1932

Abstract

Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-091507
2024-11-20
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-091507.html?itemId=/content/journals/10.1146/annurev-micro-041522-091507&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akanuma G. 2021.. Diverse relationships between metal ions and the ribosome. . Biosci. Biotechnol. Biochem. 85::158293
    [Crossref] [Google Scholar]
  2. 2.
    Alejandro S, Holler S, Meier B, Peiter E. 2020.. Manganese in plants: from acquisition to subcellular allocation. . Front. Plant Sci. 11::300
    [Crossref] [Google Scholar]
  3. 3.
    Alves Feliciano C, Eckenroth BE, Diaz OR, Doublié S, Shen A. 2021.. A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. . PLOS Genet. 17::e1009791
    [Crossref] [Google Scholar]
  4. 4.
    Anantharaman V, Iyer LM, Aravind L. 2012.. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. . Mol. Biosyst. 8::314265
    [Crossref] [Google Scholar]
  5. 5.
    Anjem A, Varghese S, Imlay JA. 2009.. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. . Mol. Microbiol. 72::84458
    [Crossref] [Google Scholar]
  6. 6.
    Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. 2021.. Molecular evolution of transition metal bioavailability at the host-pathogen interface. . Trends Microbiol. 29::44157
    [Crossref] [Google Scholar]
  7. 7.
    Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. 2022.. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: metal-ligand coordination perspectives. . Coord. Chem. Rev. 453::214317
    [Crossref] [Google Scholar]
  8. 8.
    Bahr G, González LJ, Vila AJ. 2022.. Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface. . Curr. Opin. Chem. Biol. 66::102103
    [Crossref] [Google Scholar]
  9. 9.
    Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, et al. 2004.. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. . PNAS 101::642126
    [Crossref] [Google Scholar]
  10. 10.
    Barwinska-Sendra A, Waldron KJ. 2017.. The role of intermetal competition and mis-metalation in metal toxicity. . Adv. Microb. Physiol. 70::31579
    [Crossref] [Google Scholar]
  11. 11.
    Beard SJ, Hughes MN, Poole RK. 1995.. Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. . FEMS Microbiol. Lett. 131::20510
    [Crossref] [Google Scholar]
  12. 12.
    Bernhardt TG, de Boer PA. 2003.. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. . Mol. Microbiol. 48::117182
    [Crossref] [Google Scholar]
  13. 13.
    Blaby-Haas CE, Merchant SS. 2017.. Regulating cellular trace metal economy in algae. . Curr. Opin. Plant Biol. 39::8896
    [Crossref] [Google Scholar]
  14. 14.
    Blair DE, Schüttelkopf AW, MacRae JI, van Aalten DM. 2005.. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. . PNAS 102::1542934
    [Crossref] [Google Scholar]
  15. 15.
    Brauer AM, Rogers AR, Ellermeier JR. 2021.. Twin-arginine translocation (Tat) mutants in Salmonella enterica serovar Typhimurium have increased susceptibility to cell wall targeting antibiotics. . FEMS Microbes 2::xtab004
    [Crossref] [Google Scholar]
  16. 16.
    Brogan AP, Rudner DZ. 2023.. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. . Curr. Opin. Microbiol. 72::102279
    [Crossref] [Google Scholar]
  17. 17.
    Bush K, Bradford PA. 2016.. β-Lactams and β-lactamase inhibitors: an overview. . Cold Spring Harb. Perspect. Med. 6::a025247
    [Crossref] [Google Scholar]
  18. 18.
    Bush K, Bradford PA. 2020.. Epidemiology of β-lactamase-producing pathogens. . Clin. Microbiol. Rev. 33::e0004719
    [Crossref] [Google Scholar]
  19. 19.
    Capdevila DA, Edmonds KA, Giedroc DP. 2017.. Metallochaperones and metalloregulation in bacteria. . Essays Biochem. 61::177200
    [Crossref] [Google Scholar]
  20. 20.
