1932

Abstract

Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041522-094053
2024-11-20
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/78/1/annurev-micro-041522-094053.html?itemId=/content/journals/10.1146/annurev-micro-041522-094053&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdi M, Mirkalantari S, Amirmozafari N. 2019.. Bacterial resistance to antimicrobial peptides. . J. Pept. Sci. 25::e3210
    [Crossref] [Google Scholar]
  2. 2.
    Alves Feliciano C, Eckenroth BE, Diaz OR, Doublie S, Shen A. 2021.. A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. . PLOS Genet. 17::e1009791
    [Crossref] [Google Scholar]
  3. 3.
    Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003.. Intracellular bacterial biofilm-like pods in urinary tract infections. . Science 301::1057
    [Crossref] [Google Scholar]
  4. 4.
    Arias-Rojas A, Frahm D, Hurwitz R, Brinkmann V, Iatsenko I. 2023.. Resistance to host antimicrobial peptides mediates resilience of gut commensals during infection and aging in Drosophila. . PNAS 120::e2305649120
    [Crossref] [Google Scholar]
  5. 5.
    Ascari A, Waters JK, Morona R, Eijkelkamp BA. 2023.. Shigella flexneri adapts to niche-specific stresses through modifications in cell envelope composition and decoration. . ACS Infect. Dis. 9::161021
    [Crossref] [Google Scholar]
  6. 6.
    Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ. 2009.. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from gram-positive and gram-negative bacteria. . J. Biol. Chem. 284::864353
    [Crossref] [Google Scholar]
  7. 7.
    Aspell T, Khemlani AHJ, Tsai CJ, Loh JMS, Proft T. 2023.. The cell wall deacetylases Spy1094 and Spy1370 contribute to Streptococcus pyogenes virulence. . Microorganisms 11::305
    [Crossref] [Google Scholar]
  8. 8.
    Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, et al. 2020.. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. . Front. Microbiol. 11::593215
    [Crossref] [Google Scholar]
  9. 9.
    Banzhaf M, Yau HC, Verheul J, Lodge A, Kritikos G, et al. 2020.. Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. . EMBO J. 39::e102246
    [Crossref] [Google Scholar]
  10. 10.
    Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, et al. 2017.. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis. . Cell 168::17285.e15
    [Crossref] [Google Scholar]
  11. 11.
    Bastos PAD, Wheeler R, Boneca IG. 2021.. Uptake, recognition and responses to peptidoglycan in the mammalian host. . FEMS Microbiol. Rev. 45::fuaa044
    [Crossref] [Google Scholar]
  12. 12.
    Baum EZ, Crespo-Carbone SM, Foleno B, Peng S, Hilliard JJ, et al. 2005.. Identification of a dithiazoline inhibitor of Escherichia colil,d-carboxypeptidase A. . Antimicrob. Agents Chemother. 49::45007
    [Crossref] [Google Scholar]
  13. 13.
    Benachour A, Ladjouzi R, Le Jeune A, Hebert L, Thorpe S, et al. 2012.. The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. . J. Bacteriol. 194::606673
    [Crossref] [Google Scholar]
  14. 14.
    Bernard E, Rolain T, Courtin P, Guillot A, Langella P, et al. 2011.. Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. . J. Biol. Chem. 286::2395058
    [Crossref] [Google Scholar]
  15. 15.
    Bharadwaj R, Lusi CF, Mashayekh S, Nagar A, Subbarao M, et al. 2023.. Methotrexate suppresses psoriatic skin inflammation by inhibiting muropeptide transporter SLC46A2 activity. . Immunity 56::9981012.e8
    [Crossref] [Google Scholar]
  16. 16.
    Boamah D, Gilmore MC, Bourget S, Ghosh A, Hossain MJ, et al. 2023.. Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila. . PNAS 120::e2119658120
    [Crossref] [Google Scholar]
  17. 17.
    Bonis M, Ecobichon C, Guadagnini S, Prevost MC, Boneca IG. 2010.. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. . Mol. Microbiol. 78::80919
    [Crossref] [Google Scholar]
  18. 18.
    Bouskra D, Brezillon C, Berard M, Werts C, Varona R, et al. 2008.. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. . Nature 456::50710
    [Crossref] [Google Scholar]
  19. 19.
    Brogan AP, Rudner DZ. 2023.. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. . Curr. Opin. Microbiol. 72::102279
    [Crossref] [Google Scholar]
  20. 20.
