348::57478
    [Crossref] [Google Scholar]
  134. 134.
    Zoll S, Schlag M, Shkumatov AV, Rautenberg M, Svergun DI, et al. 2012.. Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. . J. Bacteriol. 194::3789802
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041222-125931
Loading
/content/journals/10.1146/annurev-micro-041222-125931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error