    Chandrangsu P, Helmann JD. 2016.. Intracellular Zn(II) intoxication leads to dysregulation of the PerR regulon resulting in heme toxicity in Bacillus subtilis. . PLOS Genet. 12::e1006515
    [Crossref] [Google Scholar]
  21. 21.
    Chandrangsu P, Huang X, Gaballa A, Helmann JD. 2019.. Bacillus subtilis FolE is sustained by the ZagA zinc metallochaperone and the alarmone ZTP under conditions of zinc deficiency. . Mol. Microbiol. 112::75165
    [Crossref] [Google Scholar]
  22. 22.
    Chandrangsu P, Rensing C, Helmann JD. 2017.. Metal homeostasis and resistance in bacteria. . Nat. Rev. Microbiol. 15::33850
    [Crossref] [Google Scholar]
  23. 23.
    Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. 2009.. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. . FEMS Microbiol. Rev. 33::82032
    [Crossref] [Google Scholar]
  24. 24.
    Chee Wezen X, Chandran A, Eapen RS, Waters E, Bricio-Moreno L, et al. 2022.. Structure-based discovery of lipoteichoic acid synthase inhibitors. . J. Chem. Inf. Model. 62::258699
    [Crossref] [Google Scholar]
  25. 25.
    Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, et al. 2018.. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. . J. Biol. Chem. 293::1260618
    [Crossref] [Google Scholar]
  26. 26.
    Cho H. 2023.. Assembly of bacterial surface glycopolymers as an antibiotic target. . J. Microbiol. 61::35967
    [Crossref] [Google Scholar]
  27. 27.
    Chodisetti PK, Reddy M. 2019.. Peptidoglycan hydrolase of an unusual cross-link cleavage specificity contributes to bacterial cell wall synthesis. . PNAS 116::782530
    [Crossref] [Google Scholar]
  28. 28.
    Choi U, Park SH, Lee HB, Son JE, Lee CR. 2023.. Coordinated and distinct roles of peptidoglycan carboxypeptidases DacC and DacA in cell growth and shape maintenance under stress conditions. . Microbiol. Spectr. 11::e0001423
    [Crossref] [Google Scholar]
  29. 29.
    Cook J, Baverstock TC, McAndrew MBL, Roper DI, Stansfeld PJ, Crow A. 2023.. Activator-induced conformational changes regulate division-associated peptidoglycan amidases. . PNAS 120::e2302580120
    [Crossref] [Google Scholar]
  30. 30.
    Craig M, Sadik AY, Golubeva YA, Tidhar A, Slauch JM. 2013.. Twin-arginine translocation system (tat) mutants of Salmonella are attenuated due to envelope defects, not respiratory defects. . Mol. Microbiol. 89::887902
    [Crossref] [Google Scholar]
  31. 31.
    Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL 2nd, et al. 2010.. Microbial metalloproteomes are largely uncharacterized. . Nature 466::77982
    [Crossref] [Google Scholar]
  32. 32.
    Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L, et al. 2015.. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. . Mol. Cell 57::1099109
    [Crossref] [Google Scholar]
  33. 33.
    Deschamps A, Thines L, Colinet AS, Stribny J, Morsomme P. 2023.. The yeast Gdt1 protein mediates the exchange of H+ for Ca2+ and Mn2+ influencing the Golgi pH. . J. Biol. Chem. 299::104628
    [Crossref] [Google Scholar]
  34. 34.
    Dobihal GS, Brunet YR, Flores-Kim J, Rudner DZ. 2019.. Homeostatic control of cell wall hydrolysis by the WalRK two-component signaling pathway in Bacillus subtilis. . eLife 8::e52088
    [Crossref] [Google Scholar]
  35. 35.
    Dobihal GS, Flores-Kim J, Roney IJ, Wang X, Rudner DZ. 2022.. The WalR-WalK signaling pathway modulates the activities of both CwlO and LytE through control of the peptidoglycan deacetylase PdaC in Bacillus subtilis. . J. Bacteriol. 204::e00533-21
    [Crossref] [Google Scholar]
  36. 36.