    Brott AS, Jones CS, Clarke AJ. 2019.. Development of a high throughput screen for the identification of inhibitors of peptidoglycan O-acetyltransferases, new potential antibacterial targets. . Antibiotics 8::65
    [Crossref] [Google Scholar]
  21. 21.
    Buck GE, Parshall KA, Davis CP. 1983.. Electron microscopy of the coccoid form of Campylobacter jejuni. . J. Clin. Microbiol. 18::42021
    [Crossref] [Google Scholar]
  22. 22.
    Bui NK, Turk S, Buckenmaier S, Stevenson-Jones F, Zeuch B, et al. 2011.. Development of screening assays and discovery of initial inhibitors of pneumococcal peptidoglycan deacetylase PgdA. . Biochem. Pharmacol. 82::4352
    [Crossref] [Google Scholar]
  23. 23.
    Chan JM, Hackett KT, Woodhams KL, Schaub RE, Dillard JP. 2022.. The AmiC/NlpD pathway dominates peptidoglycan breakdown in Neisseria meningitidis and affects cell separation, NOD1 agonist production, and infection. . Infect. Immun. 90::e0048521
    [Crossref] [Google Scholar]
  24. 24.
    Chaput C, Ecobichon C, Pouradier N, Rousselle JC, Namane A, Boneca IG. 2016.. Role of the N-acetylmuramoyl-l-alanyl amidase, AmiA, of Helicobacter pylori in peptidoglycan metabolism, daughter cell separation, and virulence. . Microb. Drug Resist. 22::47786
    [Crossref] [Google Scholar]
  25. 25.
    Chodisetti PK, Bahadur R, Amrutha RN, Reddy M. 2022.. A LytM-domain factor, ActS, functions in two distinctive peptidoglycan hydrolytic pathways in E. coli. . Front. Microbiol. 13::913949
    [Crossref] [Google Scholar]
  26. 26.
    Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. 2010.. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. . Nat. Med. 16::22831
    [Crossref] [Google Scholar]
  27. 27.
    Cook J, Baverstock TC, McAndrew MBL, Roper DI, Stansfeld PJ, Crow A. 2023.. Activator-induced conformational changes regulate division-associated peptidoglycan amidases. . PNAS 120::e2302580120
    [Crossref] [Google Scholar]
  28. 28.
    Cook J, Baverstock TC, McAndrew MBL, Stansfeld PJ, Roper DI, Crow A. 2020.. Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. . PNAS 117::2835565
    [Crossref] [Google Scholar]
  29. 29.
    Cools F, Triki D, Geerts N, Delputte P, Fourches D, Cos P. 2020.. In vitro and in vivo evaluation of in silico predicted pneumococcal UDPG:PP inhibitors. . Front. Microbiol. 11::1596
    [Crossref] [Google Scholar]
  30. 30.
    Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. 2020.. Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response. . J. Biol. Chem. 295::1678596
    [Crossref] [Google Scholar]
  31. 31.
    Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, et al. 2021.. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. . PNAS 118::e2016772118
    [Crossref] [Google Scholar]
  32. 32.
    Damais C, Bona C, Chedid L, Fleck J, Nauciel C, Martin JP. 1975.. Mitogenic effect of bacterial peptidoglycans possessing adjuvant activity. . J. Immunol. 115::26871
    [Crossref] [Google Scholar]
  33. 33.
    Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, et al. 2021.. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the Lyme disease spirochete. . PLOS Pathog. 17::e1009546
    [Crossref] [Google Scholar]
  34. 34.
    de Jonge EF, van Boxtel R, Balhuizen MD, Haagsman HP, Tommassen J. 2022.. Pal depletion results in hypervesiculation and affects cell morphology and outer-membrane lipid asymmetry in bordetellae. . Res. Microbiol. 173::103937
    [Crossref] [Google Scholar]
  35. 35.
    DeHart TG, Kushelman MR, Hildreth SB, Helm RF, Jutras BL. 2021.. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. . Nat. Microbiol. 6::158392
    [Crossref] [Google Scholar]
  36. 36.
    Dobihal GS, Flores-Kim J, Roney IJ, Wang X, Rudner DZ. 2022.. The WalR-WalK signaling pathway modulates the activities of both CwlO and LytE through control of the peptidoglycan deacetylase PdaC in Bacillus subtilis. . J. Bacteriol. 204::e0053321
    [Crossref] [Google Scholar]
  37. 37.
    Du S, Pichoff S, Lutkenhaus J. 2020.. Roles of ATP hydrolysis by FtsEX and interaction with FtsA in regulation of septal peptidoglycan synthesis and hydrolysis. . mBio 11::e01247-20
    [Crossref] [Google Scholar]
  38. 38.