    Dolata KM, Montero IG, Miller W, Sievers S, Sura T, et al. 2019.. Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. . Microbiol. Res. 218::97107
    [Crossref] [Google Scholar]
  37. 37.
    Douglas EJA, Marshall B, Alghamadi A, Joseph EA, Duggan S, et al. 2023.. Improved antibacterial activity of 1,3,4-oxadiazole-based compounds that restrict Staphylococcus aureus growth independent of LtaS function. . ACS Infect. Dis. 9::214159
    [Crossref] [Google Scholar]
  38. 38.
    Durr G, Strayle J, Plemper R, Elbs S, Klee SK, et al. 1998.. The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum–associated protein degradation. . Mol. Biol. Cell 9::114962
    [Crossref] [Google Scholar]
  39. 39.
    Edmonds KA, Jordan MR, Giedroc DP. 2021.. COG0523 proteins: a functionally diverse family of transition metal–regulated G3E P-loop GTP hydrolases from bacteria to man. . Metallomics 13::mfab046
    [Crossref] [Google Scholar]
  40. 40.
    Egan AJ, Errington J, Vollmer W. 2020.. Regulation of peptidoglycan synthesis and remodelling. . Nat. Rev. Microbiol. 18::44660
    [Crossref] [Google Scholar]
  41. 41.
    Eiamphungporn W, Helmann JD. 2008.. The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. . Mol. Microbiol. 67::83048
    [Crossref] [Google Scholar]
  42. 42.
    Farooq S, Khan AU. 2023.. Current update on New Delhi metallo-β-lactamase (NDM) variants: new challenges in the journey of evolution. . Curr. Protein Pept. Sci. 24::65565
    [Crossref] [Google Scholar]
  43. 43.
    Feucht A, Evans L, Errington J. 2003.. Identification of sporulation genes by genome-wide analysis of the σE regulon of Bacillus subtilis. . Microbiology 149::302334
    [Crossref] [Google Scholar]
  44. 44.
    Finney LA, O'Halloran TV. 2003.. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. . Science 300::93136
    [Crossref] [Google Scholar]
  45. 45.
    Fisher JF, Mobashery S. 2020.. Constructing and deconstructing the bacterial cell wall. . Protein Sci. 29::62946
    [Crossref] [Google Scholar]
  46. 46.
    Foster AW, Young TR, Chivers PT, Robinson NJ. 2022.. Protein metalation in biology. . Curr. Opin. Chem. Biol. 66::102095
    [Crossref] [Google Scholar]
  47. 47.
    Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, et al. 2012.. TMEM165 deficiency causes a congenital disorder of glycosylation. . Am. J. Hum. Genet. 91::1526
    [Crossref] [Google Scholar]
  48. 48.
    Fraústo da Silva JJR, Williams RJP. 2001.. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford/New York:: Oxford Univ. Press. 575 pp.
    [Google Scholar]
  49. 49.
    Gabriel SE, Helmann JD. 2009.. Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. . J. Bacteriol. 191::611622
    [Crossref] [Google Scholar]
  50. 50.
    Gale RT, Li FKK, Sun T, Strynadka NCJ, Brown ED. 2017.. B. subtilis LytR-CpsA-Psr enzymes transfer wall teichoic acids from authentic lipid-linked substrates to mature peptidoglycan in vitro. . Cell Chem. Biol. 24::153746.e4
    [Crossref] [Google Scholar]
  51. 51.
    Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, et al. 2001.. Standard numbering scheme for class B β-lactamases. . Antimicrob. Agents Chemother. 45::66063
    [Crossref] [Google Scholar]
  52. 52.
    Giessen TW. 2022.. Encapsulins. . Annu. Rev. Biochem. 91::35380
    [Crossref] [Google Scholar]
  53. 53.
    Giessen TW, Orlando BJ, Verdegaal AA, Chambers MG, Gardener J, et al. 2019.. Large protein organelles form a new iron sequestration system with high storage capacity. . eLife 8::e46070
    [Crossref] [Google Scholar]
  54. 54.
    Gonzalez LJ, Bahr G, Gonzalez MM, Bonomo RA, Vila AJ. 2023.. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. . Nat. Chem. Biol. 19::111626
    [Crossref] [Google Scholar]
  55. 55.
    Grant CR, Amor M, Trujillo HA, Krishnapura S, Iavarone AT, Komeili A. 2022.. Distinct gene clusters drive formation of ferrosome organelles in bacteria. . Nature 606::16064
    [Crossref] [Google Scholar]
  56. 56.
    Hashimoto M, Ooiwa S, Sekiguchi J. 2012.. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of d,l-endopeptidase activity at the lateral cell wall. . J. Bacteriol. 194::796803
    [Crossref] [Google Scholar]
  57. 57.
    Hausinger RP. 2019.. New metal cofactors and recent metallocofactor insights. . Curr. Opin. Struct. Biol. 59::18
    [Crossref] [Google Scholar]
  58. 58.
    He B, Sachla AJ, Helmann JD. 2023.. TerC proteins function during protein secretion to metalate exoenzymes. . Nat. Commun. 14::6186
    [Crossref] [Google Scholar]
  59. 59.
    Helmann JD. 2014.. Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. . J. Biol. Chem. 289::2811220
    [Crossref] [Google Scholar]
  60. 60.
    Hesser AR, Schaefer K, Lee W, Walker S. 2020.. Lipoteichoic acid polymer length is determined by competition between free starter units. . PNAS 117::2966976
    [Crossref] [Google Scholar]
  61. 61.
    Hohle TH, O'Brian MR. 2014.. Magnesium-dependent processes are targets of bacterial manganese toxicity. . Mol. Microbiol. 93::73647
    [Crossref] [Google Scholar]
  62. 62.
    Hong Y, Mackenzie ES, Firth SJ, Bolton JRF, Stewart LJ, et al. 2023.. Mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in Streptococcus pyogenes. . Metallomics 15:(11):mfad064
    [Crossref] [Google Scholar]
  63. 63.
    Hu Z, Gunasekera TS, Spadafora L, Bennett B, Crowder MW. 2008.. Metal content of metallo-β-lactamase L1 is determined by the bioavailability of metal ions. . Biochemistry 47::794753
    [Crossref] [Google Scholar]
  64. 64.
    Huang X, Shin JH, Pinochet-Barros A, Su TT, Helmann JD. 2017.. Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. . Mol. Microbiol. 103::25368
    [Crossref] [Google Scholar]
  65. 65.
    Imlay JA. 2014.. The mismetallation of enzymes during oxidative stress. . J. Biol. Chem. 289::2812128
    [Crossref] [Google Scholar]
  66. 66.
    Ize B, Stanley NR, Buchanan G, Palmer T. 2003.. Role of the Escherichia coli Tat pathway in outer membrane integrity. . Mol. Microbiol. 48::118393
    [Crossref] [Google Scholar]
  67. 67.
    Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DAI. 2022.. The biogenesis of β-lactamase enzymes. . Microbiology 168::001217
    [Crossref] [Google Scholar]
  68. 68.
    Kaufman RJ, Swaroop M, Murtha-Riel P. 1994.. Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells. . Biochemistry 33::981319
    [Crossref] [Google Scholar]
  69. 69.
    Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, et al. 2012.. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. . J. Biol. Chem. 287::976576
    [Crossref] [Google Scholar]
  70. 70.
    Kwon KC, Cho MH. 2008.. Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality. . Plant J. 55::42842
    [Crossref] [Google Scholar]
  71. 71.
    Lenz JD, Stohl EA, Robertson RM, Hackett KT, Fisher K, et al. 2016.. Amidase activity of AmiC controls cell separation and stem peptide release and is enhanced by NlpD in Neisseria gonorrhoeae. . J. Biol. Chem. 291::1091633
    [Crossref] [Google Scholar]
  72. 72.