    Dziarski R, Gupta D. 2006.. The peptidoglycan recognition proteins (PGRPs). . Genome Biol. 7::232
    [Crossref] [Google Scholar]
  39. 39.
    Falugi F, Kim HK, Missiakas DM, Schneewind O. 2013.. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. . mBio 4::e00575-13
    [Crossref] [Google Scholar]
  40. 40.
    Fukushima T, Tanabe T, Yamamoto H, Hosoya S, Sato T, et al. 2004.. Characterization of a polysaccharide deacetylase gene homologue (pdaB) on sporulation of Bacillus subtilis. . J. Biochem. 136::28391
    [Crossref] [Google Scholar]
  41. 41.
    Fukushima T, Yamamoto H, Atrih A, Foster SJ, Sekiguchi J. 2002.. A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. . J. Bacteriol. 184::600715
    [Crossref] [Google Scholar]
  42. 42.
    Fullen AR, Gutierrez-Ferman JL, Yount KS, Love CF, Choi HG, et al. 2022.. Bps polysaccharide of Bordetella pertussis resists antimicrobial peptides by functioning as a dual surface shield and decoy and converts Escherichia coli into a respiratory pathogen. . PLOS Pathog. 18::e1010764
    [Crossref] [Google Scholar]
  43. 43.
    Gabanyi I, Lepousez G, Wheeler R, Vieites-Prado A, Nissant A, et al. 2022.. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. . Science 376::eabj3986
    [Crossref] [Google Scholar]
  44. 44.
    Gaday Q, Megrian D, Carloni G, Martinez M, Sokolova B, et al. 2022.. FtsEX-independent control of RipA-mediated cell separation in Corynebacteriales. . PNAS 119::e2214599119
    [Crossref] [Google Scholar]
  45. 45.
    Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, et al. 2020.. YycH and YycI regulate expression of Staphylococcus aureus autolysins by activation of WalRK phosphorylation. . Microorganisms 8::870
    [Crossref] [Google Scholar]
  46. 46.
    Gao J, Zhao X, Hu S, Huang Z, Hu M, et al. 2022.. Gut microbial dl-endopeptidase alleviates Crohn's disease via the NOD2 pathway. . Cell Host Microbe 30::143549.e9
    [Crossref] [Google Scholar]
  47. 47.
    Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, et al. 2003.. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. . J. Biol. Chem. 278::417028
    [Crossref] [Google Scholar]
  48. 48.
    Griffin ME, Espinosa J, Becker JL, Luo JD, Carroll TS, et al. 2021.. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. . Science 373::104046
    [Crossref] [Google Scholar]
  49. 49.
    Griffin ME, Klupt S, Espinosa J, Hang HC. 2023.. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. . Cell Chem. Biol. 30::43656
    [Crossref] [Google Scholar]
  50. 50.
    Gupta D, Kirkland TN, Viriyakosol S, Dziarski R. 1996.. CD14 is a cell-activating receptor for bacterial peptidoglycan. . J. Biol. Chem. 271::2331016
    [Crossref] [Google Scholar]
  51. 51.
    Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, et al. 2016.. Accumulation of peptidoglycan O-acetylation leads to altered cell wall biochemistry and negatively impacts pathogenesis factors of Campylobacter jejuni. . J. Biol. Chem. 291::22686702
    [Crossref] [Google Scholar]
  52. 52.
    Heesterbeek DAC, Muts RM, van Hensbergen VP, de Saint Aulaire P, Wennekes T, et al. 2021.. Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. . PLOS Pathog. 17::e1009227
    [Crossref] [Google Scholar]
  53. 53.
    Hernandez SB, Castanheira S, Pucciarelli MG, Cestero JJ, Rico-Perez G, et al. 2022.. Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling. . PLOS Pathog. 18::e1010241
    [Crossref] [Google Scholar]
  54. 54.
    Hesser AR, Matano LM, Vickery CR, Wood BM, Santiago AG, et al. 2020.. The length of lipoteichoic acid polymers controls Staphylococcus aureus cell size and envelope integrity. . J. Bacteriol. 202::e00149-20
    [Crossref] [Google Scholar]
  55. 55.
    Hesser AR, Schaefer K, Lee W, Walker S. 2020.. Lipoteichoic acid polymer length is determined by competition between free starter units. . PNAS 117::2966976
    [Crossref] [Google Scholar]
  56. 56.