    Lonergan ZR, Nairn BL, Wang J, Hsu YP, Hesse LE, et al. 2019.. An Acinetobacter baumannii, zinc-regulated peptidase maintains cell wall integrity during immune-mediated nutrient sequestration. . Cell Rep. 26::200918.e6
    [Crossref] [Google Scholar]
  73. 73.
    Lonergan ZR, Skaar EP. 2019.. Nutrient zinc at the host-pathogen interface. . Trends Biochem. Sci. 44::104156
    [Crossref] [Google Scholar]
  74. 74.
    Ma Z, Faulkner MJ, Helmann JD. 2012.. Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur. . Mol. Microbiol. 86::114455
    [Crossref] [Google Scholar]
  75. 75.
    Macomber L, Imlay JA. 2009.. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. . PNAS 106::834449
    [Crossref] [Google Scholar]
  76. 76.
    Maret W. 2009.. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. . Metallomics 2::11725
    [Crossref] [Google Scholar]
  77. 77.
    Maret W, Li Y. 2009.. Coordination dynamics of zinc in proteins. . Chem. Rev. 109::4682707
    [Crossref] [Google Scholar]
  78. 78.
    McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, et al. 2011.. A molecular mechanism for bacterial susceptibility to zinc. . PLOS Pathog. 7::e1002357
    [Crossref] [Google Scholar]
  79. 79.
    Merchant SS, Helmann JD. 2012.. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. . Adv. Microb. Physiol. 60::91210
    [Crossref] [Google Scholar]
  80. 80.
    Micelli C, Dai Y, Raustad N, Isberg RR, Dowson CG, et al. 2023.. A conserved zinc-binding site in Acinetobacter baumannii PBP2 required for elongasome-directed bacterial cell shape. . PNAS 120::e2215237120
    [Crossref] [Google Scholar]
  81. 81.
    Monk IR, Shaikh N, Begg SL, Gajdiss M, Sharkey LKR, et al. 2019.. Zinc-binding to the cytoplasmic PAS domain regulates the essential WalK histidine kinase of Staphylococcus aureus. . Nat. Commun. 10::3067
    [Crossref] [Google Scholar]
  82. 82.
    Mueller EA, Iken AG, Ali Öztürk M, Winkle M, Schmitz M, et al. 2021.. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. . Mol. Microbiol. 116::31128
    [Crossref] [Google Scholar]
  83. 83.
    Murdoch CC, Skaar EP. 2022.. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. . Nat. Rev. Microbiol. 20::65770
    [Crossref] [Google Scholar]
  84. 84.
    Murphy SG, Alvarez L, Adams MC, Liu S, Chappie JS, et al. 2019.. Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response. . mBio 10::e0262018
    [Crossref] [Google Scholar]
  85. 85.
    Muscato JD, Morris HG, Mychack A, Rajagopal M, Baidin V, et al. 2022.. Rapid inhibitor discovery by exploiting synthetic lethality. . J. Am. Chem. Soc. 144::3696705
    [Crossref] [Google Scholar]
  86. 86.
    Nanamiya H, Kawamura F. 2010.. Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis. . Biosci. Biotechnol. Biochem. 74::45161
    [Crossref] [Google Scholar]
  87. 87.
    Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, et al. 2012.. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. . Science 335::11036
    [Crossref] [Google Scholar]
  88. 88.
    Novoa-Aponte L, Argüello JM. 2022.. Unique underlying principles shaping copper homeostasis networks. . J. Biol. Inorg. Chem. 27::50928
    [Crossref] [Google Scholar]
  89. 89.
    Osman D, Patterson CJ, Bailey K, Fisher K, Robinson NJ, et al. 2013.. The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P1B-type ATPase copper efflux and periplasmic CueP. . Mol. Microbiol. 87::46677
    [Crossref] [Google Scholar]
  90. 90.
    Osman D, Robinson NJ. 2023.. Protein metalation in a nutshell. . FEBS Lett. 597::14150
    [Crossref] [Google Scholar]
  91. 91.
    Outten CE, O'Halloran TV. 2001.. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. . Science 292::248892
    [Crossref] [Google Scholar]
  92. 92.
    Öztürk Y, Andrei A, Blaby-Haas CE, Daum N, Daldal F, Koch HG. 2023.. Metabolic sensing of extracytoplasmic copper availability via translational control by a nascent exported protein. . mBio 14::e0304022
    [Crossref] [Google Scholar]
  93. 93.
    Padilla-Benavides T, George Thompson AM, McEvoy MM, Argüello JM. 2014.. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. . J. Biol. Chem. 289::20492501
    [Crossref] [Google Scholar]
  94. 94.
    Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM. 2013.. A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. . J. Biol. Chem. 288::1133447
    [Crossref] [Google Scholar]
  95. 95.
    Page JE, Skiba MA, Do T, Kruse AC, Walker S. 2022.. Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase activation. . PNAS 119::e2201141119
    [Crossref] [Google Scholar]
  96. 96.
    Palmer T, Berks BC. 2012.. The twin-arginine translocation (Tat) protein export pathway. . Nat. Rev. Microbiol. 10::48396
    [Crossref] [Google Scholar]
  97. 97.
    Paruthiyil S, Pinochet-Barros A, Huang X, Helmann JD. 2020.. Bacillus subtilis TerC family proteins help prevent manganese intoxication. . J. Bacteriol. 202::e00624-19
    [Crossref] [Google Scholar]
  98. 98.
    Pasquina LW, Santa Maria JP, Walker S. 2013.. Teichoic acid biosynthesis as an antibiotic target. . Curr. Opin. Microbiol. 16::53137
    [Crossref] [Google Scholar]
  99. 99.
    Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, et al. 2022.. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. . Cell Rep. 39::110834
    [Crossref] [Google Scholar]
  100. 100.
    Patel Y, Zhao H, Helmann JD. 2020.. A regulatory pathway that selectively up-regulates elongasome function in the absence of class A PBPs. . eLife 9::e57902
    [Crossref] [Google Scholar]
  101. 101.
    Percy MG, Gründling A. 2014.. Lipoteichoic acid synthesis and function in gram-positive bacteria. . Annu. Rev. Microbiol. 68::81100
    [Crossref] [Google Scholar]
  102. 102.
    Peters K, Kannan S, Rao VA, Biboy J, Vollmer D, et al. 2016.. The redundancy of peptidoglycan carboxypeptidases ensures robust cell shape maintenance in Escherichia coli. . mBio 7::e00819-16
    [Crossref] [Google Scholar]
  103. 103.
    Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, et al. 2023.. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. . Front. Mol. Biosci. 10::1127690
    [Crossref] [Google Scholar]
  104. 104.
    Pi H, Sun R, McBride JR, Kruse ARS, Gibson-Corley KN, et al. 2023.. Clostridioides difficile ferrosome organelles combat nutritional immunity. . Nature 623::100916
    [Crossref] [Google Scholar]
  105. 105.
    Pi H, Wendel BM, Helmann JD. 2020.. Dysregulation of magnesium transport protects Bacillus subtilis against manganese and cobalt intoxication. . J. Bacteriol. 202::e0071119
    [Crossref] [Google Scholar]
  106. 106.
    Pomorski A, Drozd A, Kocyła A, Krężel A. 2023.. From methodological limitations to the function of metallothioneins: a guide to approaches for determining weak, moderate, and tight affinity zinc sites. . Metallomics 15::mfad027
    [Crossref] [Google Scholar]
  107. 107.
    Potelle S, Morelle W, Dulary E, Duvet S, Vicogne D, et al. 2016.. Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. . Hum. Mol. Genet. 25::1489500
    [Crossref] [Google Scholar]
  108. 108.