    Ho TD, Williams KB, Chen Y, Helm RF, Popham DL, Ellermeier CD. 2014.. Clostridium difficile extracytoplasmic function sigma factor sigmaV regulates lysozyme resistance and is necessary for pathogenesis in the hamster model of infection. . Infect. Immun. 82::234555
    [Crossref] [Google Scholar]
  57. 57.
    Hsu PC, Chen CS, Wang S, Hashimoto M, Huang WC, Teng CH. 2020.. Identification of MltG as a Prc protease substrate whose dysregulation contributes to the conditional growth defect of Prc-deficient Escherichia coli. . Front. Microbiol. 11::2000
    [Crossref] [Google Scholar]
  58. 58.
    Huang Z, Wang J, Xu X, Wang H, Qiao Y, et al. 2019.. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. . Nat. Microbiol. 4::76673
    [Crossref] [Google Scholar]
  59. 59.
    Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernandez-Tamayo R, Richter P, et al. 2023.. DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus. . Nat. Commun. 14::4095
    [Crossref] [Google Scholar]
  60. 60.
    Jackson KM, Schwartz C, Wachter J, Rosa PA, Stewart PE. 2018.. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. . Mol. Microbiol. 108::7789
    [Crossref] [Google Scholar]
  61. 61.
    Jalalvand F, Su YC, Manat G, Chernobrovkin A, Kadari M, et al. 2022.. Protein domain–dependent vesiculation of Lipoprotein A, a protein that is important in cell wall synthesis and fitness of the human respiratory pathogen Haemophilus influenzae. . Front. Cell. Infect. Microbiol. 12::984955
    [Crossref] [Google Scholar]
  62. 62.
    Jeon WJ, Cho H. 2022.. A cell wall hydrolase MepH is negatively regulated by proteolysis involving Prc and NlpI in Escherichia coli. . Front. Microbiol. 13::878049
    [Crossref] [Google Scholar]
  63. 63.
    Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, et al. 2004.. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. . PNAS 101::133338
    [Crossref] [Google Scholar]
  64. 64.
    Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. 2008.. Morphological plasticity as a bacterial survival strategy. . Nat. Rev. Microbiol. 6::16268
    [Crossref] [Google Scholar]
  65. 65.
    Justice SS, Hunstad DA, Seed PC, Hultgren SJ. 2006.. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. . PNAS 103::1988489
    [Crossref] [Google Scholar]
  66. 66.
    Jutras BL, Lochhead RB, Kloos ZA, Biboy J, Strle K, et al. 2019.. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. . PNAS 116::13498507
    [Crossref] [Google Scholar]
  67. 67.
    Kaus GM, Snyder LF, Muh U, Flores MJ, Popham DL, Ellermeier CD. 2020.. Lysozyme resistance in Clostridioides difficile is dependent on two peptidoglycan deacetylases. . J. Bacteriol. 202::e00421-20
    [Crossref] [Google Scholar]
  68. 68.
    Kawai Y, Errington J. 2023.. Dissecting the roles of peptidoglycan synthetic and autolytic activities in the walled to L-form bacterial transition. . Front. Microbiol. 14::1204979
    [Crossref] [Google Scholar]
  69. 69.
    Khandige S, Asferg CA, Rasmussen KJ, Larsen MJ, Overgaard M, et al. 2016.. DamX controls reversible cell morphology switching in uropathogenic Escherichia coli. . mBio 7::e00642-16
    [Crossref] [Google Scholar]
  70. 70.
    Kho K, Meredith TC. 2018.. Salt-induced stress stimulates a lipoteichoic acid–specific three-component glycosylation system in Staphylococcus aureus. . J. Bacteriol. 200::e00017-18
    [Crossref] [Google Scholar]
  71. 71.
    Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, et al. 2012.. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. . J. Biol. Chem. 287::976576
    [Crossref] [Google Scholar]
  72. 72.
    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. 2004.. Microbial factor-mediated development in a host-bacterial mutualism. . Science 306::118688
    [Crossref] [Google Scholar]
  73. 73.
    Krogfelt KA, Poulsen LK, Molin S. 1993.. Identification of coccoid Escherichia coli BJ4 cells in the large intestine of streptomycin-treated mice. . Infect. Immun. 61::502934
    [Crossref] [Google Scholar]
  74. 74.
    Krueger JM, Pappenheimer JR, Karnovsky ML. 1982.. The composition of sleep-promoting factor isolated from human urine. . J. Biol. Chem. 257::166469
    [Crossref] [Google Scholar]
  75. 75.