    Price IR, Gaballa A, Ding F, Helmann JD, Ke A. 2015.. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. . Mol. Cell 57::111023
    [Crossref] [Google Scholar]
  109. 109.
    Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. 2022.. One fold, many functions: M23 family of peptidoglycan hydrolases. . Front. Microbiol. 13::1036964
    [Crossref] [Google Scholar]
  110. 110.
    Remick KA, Helmann JD. 2023.. The elements of life: a biocentric tour of the periodic table. . Adv. Microb. Physiol. 82::1127
    [Crossref] [Google Scholar]
  111. 111.
    Robinson NJ, Winge DR. 2010.. Copper metallochaperones. . Annu. Rev. Biochem. 79::53762
    [Crossref] [Google Scholar]
  112. 112.
    Rosenzweig AC. 2001.. Copper delivery by metallochaperone proteins. . Acc. Chem. Res. 34::11928
    [Crossref] [Google Scholar]
  113. 113.
    Schaefer K, Matano LM, Qiao Y, Kahne D, Walker S. 2017.. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. . Nat. Chem. Biol. 13::396401
    [Crossref] [Google Scholar]
  114. 114.
    Schirner K, Marles-Wright J, Lewis RJ, Errington J. 2009.. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. . EMBO J. 28::83042
    [Crossref] [Google Scholar]
  115. 115.
    Schneider A, Steinberger I, Herdean A, Gandini C, Eisenhut M, et al. 2016.. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. . Plant Cell 28::892910
    [Google Scholar]
  116. 116.
    Schneider A, Steinberger I, Strissel H, Kunz HH, Manavski N, et al. 2014.. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. . Plant J. 78::34456
    [Crossref] [Google Scholar]
  117. 117.
    Sendra KM, Barwinska-Sendra A, Mackenzie ES, Baslé A, Kehl-Fie TE, Waldron KJ. 2023.. An ancient metalloenzyme evolves through metal preference modulation. . Nat. Ecol. Evol. 7::73244
    [Crossref] [Google Scholar]
  118. 118.
    Shi H, Jiang Y, Yang Y, Peng Y, Li C. 2021.. Copper metabolism in Saccharomyces cerevisiae: an update. . Biometals 34::314
    [Crossref] [Google Scholar]
  119. 119.
    Shin JH, Sulpizio AG, Kelley A, Alvarez L, Murphy SG, et al. 2020.. Structural basis of peptidoglycan endopeptidase regulation. . PNAS 117::11692702
    [Crossref] [Google Scholar]
  120. 120.
    Snyder NA, Palmer MV, Reinhardt TA, Cunningham KW. 2019.. Milk biosynthesis requires the Golgi cation exchanger TMEM165. . J. Biol. Chem. 294::318191
    [Crossref] [Google Scholar]
  121. 121.
    Sobota JM, Imlay JA. 2011.. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. . PNAS 108::54027
    [Crossref] [Google Scholar]
  122. 122.
    Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, et al. 2017.. Clinical variants of New Delhi metallo-β-lactamase are evolving to overcome zinc scarcity. . ACS Infect. Dis. 3::92740
    [Crossref] [Google Scholar]
  123. 123.
    Stewart LJ, Thaqi D, Kobe B, McEwan AG, Waldron KJ, Djoko KY. 2019.. Handling of nutrient copper in the bacterial envelope. . Metallomics 11::5063
    [Crossref] [Google Scholar]
  124. 124.
    Sychantha D, Rotondo CM, Tehrani K, Martin NI, Wright GD. 2021.. Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn2+. . J. Biol. Chem. 297::100918
    [Crossref] [Google Scholar]
  125. 125.
    Tandukar S, Kwon E, Kim DY. 2023.. Structural insights into the regulation of peptidoglycan dl-endopeptidases by inhibitory protein IseA. . Structure 31::61928.e4
    [Crossref] [Google Scholar]
  126. 126.
    Thines L, Deschamps A, Sengottaiyan P, Savel O, Stribny J, Morsomme P. 2018.. The yeast protein Gdt1p transports Mn2+ ions and thereby regulates manganese homeostasis in the Golgi. . J. Biol. Chem. 293::804855
    [Crossref] [Google Scholar]
  127. 127.
    Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, et al. 2019.. β-Lactamases and β-lactamase inhibitors in the 21st century. . J. Mol. Biol. 431::3472500
    [Crossref] [Google Scholar]
  128. 128.
    Tooke FJ, Babot M, Chandra G, Buchanan G, Palmer T. 2017.. A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. . eLife 6::e26577
    [Crossref] [Google Scholar]
  129. 129.
    Tottey S, Waldron KJ, Firbank SJ, Reale B, Bessant C, et al. 2008.. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. . Nature 455::113842
    [Crossref] [Google Scholar]
  130. 130.
    Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, et al. 2022.. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. . Biol. Rev. Camb. Philos. Soc. 97::73248
    [Crossref] [Google Scholar]
  131. 131.
    Tsu BV, Saier MH Jr. 2015.. The LysE superfamily of transport proteins involved in cell physiology and pathogenesis. . PLOS ONE 10::e0137184
    [Crossref] [Google Scholar]
  132. 132.
    Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019.. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. . Front. Microbiol. 10::331
    [Crossref] [Google Scholar]
  133. 133.
    Wailan AM, Paterson DL. 2014.. The spread and acquisition of NDM-1: a multifactorial problem. . Expert Rev. Anti Infect. Ther. 12::91115
    [Crossref] [Google Scholar]
  134. 134.
    Waldron KJ, Firbank SJ, Dainty SJ, Pérez-Rama M, Tottey S, Robinson NJ. 2010.. Structure and metal loading of a soluble periplasm cuproprotein. . J. Biol. Chem. 285::3250411
    [Crossref] [Google Scholar]
  135. 135.
    Weaver A, Taguchi A, Dörr T. 2023.. Masters of misdirection: peptidoglycan glycosidases in bacterial growth. . J. Bacteriol. 205::e0042822
    [Crossref] [Google Scholar]
  136. 136.
    Weiss A, Murdoch CC, Edmonds KA, Jordan MR, Monteith AJ, et al. 2022.. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. . Cell 185::214863.e27
    [Crossref] [Google Scholar]
  137. 137.
    Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. 2023.. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. . mBio 14::e01760-23
    [Crossref] [Google Scholar]
  138. 138.
    Wormann ME, Corrigan RM, Simpson PJ, Matthews SJ, Grundling A. 2011.. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. . Mol. Microbiol. 79::56683
    [Crossref] [Google Scholar]
  139. 139.
    Wu X, Han J, Gong G, Koffas MAG, Zha J. 2020.. Wall teichoic acids: physiology and applications. . FEMS Microbiol. Rev. 45::fuaa064
    [Crossref] [Google Scholar]
  140. 140.
    Yamagami R, Sieg JP, Bevilacqua PC. 2021.. Functional roles of chelated magnesium ions in RNA folding and function. . Biochemistry 60::237486
    [Crossref] [Google Scholar]
  141. 141.
    Young TR, Martini MA, Foster AW, Glasfeld A, Osman D, et al. 2021.. Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis while related proteins prefer ZnII. . Nat. Commun. 12::1195
    [Crossref] [Google Scholar]
  142. 142.
    Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, et al. 2018.. Structure-function analysis of manganese exporter proteins across bacteria. . J. Biol. Chem. 293::571530
    [Crossref] [Google Scholar]
  143. 143.
    Zhao H, Patel V, Helmann JD, Dörr T. 2017.. Don't let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. . Mol. Microbiol. 106::84760
    [Crossref] [Google Scholar]
  144. 144.
    Ziller A, Fraissinet-Tachet L. 2018.. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. . Metallomics 10::154959
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-091507
Loading
/content/journals/10.1146/annurev-micro-041522-091507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error