    Kumar V, Boorman J, Greenlee WJ, Zeng X, Lin J, van den Akker F. 2023.. Exploring the inhibition of the soluble lytic transglycosylase Cj0843c of Campylobacter jejuni via targeting different sites with different scaffolds. . Protein Sci. 32::e4683
    [Crossref] [Google Scholar]
  76. 76.
    Kurokawa K, Takahashi K, Lee BL. 2016.. The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. . Immunobiology 221::1091101
    [Crossref] [Google Scholar]
  77. 77.
    Kwan JMC, Qiao Y. 2023.. Mechanistic insights into the activities of major families of enzymes in bacterial peptidoglycan assembly and breakdown. . ChemBioChem 24::e202200693
    [Crossref] [Google Scholar]
  78. 78.
    Laman JD, ‘t Hart BA, Power C, Dziarski R. 2020.. Bacterial peptidoglycan as a driver of chronic brain inflammation. . Trends Mol. Med. 26::67082
    [Crossref] [Google Scholar]
  79. 79.
    Lehotzky RE, Partch CL, Mukherjee S, Cash HL, Goldman WE, et al. 2010.. Molecular basis for peptidoglycan recognition by a bactericidal lectin. . PNAS 107::772227
    [Crossref] [Google Scholar]
  80. 80.
    Lehtonen L, Eerola E, Oksman P, Toivanen P. 1995.. Muramic acid in peripheral blood leukocytes of healthy human subjects. . J. Infect. Dis. 171::106064
    [Crossref] [Google Scholar]
  81. 81.
    Lenz JD, Shirk KA, Jolicoeur A, Dillard JP. 2018.. Selective inhibition of Neisseria gonorrhoeae by a dithiazoline in mixed infections with Lactobacillus gasseri. . Antimicrob. Agents Chemother. 62::e00826-18
    [Crossref] [Google Scholar]
  82. 82.
    Lenz JD, Stohl EA, Robertson RM, Hackett KT, Fisher K, et al. 2016.. Amidase activity of AmiC controls cell separation and stem peptide release and is enhanced by NlpD in Neisseria gonorrhoeae. . J. Biol. Chem. 291::1091633
    [Crossref] [Google Scholar]
  83. 83.
    Ma YG, Cho MY, Zhao M, Park JW, Matsushita M, et al. 2004.. Human mannose-binding lectin and l-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. . J. Biol. Chem. 279::2530712
    [Crossref] [Google Scholar]
  84. 84.
    Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, et al. 2011.. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. . Gut 60::105059
    [Crossref] [Google Scholar]
  85. 85.
    Maldonado RF, Sa-Correia I, Valvano MA. 2016.. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. . FEMS Microbiol. Rev. 40::48093
    [Crossref] [Google Scholar]
  86. 86.
    Martin NR, Blackman E, Bratton BP, Chase KJ, Bartlett TM, Gitai Z. 2021.. CrvA and CrvB form a curvature-inducing module sufficient to induce cell-shape complexity in Gram-negative bacteria. . Nat. Microbiol. 6::91020
    [Crossref] [Google Scholar]
  87. 87.
    Martinez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J, et al. 2016.. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. . Mol. Microbiol. 99::88110
    [Crossref] [Google Scholar]
  88. 88.
    Martinez-Bond EA, Soriano BM, Williams AH. 2022.. The mechanistic landscape of lytic transglycosylase as targets for antibacterial therapy. . Curr. Opin. Struct. Biol. 77::102480
    [Crossref] [Google Scholar]
  89. 89.
    Martinez-Caballero S, Freton C, Molina R, Bartual SG, Gueguen-Chaignon V, et al. 2023.. Molecular basis of the final step of cell division in Streptococcus pneumoniae. . Cell Rep. 42::112756
    [Crossref] [Google Scholar]
  90. 90.
    Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, et al. 2016.. SEDS proteins are a widespread family of bacterial cell wall polymerases. . Nature 537::63438
    [Crossref] [Google Scholar]
  91. 91.
    Mezoughi AB, Costanzo CM, Parker GM, Behiry EM, Scott A, et al. 2021.. The lysozyme inhibitor thionine acetate is also an inhibitor of the soluble lytic transglycosylase Slt35 from Escherichia coli. . Molecules 26::4189
    [Crossref] [Google Scholar]
  92. 92.
    Michel LV, Gallardo L, Konovalova A, Bauer M, Jackson N, et al. 2020.. Ampicillin triggers the release of Pal in toxic vesicles from Escherichia coli. . Int. J. Antimicrob. Agents 56::106163
    [Crossref] [Google Scholar]
  93. 93.
    Migliore-Samour D, Jolles P. 1973.. Hydrosoluble adjuvant-active mycobacterial fractions of low molecular weight. . FEBS Lett. 35::31721
    [Crossref] [Google Scholar]
  94. 94.
    Mistretta N, Brossaud M, Telles F, Sanchez V, Talaga P, Rokbi B. 2019.. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions. . Sci. Rep. 9::3212
    [Crossref] [Google Scholar]
  95. 95.
    Mueller EA, Iken AG, Ali Ozturk M, Winkle M, Schmitz M, et al. 2021.. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. . Mol. Microbiol. 116::31128
    [Crossref] [Google Scholar]
  96. 96.
    Nevermann J, Silva A, Otero C, Oyarzun DP, Barrera B, et al. 2019.. Identification of genes involved in biogenesis of outer membrane vesicles (OMVs) in Salmonella enterica serovar Typhi. . Front. Microbiol. 10::104
    [Crossref] [Google Scholar]
  97. 97.
    Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. 2014.. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. . Cell Host Microbe 15::79298
    [Crossref] [Google Scholar]
  98. 98.
    Nikitushkin VD, Demina GR, Shleeva MO, Guryanova SV, Ruggiero A, et al. 2015.. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. . FEBS J. 282::250011
    [Crossref] [Google Scholar]
  99. 99.
    Ojima Y, Sawabe T, Nakagawa M, Tahara YO, Miyata M, Azuma M. 2021.. Aberrant membrane structures in hypervesiculating Escherichia coli strain ΔmlaEΔnlpI visualized by electron microscopy. . Front. Microbiol. 12::706525
    [Crossref] [Google Scholar]
  100. 100.
    Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A. 1995.. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. . PNAS 92::28589
    [Crossref] [Google Scholar]
  101. 101.
    Page JE, Skiba MA, Do T, Kruse AC, Walker S. 2022.. Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase activation. . PNAS 119::e2201141119
    [Crossref] [Google Scholar]
  102. 102.
    Paulsson M, Kragh KN, Su YC, Sandblad L, Singh B, et al. 2021.. Peptidoglycan-binding anchor is a Pseudomonas aeruginosa OmpA family lipoprotein with importance for outer membrane vesicles, biofilms, and the periplasmic shape. . Front. Microbiol. 12::639582
    [Crossref] [Google Scholar]
  103. 103.
    Peters NT, Dinh T, Bernhardt TG. 2011.. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. . J. Bacteriol. 193::497383
    [Crossref] [Google Scholar]
  104. 104.
    Pfeffer JM, Clarke AJ. 2012.. Identification of the first known inhibitors of O-acetylpeptidoglycan esterase: a potential new antibacterial target. . ChemBioChem 13::72231
    [Crossref] [Google Scholar]
  105. 105.
    Picardeau M, Brenot A, Saint Girons I. 2001.. First evidence for gene replacement in Leptospira spp. inactivation of L. biflexa flab results in non-motile mutants deficient in endoflagella. . Mol. Microbiol. 40::18999
    [Crossref] [Google Scholar]
  106. 106.
    Ragland SA, Criss AK. 2017.. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. . PLOS Pathog. 13::e1006512
    [Crossref] [Google Scholar]
  107. 107.
    Ramos Y, Sansone S, Hwang SM, Sandoval TA, Zhu M, et al. 2022.. Remodeling of the enterococcal cell envelope during surface penetration promotes intrinsic resistance to stress. . mBio 13::e0229422
    [Crossref] [Google Scholar]
  108. 108.
    Rashid R, Nair ZJ, Chia DMH, Chong KKL, Cazenave Gassiot A, et al. 2023.. Depleting cationic lipids involved in antimicrobial resistance drives adaptive lipid remodeling in Enterococcus faecalis. . mBio 14::e0307322
    [Crossref] [Google Scholar]
  109. 109.
    Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr. 2005.. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. . J. Biol. Chem. 280::32633
    [Crossref] [Google Scholar]
  110. 110.
    Reikeras O, Wang JE, Foster SJ, Utvag SE. 2007.. Staphylococcus aureus peptidoglycan impairs fracture healing: an experimental study in rats. . J. Orthop. Res. 25::26266
    [Crossref] [Google Scholar]
  111. 111.
    Rosenthal RS, Nogami W, Cookson BT, Goldman WE, Folkening WJ. 1987.. Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. . Infect. Immun. 55::211720
    [Crossref] [Google Scholar]
  112. 112.
    Rouchon CN, Weinstein AJ, Hutchison CA, Zubair-Nizami ZB, Kohler PL, Frank KL. 2022.. Disruption of the tagF orthologue in the epa locus variable region of Enterococcus faecalis causes cell surface changes and suppresses an eep-dependent lysozyme resistance phenotype. . J. Bacteriol. 204::e0024722
    [Crossref] [Google Scholar]
  113. 113.
    Rush JS, Parajuli P, Ruda A, Li J, Pohane AA, et al. 2022.. PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. . Nat. Commun. 13::590
    [Crossref] [Google Scholar]
  114. 114.
    Salton MR. 1956.. Studies of the bacterial cell wall. V. The action of lysozyme on cell walls of some lysozyme-sensitive bacteria. . Biochim. Biophys. Acta 22::495506
    [Crossref] [Google Scholar]
  115. 115.
    Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. 1999.. Peptidoglycan- and lipoteichoic acid–induced cell activation is mediated by Toll-like receptor 2. . J. Biol. Chem. 274::174069
    [Crossref] [Google Scholar]
  116. 116.
    Schwarzer M, Gautam UK, Makki K, Lambert A, Brabec T, et al. 2023.. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. . Science 379::82633
    [Crossref] [Google Scholar]
  117. 117.
    Sexton DL, Herlihey FA, Brott AS, Crisante DA, Shepherdson E, et al. 2020.. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. . J. Biol. Chem. 295::917182
    [Crossref] [Google Scholar]
  118. 118.
    Shahryari S, Talaee M, Haghbeen K, Adrian L, Vali H, et al. 2021.. New provisional function of OmpA from Acinetobacter sp. strain SA01 based on environmental challenges. . mSystems
    [Crossref] [Google Scholar]
  119. 119.
    Soderstrom B, Pittorino MJ, Daley DO, Duggin IG. 2022.. Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. . Nat. Commun. 13::3648
    [Crossref] [Google Scholar]
  120. 120.
    Stinemetz EK, Gao P, Pinkston KL, Montealegre MC, Murray BE, Harvey BR. 2017.. Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation. . PLOS ONE 12::e0186706
    [Crossref] [Google Scholar]
  121. 121.
    Stubbs KA, Balcewich M, Mark BL, Vocadlo DJ. 2007.. Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated β-lactam resistance. . J. Biol. Chem. 282::2138291
    [Crossref] [Google Scholar]
  122. 122.
    Sychantha D, Brott AS, Jones CS, Clarke AJ. 2018.. Mechanistic pathways for peptidoglycan O-acetylation and de-O-acetylation. . Front. Microbiol. 9::2332
    [Crossref] [Google Scholar]
  123. 123.
    Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, et al. 2010.. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. . Cell 141::82233
    [Crossref] [Google Scholar]
  124. 124.
    Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, et al. 2012.. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. . PLOS Pathog. 8::e1002603
    [Crossref] [Google Scholar]
  125. 125.
    Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M, et al. 2019.. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. . Nat. Microbiol. 4::58794
    [Crossref] [Google Scholar]
  126. 126.
    Tahara H, Takabe K, Sasaki Y, Kasuga K, Kawamoto A, et al. 2018.. The mechanism of two-phase motility in the spirochete Leptospira: swimming and crawling. . Sci. Adv. 4::eaar7975
    [Crossref] [Google Scholar]
  127. 127.
    Takabe K, Tahara H, Islam MS, Affroze S, Kudo S, Nakamura S. 2017.. Viscosity-dependent variations in the cell shape and swimming manner of Leptospira. . Microbiology 163::15360
    [Crossref] [Google Scholar]
  128. 128.
    Tan S, Cho K, Nodwell JR. 2022.. A defect in cell wall recycling confers antibiotic resistance and sensitivity in Staphylococcus aureus. . J. Biol. Chem. 298::102473
    [Crossref] [Google Scholar]
  129. 129.
    Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. 2023.. Composition and functions of bacterial membrane vesicles. . Nat. Rev. Microbiol. 21::41530
    [Crossref] [Google Scholar]
  130. 130.
    Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, et al. 2004.. Toll-like receptor 2–dependent bacterial sensing does not occur via peptidoglycan recognition. . EMBO Rep. 5::10006
    [Crossref] [Google Scholar]
  131. 131.
    Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. 2019.. Stress-induced adaptive morphogenesis in bacteria. . Adv. Microb. Physiol. 74::97141
    [Crossref] [Google Scholar]
  132. 132.
    Veyrier FJ, Biais N, Morales P, Belkacem N, Guilhen C, et al. 2015.. Common cell shape evolution of two nasopharyngeal pathogens. . PLOS Genet. 11::e1005338
    [Crossref] [Google Scholar]
  133. 133.
    Veyrier FJ, Williams AH, Mesnage S, Schmitt C, Taha MK, Boneca IG. 2013.. De-O-acetylation of peptidoglycan regulates glycan chain extension and affects in vivo survival of Neisseria meningitidis. . Mol. Microbiol. 87::110012
    [Crossref] [Google Scholar]
  134. 134.
    Viaud S, Daillere R, Boneca IG, Lepage P, Pittet MJ, et al. 2014.. Harnessing the intestinal microbiome for optimal therapeutic immunomodulation. . Cancer Res. 74::421721
    [Crossref] [Google Scholar]
  135. 135.
    Vollmer W, Blanot D, de Pedro MA. 2008.. Peptidoglycan structure and architecture. . FEMS Microbiol. Rev. 32::14967
    [Crossref] [Google Scholar]
  136. 136.
    Vollmer W, Tomasz A. 2000.. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. . J. Biol. Chem. 275::20496501
    [Crossref] [Google Scholar]
  137. 137.
    Voskoboinyk D, Mahmoodi N, Lin CS, Murphy MEP, Tanner ME. 2023.. Aldehyde-based inhibitors of the peptidoglycan O-acetylesterase Ape. . ChemBioChem 24::e202300205
    [Crossref] [Google Scholar]
  138. 138.
    Wheeler R, Bastos PAD, Disson O, Rifflet A, Gabanyi I, et al. 2023.. Microbiota-induced active translocation of peptidoglycan across the intestinal barrier dictates its within-host dissemination. . PNAS 120::e2209936120
    [Crossref] [Google Scholar]
  139. 139.
    Williams AH, Wheeler R, Deghmane AE, Santecchia I, Schaub RE, et al. 2020.. Defective lytic transgly-cosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis. . eLife 9::e51247
    [Crossref] [Google Scholar]
  140. 140.
    Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. 2023.. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. . mBio 14::e0176023
    [Crossref] [Google Scholar]
  141. 141.
    Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, et al. 2016.. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. . Cell 166::62436
    [Crossref] [Google Scholar]
  142. 142.
    Xiang C, Chen P, Zhang Q, Li Y, Pan Y, et al. 2021.. Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. . iScience 24::102849
    [Crossref] [Google Scholar]
  143. 143.
    Xu X, Li J, Chua WZ, Pages MA, Shi J, et al. 2023.. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. . PNAS 120::e2301897120
    [Crossref] [Google Scholar]
  144. 144.
    Yadav AK, Espaillat A, Cava F. 2018.. Bacterial strategies to preserve cell wall integrity against environmental threats. . Front. Microbiol. 9::2064
    [Crossref] [Google Scholar]
  145. 145.
    Yamaguchi T, Blazquez B, Hesek D, Lee M, Llarrull LI, et al. 2012.. Inhibitors for bacterial cell-wall recycling. . ACS Med. Chem. Lett. 3::23842
    [Crossref] [Google Scholar]
  146. 146.
    Young KD. 2006.. The selective value of bacterial shape. . Microbiol. Mol. Biol. Rev. 70::660703
    [Crossref] [Google Scholar]
  147. 147.
    Zeng H, Cheng M, Liu J, Hu C, Lin S, et al. 2023.. Pyrimirhodomyrtone inhibits Staphylococcus aureus by affecting the activity of NagA. . Biochem. Pharmacol. 210::115455
    [Crossref] [Google Scholar]
  148. 148.
    Zhang Q, Pan Y, Zeng B, Zheng X, Wang H, et al. 2019.. Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. . Cell Res. 29::51632
    [Crossref] [Google Scholar]
  149. 149.
    Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. 2021.. Spatial regulation of protein A in Staphylococcus aureus. . Mol. Microbiol. 116::589605
    [Crossref] [Google Scholar]
  150. 150.
    Zielke RA, Le Van A, Baarda BI, Herrera MF, Acosta CJ, et al. 2018.. SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. . PLOS Pathog. 14::e1007081
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-041522-094053
Loading
/content/journals/10.1146/annurev-micro-041522-094053
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error